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Long time solutions to the Frank-Kamenetskii partial differential equation modelling a thermal
explosion in a vessel are obtained using matrix exponentiation. Spatial derivatives are approx-
imated by high-order finite difference approximations. A forward difference approximation to
the time derivative leads to a Lawson-Euler scheme. Computations performed with a BDF
approximation to the time derivative and a fourth-order Runge-Kutta approximation to the time
derivative are compared to results obtainedwith the Lawson-Euler scheme. Variation in the central
temperature of the vessel corresponding to changes in the shape parameter and Frank-Kamenetskii
parameter are computed and discussed.

1. Introduction

In this paper we use matrix exponentiation to determine numerical solutions of the Frank-
Kamenetskii partial differential equation (FKPDE)modelling a thermal explosion in a vessel.
The FKPDE is given by the nonlinear partial differential equation:

∂u

∂t
=

∂2u

∂x2
+
k

x

∂u

∂x
+ δeu, (1.1)

where u(x, t) is the nondimensional temperature in a vessel, k is a coefficient that represents
the shape of the vessel, and δ is the Frank-Kamenetskii parameter [1]. The FKPDE (1.1) is
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solved subject to the boundary conditions

∂u

∂x
(0, t) = 0, (1.2a)

u(1, t) = 0, (1.2b)

and the initial condition

u(x, 0) = 0. (1.3)

In this paper the spatial derivatives of the FKPDE (1.1) are approximated by high-
order finite difference schemes. The resulting system of equations is approximated using the
method of lines and is then integrated using matrix exponentiation. The resulting matrix
approximation is pentadiagonal because we have approximated the spatial derivatives
using high-order finite difference schemes. Comparisons are made between two high-order
approximations to the time derivative by comparing a BDF approximation and a Runge-
Kutta approximation to the time derivative. The results obtained compare favorably with the
results obtained by Harley [2] and Britz et al. [3].

The FKPDE (1.1) is derived from a heat balance equation given by

c
∂T

∂t
= kc∇2T + σQA exp

(
− E

RT

)
, (1.4)

where c is the thermal capacity, kc is the thermal conductivity, σ the density, Q is the heat of
reaction, A is the frequency factor, E is the energy of activation of the chemical reaction, R is
the universal gas constant, and T is the gas temperature. The heat balance equation (1.4) is
made nondimensional by substituting

θ =
E

RT2
0

(T − T0), (1.5)

where T0 is the ambient temperature into (1.4). The Laplacian ∇2 is given by

∇2 =
∂2

∂r2
+
N − 1

r

∂

∂r
, (1.6)

where the constant N is related to the geometry of the problem.
We make a change of variables

u = θ − θ0, (1.7a)

x = r
[
δeθ0
]1/2

, (1.7b)
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where θ0 is a dimensionless temperature at the vessel walls and

δ =

[
σQA

kc

E

RT2
0

exp
(
− E

RT0

)]
. (1.8)

The heat balance equation (1.4) reduces to the FKPDE equation (1.1) where boundary
conditions for a fixed constant temperature at the cylinder wall are given by

∂u

∂x
(0, t) = 0, (1.9a)

u(λ, t) = 0, (1.9b)

where λ is the boundary of vessel and N = k + 1. We choose λ = 1 to obtain the boundary
conditions (1.2a) and (1.2b). For well-defined geometries we have k = 0 for a rectangular
slab, k = 1 for an infinite circular cylinder, and k = 2 for a sphere. Balakrishnan et al. [4]
have solved the steady problem for nonstandard geometries, that is, k is not an integer. The
problem (1.1) has been solved using the Robin boundary conditions at the boundary x = 1
given by [5–8]:

∂u

∂x
(1, t) + αu(1, t) = 0, (1.10)

where α is a constant.
Frank-Kamenetskii [1] has derived (1.1) by ignoring coefficients O(RT0/E) from the

heat balance equation (1.4). The motivation for deriving (1.1) comes from the study of heat
generated in chemical reactions that follow an Arrhenius law. When the heat generated
by a chemical reaction is far greater than the heat lost to the walls of the vessel in which
the reaction is taking place, a thermal explosion occurs. Experimental work on thermal
explosions has been conducted by Rice [9] and Rice and Campbell [10]. Steggerda [11] has
extended the work done by Frank-Kamenetskii [1] on the criteria under which a thermal
explosion can take place. In the models presented by Zhang et al. [8, 12] and Abd El-Salam
and Shehata [13] the fuel used in the chemical reaction is consumed during the reaction.

Harley [2] has compared hopscotch, method of lines, and Crank-Nicolson schemes to
solve the nonlinear partial differential equation (1.1). Britz et al. [3] improve on the work
of Harley [2] by treating the nonlinear source term in (1.1) in both an implicit and explicit
form. Britz et al. [3] include the effects of the critical activation parameter which we ignore.
In this paper we use matrix exponentiation to improve on the work of Harley [2] and Britz et
al. [3]. The nonlinear source term in (1.1) is treated explicitly in a natural way. We derive
numerical schemes that are accurate in both time and space by considering a high-order
finite difference approximations to the spatial derivatives coupled with BDF and Runge-
Kutta approximations to the time derivative.

We reduce (1.1) to the semilinear system of equations

du
dt

= Lu +N(u), (1.11)
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where L is a linear operator and N is a nonlinear function of u. The first-order semilinear
equation (1.11) can be solved by multiplication with an integrating factor. The resulting
solution contains a matrix exponential that needs to be evaluated. The interested reader is
referred to the reviews of Vanden Bosch et al. [14], Moler and Van Loan [15], and Hochbruck
and Ostermann [16] on the construction of matrix exponentials for semi-linear systems of the
form (1.11). Recent developments have focused on constructing matrix exponentials using
Krylov subspace approximations [17] and polar decompositions [18]. In this paper we use
MATHEMATICA to determine the relevant matrix exponentials. Alternate computer packages to
determine matrix exponentials have been developed by Sidje [19] and Berland et al. [20].

A backward differentiation formula (BDF) approximation to the time derivative leads
to a numerical scheme with a truncation error of O(Δt2) + O(Δx2) where Δx is the spatial
step and Δt is the time step. A Runge-Kutta approximation to the time gives a scheme with
a truncation error O(Δt4) + O(Δx2). A BDF approximation to the time derivative leads to
A-stable multistep methods [21]. A fourth-order Runge-Kutta approximation to the time
derivative is computationally expensive because it requires four additional computations per
time step. The interested reader is referred to Gottlieb et al. [22] and Kassam and Trefethen
[23] for discussions about high-order approximations to the time derivate and their respective
properties.

The paper is divided up as follows. In Section 2 we consider approximate solutions for
the case k = 0 in terms of the heat kernel to investigate the influence of the parameter δ. In
Section 3 we derive three numerical schemes based on matrix exponentiation to determine
numerical solutions admitted by (1.1). Concluding remarks are made in Section 4.

2. Analytical Solution

In this section we consider an approximate analytical solution admitted by (1.1) for the case
k = 0 in terms of the heat kernel. The heat kernel solution is a good approximation to the
behaviour of the solutions of (1.1) as the solution satisfies the boundary conditions (1.9a) and
(1.9b) for λ → ∞. It will be useful to use the heat kernel solution to examine the effects of
the Frank-Kamenetskii parameter δ on the temperature at the centre of the vessel. Momoniat
[24] has used the Lie symmetry approach to determine group invariant solutions admitted
by (1.1) for k = 1. The solutions obtained by Momoniat [24] are valid after blowup.

In this section we determine approximate solutions admitted by (1.1) by using the
approximation exp(u) ≈ 1+u. As discussed in Harley [2] this approximation is valid close to
the centre of the cylindrical vessel x ≈ 0 and yields results that give an error O(10−2) when
compared to the numerical solution at the steady state. The model equation simplifies to

∂u

∂t
=

∂2u

∂x2
+ δ(1 + u). (2.1)

We make the assumption δ � 1 and investigate approximate solutions of the form

u(x, t) ≈ u0(x, t) + δu1(x, t) + · · · . (2.2)
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Substituting (2.2) into (2.1) and separating to first order in δ we obtain the system

∂u0

∂t
=

∂2u0

∂x2
, (2.3a)

∂u1

∂t
=

∂2u1

∂x2
+ (1 + u0). (2.3b)

The heat kernel solution to u0 is given by

u0(x, t) =
1√
4πt

exp

(
−x

2

4t

)
. (2.4)

By inspection, we find that u1 admits the particular solution

u1(x, t) = u0(x, t)(t + c0) + t, (2.5)

where c0 is a constant. The heat kernel solution (2.4) is also a particular solution as is any
solution of the linear phenomenological diffusion equation (2.3a). The linear nature of (2.3b)
implies that a linear combination of these solutions is also a solution of (2.3b). We can write
these solutions as

uA = u(x, t) ≈ u0(x, t) + δ[u0(x, t)(t + c0) + t],

uB = u(x, t) ≈ u0(x, t) + δ[u0(x, t) + u0(x, t)(t + c0) + t].
(2.6)

It is immediately obvious from uA and uB that themain effect of the Frank-Kamenetskii
parameter δ is to increase the temperature at the center of the vessel when compared to
the temperature for the phenomenological diffusion equation u0. We can thus expect that
an increase in the critical parameter δ will yield an increase in the central temperature
irrespective of the shape of the vessel. We plot the solutions (2.6) in Figure 1. The curves
in Figure 1 confirm the effect of δ to increase the central temperature of the vessel. Positive
values of the constant c0 also cause a corresponding increase in the core temperature of the
vessel. In the next section we consider numerical solutions admitted by (1.1) obtained from
matrix exponentiation.

3. Derivation and Implementation of the Numerical Scheme

In this section we compare three numerical schemes for solving the Frank-Kamenetskii
partial differential equations (1.1) based on matrix exponentiation. In the first instance
we approximate the time derivative by a forward difference approximation. We then
approximate the time derivative by a backward difference formula. We finally use a Runge-
Kutta approximation to the time derivative.
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Figure 1: Plot comparing the approximate solutions (2.6).

Using L’Hospitals rule at x = 0 we approximate (1/x)∂u/∂x by ∂2u/∂x2 to write (1.1)
as

∂u

∂t
=

⎧⎪⎪⎨
⎪⎪⎩
(1 + k)

∂2u

∂x2
+ δeu, x = 0,

∂2u

∂x2
+
k

x

∂u

∂x
+ δeu, x /= 0.

(3.1)

We approximate the spatial derivatives by the central difference approximations

∂u

∂x

∣∣∣∣
x=xi

≈ u
j

i+1 − u
j

i−1
2Δx

+O
(
Δx2
)
,

∂2u

∂x2

∣∣∣∣∣
x=xi

≈ u
j

i+1 − 2uj

i + u
j

i−1
Δx2

+O
(
Δx2
)
,

(3.2)

where uj

i = u(xi, tj). High-order central difference approximations to the derivatives are given
by

∂u

∂x

∣∣∣∣
x=xi

≈ −uj

i+2 + 8uj

i+1 − 8uj

i−1 + u
j

i−2
12Δx

+O
(
Δx4
)
,

∂2u

∂x2

∣∣∣∣∣
x=xi

≈ −uj

i+2 + 16uj

i+1 − 30uj

i + 16uj

i−1 − u
j

i−2
12Δx2

+O
(
Δx4
)
.

(3.3)

The derivative boundary condition (1.2a) gives the condition u
j

−1 = u
j

1 when i = 0. Defining
xi = iΔx and u = [u0, u1, . . . , um] where exp(u) = [eu0 , eu1 , . . . , eun] we write (1.1) in vector
form as

du
dt

= Au + δeu, (3.4)
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where

A =
1

Δx2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2(1 + k) 2(1 + k) 0 0 0 0 · · · 0 0 0 0 0 0

α1 −2 β1 0 0 0 · · · ...
...

...
...

...
...

a2 b2 −30
12

c2 d2 0 · · · ...
...

...
...

...
...

0 a3 b3 −30
12

c3 d3 · · · ...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

... · · · an−3 bn−3 −30
12

cn−3 dn−3 0
...

...
...

...
...

... · · · 0 an−2 bn−2 −30
12

cn−2 dn−2
...

...
...

...
...

... · · · 0 0 0 αn−1 −2 βn−1
0 0 0 0 0 0 · · · 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

αi =
(
1 − 1

2i

)
, βi =

(
1 +

1
2i

)
,

ai = − 1
12

(
1 − k

i

)
, bi =

1
12

(
16 − 8k

i

)
, ci =

1
12

(
16 +

8k
i

)
, di = − 1

12

(
1 +

k

i

)
.

(3.5)

The matrix A is different to the matrix obtained by Harley [2] in that we have used high-
order finite difference approximations to the spatial derivatives to improve the accuracy of
the numerical scheme. The matrix A is pentadiagonal and not tridiagonal as obtained by
Harley [2]. Low-order approximations are used in row positions i = 2 and i = n − 1 because
no information is known about the temperature at the grid points that occur at two steps on
either side of the boundaries. The entries in row positions i = 0 and i = n are determined from
the boundary conditions (1.2a) and (1.2b).

We multiply (3.4) by the integrating factor exp(−At) to obtain

d

dt

(
exp(−At) · u) = δ exp(−At) · exp(u), (3.6)

where · is used to signify the multiplication of a matrix with a vector. Using a forward
difference approximation to the time derivative given by

du
dt

∣∣∣∣
t=tj

≈ uj+1 − uj

Δt
+O(Δt) (3.7)

we obtain the Lawson-Euler scheme

uj+1 = exp(AΔt) ·
[
uj + δΔt exp

(
uj
)]

. (3.8)

The truncation error of results obtained from the Lawson-Euler scheme (3.8) is O(Δt) +
O(Δx2).
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We implement the numerical scheme (3.8) in MATHEMATICA. We assume that a steady
state has been reached when

∣∣∣uj+1
0 − u

j

0

∣∣∣ < τ, (3.9)

where τ is a tolerance. The quantity u
j

0 = u(0, tj). When the tolerance condition (3.9) has been
satisfied we set uj

0 = u(0, tj) = u(0), the temperature at the centre of the vessel. The boundary
condition (1.2b) is imposed as uj

n = 0 at each iteration.
An improvement on the accuracy of the Lawson-Euler scheme (3.8) can be made by

considering a backward difference formula (BDF) to the time derivative given by [21]

du
dt

∣∣∣∣
t=tj

≈ 3uj+1 − 4uj + uj−1

2Δt
+O
(
Δt2
)
. (3.10)

We then obtain the scheme

uj+1 =
1
3
exp(AΔt) ·

[
4uj + 2δΔt exp

(
uj
)]

− 1
3
exp(A(2Δt)) · uj−1. (3.11)

The numerical scheme (3.11) is implemented in MATHEMATICA. The scheme (3.11)
requires two starting values u0 which we obtain from the initial value and u1 which is
obtained from the Lawson-Euler scheme. The scheme terminates when condition (3.9) is
satisfied. The truncation error of results obtained from the BDF formulation of the time
derivative is O(Δt2) +O(Δx2).

We lastly consider a fourth-order Runge-Kutta scheme to solve (3.6). The resulting
numerical scheme is given by

uj+1 = exp(AΔt) · uj +
1
6
(k1 + 2k2 + 2k3 + k4) +O

(
Δt4
)
, (3.12)

where

k1 = δΔt exp(AΔt) · exp
(
uj
)
, k2 = δΔt exp

(
AΔt

2

)
· exp

(
uj +

k1
2

)
,

k3 = δΔt exp
(
AΔt

2

)
· exp

(
uj +

k2
2

)
, k4 = δΔt exp

(
uj + k3

)
.

(3.13)

Once again the scheme is implemented in MATHEMATICA. Unlike the scheme (3.11) the
numerical scheme (3.12) does not require two starting values. The scheme does however
require four evaluations at each time step. The truncation error of results obtained using the
numerical scheme (3.12) is O(Δt4) +O(Δx2).

In Tables 1 and 2 we compare output from numerical schemes (3.8), (3.11), and (3.12)
for different values of δ and k. In Table 1 we fix the value of δ and vary k, while in Table 2
we fix the value of k and vary δ. We note from the results in Tables 1 and 2 that for small
values of k and δ the difference in the output from the numerical schemes is O(10−6). For
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Table 1: Table comparing values obtained from the Lawson-Euler (LE) scheme, BDF scheme, and the
fourth-order Runge-Kutta (RK4) scheme where Δx = 0.005, Δt = 0.00001, and δ = 1 for different values of
k. The tolerance τ = 10−6.

k LE BDF RK4
0.5 0.449971 0.449957 0.449978
1.0 0.294548 0.294539 0.294551
1.5 0.221880 0.221871 0.221881
2.0 0.178816 0.178810 0.178817

Table 2: Table comparing values obtained from the Lawson-Euler (LE) scheme, BDF scheme, and the
fourth-order Runge-Kutta (RK4) scheme where Δx = 0.005, Δt = 0.00001, and k = 1 for different values of
δ. The tolerance τ = 10−6.

δ LE BDF RK4
0.5 0.119555 0.119552 0.119555
1.0 0.294548 0.294539 0.294551
1.5 0.546525 0.546501 0.546541
2.0 1.165950 1.165710 1.166260

larger values of k and δ this difference increases to O(10−3). Due to this large discrepancy
that occurs in the outputs from the different numerical schemes for large values of k and δ
we implement the fourth-order Runge-Kutta numerical scheme (3.12) in the rest of the paper.
The numerical scheme (3.12) based on a fourth-order Runge-Kutta scheme that gives results
with the smallest truncation error, that is, O(Δt4) +O(Δx2) and are hence the most accurate.

To test the stability of each of the numerical schemes we consider the steady solution
for the case k = 1. For the case k = 1 the model equation (1.1)must satisfy the steady solution
u(x, t) = y(x) where y(x) satisfies the second-order ordinary differential equation

d2y

dx2
+
1
x

dy

dx
+ δey = 0 (3.14)

and the boundary conditions

dy(0)
dx

= 0, y(1) = 0. (3.15)

Frank-Kamenetskii [1] (see also Chambré [25], Dresner [26], and Momoniat and
Harley [27]) have shown that (3.14) solved subject to (3.15) admits the solutions

y = y1 = log

[
16ec1

(2δ + ec1x2)2

]
, y = y2 = log

[
16ec2

(1 + 2δec2x2)2

]
, (3.16)

where c1 and c2 are constants of integration given by

c1 = log
[
2(4 − δ) ± 4

√
2(2 − δ)

]
, c2 = log

[
4 − δ ± 2

√
2(2 − δ)

2δ2

]
. (3.17)
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Table 3: Table comparing the temperature at the centre of the vessel for different stopping criteria and the
corresponding stopping times where Δx = 0.005, Δt = 0.00001, k = 1, and δ = 1.

Stopping criteria Time u (0)
10−6 0.60297 0.294551
10−7 1.11334 0.314486
10−8 1.62445 0.316483
10−9 2.13563 0.316683
10−10 2.64682 0.316703
10−11 3.15802 0.316705
10−12 3.66920 0.316705

These multiple solutions lead to the well-known bifurcation that occurs when plotting the
temperature at the centre of the vessel y(0) against the critical parameter δ.

We consider the solution

y = y∗ = log

[
16ec

∗

(1 + 2δec∗x2)2

]
, c∗ = log

[
4 − δ − 2

√
2(2 − δ)

2δ2

]
, (3.18)

that has a maximum y(0) = 0.316694. This corresponds to the results given in Table 3 for
the central temperature at a tolerance of τ = 10−12. We label the numerical scheme (3.8)
corresponding to the Lawson-Euler scheme as the LE scheme, the numerical scheme (3.11)
corresponding to the BDF approximation to the time derivative as the BDF scheme, and
the numerical scheme (3.12) corresponding to a Runge-Kutta approximation to the time
integration as the RK4 scheme. We use (3.18) as the initial value for the numerical schemes
and consider 10, 100, and 1000 iterations, respectively.

In Figure 2 we plot log |uj

i − y∗
i | for j = 10, 100, and 1000, respectively, where we have

chosen δ = 1, Δx = 0.005, Δt = 0.00001, and k = 1. We note from the results plotted in
Figure 2 that the Lawson-Euler scheme (3.8) and the Runge-Kutta scheme (3.12) produce the
most stable results. The results corresponding to the BDF scheme (3.11) are not as stable. We
note that all three schemes produce results that are accurate to more than 12 decimal places
after 1000 iterations.

4. Results

The results in this section have been determined using the numerical scheme (3.12)
corresponding to the fourth-order Runge-Kutta approximation for the time integration. As
indicated in the previous section the RK4 scheme produces results that are stable and very
accurate because it is a high-order scheme. An important aspect of the problem is the effect of
the tolerance on the time to reach the steady state and the corresponding temperature at the
centre of the vessel. Choosing Δx = 0.005 and Δt = 0.00001 for k = 1 and δ = 1 we evaluate
the numerical scheme (3.12) for different tolerances. In Table 3 we note the stopping time and
corresponding temperature at the centre of the vessel, u(0), for each value of the tolerance.

From the results in Table 3 we note that the temperature converges to u(0) = 0.316705
but the stopping time increases from t = 0.60297 to t = 3.66920. This big increase in the
stopping time reflects the large number of iterations required for the stopping criteria to be
satisfied. What is important in interpreting these results is the scaling of the temperature. The
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Figure 2: Plot comparing the log |uj

i − y∗
i | for j = 10, 100, and 1000, respectively, where we have chosen

δ = 1, Δx = 0.005, Δt = 0.00001, and k = 1. We have used (3.18) as the initial value of the numerical
schemes where LE scheme corresponds to the Lawson-Euler scheme (3.8), BDF scheme corresponds to the
numerical scheme (3.11), and RK4 scheme corresponds to the numerical scheme (3.12).

tolerance, τ , is nondimensional, but it has the same order of behaviour as the temperature. To
understand the effect of the tolerance on the temperature we transform back to the original
variables using (1.7a), (1.7b), and (1.5) to obtain

T = T0 +
RT2

0

E
(θ0 + τ), (4.1)

where T0 is the ambient temperature, θ0 is the dimensionless temperature at the vessel wall,
R is the universal gas constant, and E is the energy of the activation of the chemical reaction.
Therefore the tolerance can be physically interpreted as a change in the temperature at the
wall of the vessel and the temperature u(0) at the centre of the vessel corresponding to the
wall temperature θ0 + τ . As τ → 0 the temperature at the centre of the vessel stops having to
adjust; hence we get convergence as is indicated in Table 3.

The large variation in time shows that using (1.1) to determine the time of a thermal
explosion is not appropriate. It is more practical to monitor the temperature at the centre
of the vessel or at the wall of the vessel. Once the critical temperature is reached a thermal
explosion takes place. In the results for the rest of the paper we have used the tolerance
τ = 10−6 for the steady state.
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Figure 3: Plot showing the decreasing value of the temperature at the centre of the vessel u(0) with the
increasing value of the shape factor k.
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Figure 4: Plot showing the increasing value of the temperature at the centre of the vessel u(0) with the
increasing value of the critical parameter δ.

In Figure 3 we plot the temperature at the centre of the vessel u(0) against the shape
factor k for fixed δ = 1. We note that for increasing the value of the shape factor k the steady
temperature u(0) decreases for the tolerance τ = 10−6.

In Figure 4 we plot the temperature at the centre of the vessel against the increasing
value of the Frank-Kamenetskii parameter δ for fixed k = 1. We note that for the increasing
value of δ the steady temperature u(0) increases for the tolerance τ = 10−6. These results
match up with the approximate analytical results predicted by the study of the approximate
heat kernel solution in Section 2.

5. Concluding Remarks

In this paper we have shown how matrix exponentiation can be used to solve a nonlinear
partial differential equation modelling a thermal explosion in a vessel. Matrix exponentiation
has the advantage over a standard forward-time central space (FTCS) scheme in that the
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scheme inherently contains higher-order time-step terms. This can be seen if we consider the
approximation

exp(AΔt) ≈ I + ΔtA +
Δt2

2!
A2 + · · · , (5.1)

we find that the Lawson-Euler scheme (3.8) simplifies the FTCS scheme,

uj+1 = (I + ΔtA) · uj + δΔt exp
(
uj
)
+O
(
Δt2
)
, (5.2)

to O(Δt). The advantage of the approach taken in this paper is that we have used matrix
exponentiation in combination with high-order spatial and high-order time discretizations.
Future work will investigate the use of multistep exponential integrators of the type
introduced by Calvo and Palencia [28] and Ostermann et al. [29] to improve the accuracy
of our results.

We have reduced the nonlinear partial differential equation (1.1) to a semilinear form.
The resulting semilinear equation is reduced to an integrable form by the multiplication of an
integration factor.We approximate the time derivative by a forward difference approximation
to obtain a Lawson-Euler numerical scheme with a truncation error O(Δt) + O(Δx2).
Approximating the time derivative with a backward differentiation formula (BDF)we obtain
a numerical scheme with a truncation errorO(Δt2)+O(Δx2). We finally approximate the time
derivative by a fourth-order Runge-Kutta approximation to obtain a numerical scheme with
a truncation error O(Δt4) + O(Δx2). For large values of the Frank-Kamenetskii parameter δ
and the shape factor k there is a large discrepancy (numerical values differ by O(10−3)) in the
values obtained for the temperature at the centre of the vessel, u(0), when the tolerance is set
at τ = 10−6 between the three numerical schemes. To ensure that we obtain numerical values
that are accurate we implement the numerical scheme obtained from approximating the time
derivative by a fourth-order Runge-Kutta approximation.

We have shown that there is a strong dependence on the value obtained for the
temperature at the centre of the vessel and the tolerance. A consequence of this strong
dependence is that it is not practical to use the time as a measure of when a thermal explosion
will take place. It is more practical to measure the temperature at the centre of the vessel or at
the vessel wall. We have also shown that by changing the shape from a rectangular slab to a
sphere decreases the temperature at which a thermal explosion will take place. Similarly, we
have shown that increasing the Frank-Kamenetskii parameter will increase the temperature
at which a thermal explosion will take place. The results indicted in Figures 3 and 4 are the
same as those obtained by Harley [2] and Britz et al. [3].
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