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Under the notable Issacs’s condition on the Hamiltonian, the existence results of a saddle point
are obtained for the stochastic recursive zero-sum differential game and mixed differential game
problem, that is, the agents can also decide the optimal stopping time. Themain tools are backward
stochastic differential equations (BSDEs) and double-barrier reflected BSDEs. As the motivation
and application background, when loan interest rate is higher than the deposit one, the American
game option pricing problem can be formulated to stochastic recursivemixed zero-sumdifferential
game problem. One example with explicit optimal solution of the saddle point is also given to
illustrate the theoretical results.

1. Introduction

The nonlinear backward stochastic differential equations (BSDEs in short) had been intro-
duced by Pardoux and Peng [1], who proved the existence and uniqueness of adapted solu-
tions under suitable assumptions. Independently, Duffie and Epstein [2] introduced BSDE
from economic background. In [2], they presented a stochastic differential recursive utility
which is an extension of the standard additive utility with the instantaneous utility depend-
ing not only on the instantaneous consumption rate but also on the future utility. Actually,
it corresponds to the solution of a particular BSDE whose generator does not depend on the
variableZ. Frommathematical point of view, the result in [1] is more general. Then, El Karoui
et al. [3] and Cvitanic and Karatzas [4] generalized, respectively, the results to BSDEs with
reflection at one barrier and two barriers (upper and lower).
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BSDE plays an important role in the theory of stochastic differential game. Under the
notable Isaacs’s condition, Hamadène and Lepeltier [5] obtained the existence result of a
saddle point for zero-sum stochastic differential game with payoff

J(u, v) = E(u,v)

[∫T

t

f(s, xs, us, vs)ds + g(xT )

]
. (1.1)

Using a maximum principle approach, Wang and Yu [6, 7] proved the existence and uni-
queness of an equilibrium point. We note that the cost function in [5] is not recursive, and
the game system in [6, 7] is a BSDE. In [8], El Karoui et al. gave the formulation of recursive
utilities and their properties from the BSDE’s pointview. The problem that the cost function
(payoff) of the game system is described by the solution of BSDE becomes the recursive
differential game problem. In the following Section 2, we proved the existence of a saddle
point for the stochastic recursive zero-sum differential game problem and also got the optimal
payoff function by the solution of one specific BSDE. Here, the generator of the BSDE contains
the main variable solution yt, and we extend the result in [5] to the recursive case which has
much more significance in economics theory.

Then, in Section 3 we study the stochastic recursive mixed zero-sum differential game
problem which is that the two agents have two actions, one is of control and the other is of
stopping their strategies to maximize and minimize their payoffs. This kind of game problem
without recursive variable and the American game option problem as this kind of mixed
game problem can be seen in Hamadène [9]. Using the result of reflected BSDEs with two
barriers, we got the saddle point and optimal stopping strategy for the recursive mixed game
problem which has more general significance than that in [9].

In fact, the recursive (mixed) zero-sum game problem has wide application back-
ground in practice. When the loan interest rate is higher than the deposit one. The American
game option pricing problem can be formulated to the stochastic recursive mixed game
problem in our Section 3. To show the application of this kind of problem and our motivation
to study our recursive (mixed) game problem, we analyze the American game option pricing
problem and let it be an example in Section 4. We notice that in [5, 9], they did not give
the explicit saddle point to the game, and it is very difficult for the general case. However,
in Section 4, we also give another example of the recursive mixed zero-sum game problem,
for which the explicit saddle point and optimal payoff function to illustrate the theoretical
results.

2. Stochastic Recursive Zero-Sum Differential Game

In this section, we will study the existence of the stochastic recursive zero-sum differential
game problem using the result of BSDEs.

Let {Bt, 0 ≤ t ≤ T} be an m-dimensional standard Brownian motion defined on a
probability space (Ω,F, P). Let (Ft)t≥0 be the completed natural filtration of Bt. Moreover,

(i) C is the space of continuous functions from [0, T] to Rm;

(ii) P is the σ-algebra on [0, T] ×Ω of Ft-progressively sets;

(iii) for any stopping time ν,Tν is the set of Ft-measurable stopping time τ such that
P -a.s. ν ≤ τ ≤ T ; T0 will simply be denoted by T;
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(iv) H2,k is the set of P-measurable processes ω = (ωt)t≤T , R
k-valued, and square

integrable with respect to dt ⊗ dP;

(v) S2 is the set of P-measurable and continuous processes ω′ = (ω′
t)t≤T , such that

E[supt≤T |ω′
t|2] < ∞.

Them ×m matrix σ = (σij) satisfies the following:

(i) for any 1 ≤ i, j ≤ m,σij is progressively measurable;

(ii) for any (t, x) ∈ [0, T] × C, the matrix σ(t, x) is invertible;

(iii) there exists a constants K such that |σ(t, x) − σ(t, x′)| ≤ K|x − x′|t and |σ(t, x)| ≤
K(1 + |x|t).

Then, the equation

xt = x0 +
∫ t

0
σ(s, xs)dBs, t ≤ T (2.1)

has a unique solution (xt).
Now, we consider a compact metric space A (resp. B), and U (resp. V) is the space

of P-measurable processes u := (ut)t≤T (resp. v := (vt)t≤T ) with values in A (resp. B). Let
Φ : [0, T] × C × U × V → Rm be such that

(i) for any (t, x) ∈ [0, T] × C, the mapping (u, v) → Φ(t, x, u, v) is continuous;

(ii) for any (u, v) ∈ A × B, the function Φ(·, x(·), u, v) is P-measurable;

(iii) there exists a constant K such that |Φ(t, x, u, v)| ≤ K(1 + |x|t) for any t, x, u, and v;

(iv) there exists a constant M such that |σ−1(t, x)Φ(t, x, u, v)| ≤ M for any t, x, u, and v.

For (u, v) ∈ U × V, we define the measure Pu,v as

dPu,v

dP
= exp

{∫T

0
σ−1(s, xs)Φ(s, xs, us, vs)dBs −

1
2

∫T

0

∣∣∣σ−1(s, xs)Φ(s, xs, us, vs)
∣∣∣2ds

}
. (2.2)

Thanks to Girsanov’s theorem, under the probability Pu,v, the process

Bu,v
t = Bt −

∫ t

0
σ−1(s, xs)Φ(s, xs, us, vs)ds, t ≤ T, (2.3)

is a Brownian motion, and for this stochastic differential equation

xt = x0 +
∫ t

0
Φ(s, xs, us, vs)ds +

∫ t

0
σ(s, xs)dB

u,v
s , t ≤ T, (2.4)

(xt)t≤T is a weak solution.
Suppose that we have a system whose evolution is described by the process (xt)t≤T .

On that system, two agents c1 and c2 intervene. A control action for c1 (resp. c2) is a process
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u = (ut)t≤T (resp. v = (vt)t≤T ) belonging to U (resp. V). Thereby U (resp. V) is called the set
of admissible controls for c1 (resp. c2). When c1 and c2 act with, respectively, u and v, the law
of the dynamics of the system is the same as the one of x under Pu,v. The two agents have
no influence on the system, and they act to protect their advantages by means of u ∈ U and
v ∈ V via the probability Pu,v.

In order to define the payoff, we introduce two functions C(t, x, y, u, v) and g(x)
satisfying the following assumption: there exists L > 0, for all x, x′ ∈ H2,m and Y, Y ′ ∈ S2,
such that

∣∣C(t, xt, Yt, u, v) − C
(
t, x′

t, Yt, u, v
)∣∣ ≤ L

∣∣xt − x′
t

∣∣,
(
Yt − Y ′

t

)(
C(t, xt, Yt, u, v) − C

(
t, xt, Y

′
t , u, v

))
≤ L

(
Yt − Y ′

t

)2
,

(2.5)

and g(x) is measurable, Lipschitz continuous functionwith respect to x. The payoff J(x0, u, v)
is given by J(x0, u, v) = Y0, where Y satisfies the following BSDE:

−dYs = C(s, xs, Ys, us, vs)ds − ZsdB
u,v
s ,

YT = g(xT ).
(2.6)

From the result in [10], there exists a unique solution (Y,Z) for u, v. The agent c1 wishes to
minimize this payoff, and the agent c2 wishes to maximize the same payoff. We investigate
the existence of a saddle point for the game, more precisely a pair (u∗, v∗) of strategies, such
that J(x0, u

∗, v) ≤ J(x0, u
∗, v∗) ≤ J(x0, u, v

∗) for each (u, v) ∈ U × V.
For (t, x, Y, Z, u, v) ∈ [0, T] × C × R × Rm × U × V, we introduce the Hamiltonian by

H(t, x, Y, Z, u, v) = Zσ−1(t, x)Φ(t, x, u, v) + C(t, x, Y, u, v), (2.7)

and we say that the Isaacs’ condition holds if for (t, x, Y, Z) ∈ [0, T] × C × R × Rm,

max
v∈V

min
u∈U

H(t, x, Y, Z, u, v) = min
u∈U

max
v∈V

H(t, x, Y, Z, u, v). (2.8)

We suppose now that the Isaacs’ condition is satisfied. By a selection theorem (see
Benes [11]), there exists u∗ : [0, T] × C ×R ×Rm → U, v∗ : [0, T] × C ×R ×Rm → V, such that

H(t, x, Y, Z, u∗, v) ≤ H(t, x, Y, Z, u∗, v∗) ≤ H(t, x, Y, Z, u, v∗). (2.9)

Thanks to the assumption of σ, Φ, and C, the function H(t, x, Y, Z, u∗(t, x, Y, Z),
v∗(t, x, Y, Z)) is Lipschitz in Z and monotone in Y like the function C.

Now we give the main result of this section.

Theorem 2.1. (Y ∗, Z∗) is the solution of the following BSDE:

−dY ∗
s = H(s, xs, Y

∗
s , Z

∗
s, u

∗(s, x, Y ∗, Z∗), v∗(s, x, Y ∗, Z∗))ds − Z∗
sdBs,

Y ∗
T = g(xT ).

(2.10)
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Then, Y ∗
0 is the optimal payoff J(x0, u

∗, v∗), and the pair (u∗, v∗) is the saddle point for this recursive
game.

Proof. We consider the following BSDE:

Y ∗
t = g(xT ) +

∫T

t

H(s, xs, Y
∗
s , Z

∗
s, u

∗(t, x, Y ∗, Z∗), v∗(t, x, Y ∗, Z∗))ds −
∫T

t

Z∗
sdBs. (2.11)

Thanks to Theorem 2.1 in [10], the equation has a unique solution (Y ∗, Z∗). Because Y ∗
0 is

deterministic, so

Y ∗
0 = Eu∗,v∗[

Y ∗
0
]

= Eu∗,v∗

[
g(xT ) +

∫T

0
H(s, xs, Y

∗
s , Z

∗
s, u

∗(t, x, Y ∗, Z∗), v∗(t, x, Y ∗, Z∗))ds −
∫T

0
Z∗

sdBs

]

= Eu∗,v∗

[
g(xT ) +

∫T

0
C(s, xs, Y

∗
s , u

∗
s, v

∗
s)ds −

∫T

0
Z∗

sdB
u∗,v∗

s

]
.

(2.12)

We can get Y ∗
0 = J(x0, u

∗, v∗).
For any u ∈ U, v ∈ V, then we let

Yt = g(xT ) +
∫T

t

C(s, xs, Ys, u
∗
s, vs)ds −

∫T

t

ZsdB
u∗,v
s

= g(xT ) +
∫T

t

H(s, xs, Ys, Zs, u
∗
s, vs)ds −

∫T

t

ZsdBs,

Y ′
t = g(xT ) +

∫T

t

C
(
s, xs, Y

′
s, us, v

∗
s

)
ds −

∫T

t

Z′
sdB

u,v∗

s

= g(xT ) +
∫T

t

H
(
s, xs, Y

′
s, Z

′
s, us, v

∗
s

)
ds −

∫T

t

Z′
sdBs.

(2.13)

By the comparison theorem of the BSDEs and the inequality (2.9), we can compare the
solutions of (2.11), and (2.13) and get Yt ≤ Y ∗

t ≤ Y ′
t , 0 ≤ t ≤ T , so Y0 = J(x0, u

∗, v) ≤
J(x0, u

∗, v∗) ≤ J(x0, u, v
∗) = Y ′

0 and (u∗, v∗) is the saddle point.

3. Stochastic Recursive Mixed Zero-Sum Differential Game

Now, we study the stochastic recursive mixed zero-sum differential game problem. First, let
us briefly describe the problem.

Suppose now that we have a system, whose evolution also is described by (xt)0≤t≤T ,
which has an effect on the wealth of two controllers C1 and C2. On the other hand, the
controllers have no influence on the system, and they act so as to protect their advantages,
which are antagonistic, by means of u ∈ U for C1 and v ∈ V for C2 via the probability Pu,v in
(2.2). The couple (u, v) ∈ U × V is called an admissible control for the game. Both controllers
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also have the possibility to stop controlling at τ for C1 and θ for C2; τ and θ are elements of
T which is the class of all Ft-stopping time. In such a case, the game stops. The controlling
action is not free, and it corresponds to the actions of C1 and C2. A payoff is described by the
following BSDE:

Yu,τ ;v,θ
t = Uτ1[τ<θ] + Lθ1[θ<τ<T] +Qτ1[τ=θ<T] + g(xT )1[τ=θ=T]

+
∫ τ∧θ

t

C
(
s, xs, Y

u,τ ;v,θ
s , us, vs

)
ds −

∫ τ∧θ

t

ZsdB
u,v
s ,

(3.1)

and the payoff is given by

J(x0;u, τ ;v, θ) = Yu,τ ;v,θ
0

= E(u,v)

[∫ τ∧θ

0
C
(
s, xs, Y

u,τ ;v,θ
s , us, vs

)
ds +Uτ1[τ<θ] + Lθ1[θ<τ<T]

+ Qτ1[τ=θ<T] + g(xT )1[τ=θ=T]

]
,

(3.2)

where the (Ut)t≤T , (Lt)t≤T , and (Qt)t≤T are processes of S2 such that Lt ≤ Qt ≤ Ut. The action
of C1 is to minimize the payoff, and the action of C2 is to maximize the payoff. Their terms
can be understood as

(i) C(s, x, Y, u, v) is the instantaneous reward for C1 and cost for C2;

(ii) Uτ is the cost for C1 and for C2 if C1 decides to stop first the game;

(iii) Lθ is the reward for C2 and cost for C1 if C2 decides stop first the game.

The problem is to find a saddle point strategy (one should say a fair strategy) for the
controllers, that is, a strategy (u∗, τ∗;v∗, θ∗) such that

J(x0;u∗, τ∗;v, θ) ≤ J(x0;u∗, τ∗;v∗, θ∗) ≤ J(x0;u, τ ;v∗, θ∗), (3.3)

for any (u, τ ;v, θ) ∈ U × T × V × T.
Like in Section 2, we also define the Hamiltonian associated with this mixed stochastic

game problem by H(t, x, Y, Z, u, v), and thanks to the Benes’s solution [11], there exist
u∗(t, x, Y, Z) and v∗(t, x, Y, Z) satisfying

H(t, x, Y, Z, u∗(t, x, Y, Z), v∗(t, x, Y, Z)) = max
v∈V

min
u∈U

[
Zσ−1(t, x)Φ(t, x, u, v) + C(t, x, Y, u, v)

]

= min
u∈U

max
v∈V

[
Zσ−1(t, x)Φ(t, x, u, v) + C(t, x, Y, u, v)

]
.

(3.4)

It is easy to know that H(t, x, Y, Z, u, v) is Lipschitz in Z and monotone in Y .
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From the result in [12], the stochastic mixed zero-sum differential game problem is
possibly connected with BSDEs with two reflecting barriers. Now, we give the main result of
this section.

Theorem 3.1. (Y ∗, Z∗, K∗+, K∗−) is the solution of the following reflected BSDE:

Y ∗
t = g(xT ) +

∫T

t

H(s, xs, Y
∗
s , Z

∗
s, u

∗
s, v

∗
s)ds +

(
K∗+

T −K∗+
t

)
−
(
K∗−

T −K∗−
t

)
−
∫T

t

Z∗
sdBs, (3.5)

satisfying for all 0 ≤ t ≤ T, Lt ≤ Y ∗
t ≤ Ut, and

∫T
0 (Y

∗
s − Ls)dK∗+

s =
∫T
0 (Y

∗
s −Us)dK∗−

s = 0.
One defines τ∗ = inf{s ∈ [0, T], Y ∗

s = Us} and θ∗ = inf{s ∈ [0, T], Y ∗
s = Ls}.

Then Y ∗
0 = J(x0;u∗, τ∗;v∗, θ∗), (u∗, τ∗;v∗, θ∗) is the saddle point strategy.

Proof. It is easy to know that the reflected BSDE (3.5) has a unique solution (Y ∗, Z∗, K∗+, K∗−),
then we have

Y ∗
0 = g(xT ) +

∫T

0
H(s, xs, Y

∗
s , Z

∗
s, u

∗
s, v

∗
s)ds +K∗+ −K∗−

T −
∫T

0
Z∗

sdBs

= Y ∗
τ∗∧θ∗ +

∫ τ∗∧θ∗

0
C(s, xs, Y

∗
s , u

∗
s, v

∗
s)ds +K∗+

τ∗∧θ∗ −K∗−
τ∗∧θ∗ −

∫ τ∗∧θ∗

0
Z∗

sdB
u∗,v∗

s .

(3.6)

Since K∗+ and K∗− increase only when Y reaches L and U, we have K∗+
τ∗∧θ∗ = K∗−

τ∗∧θ∗ = 0. As
(
∫ t
0 ZrdB

u∗,v∗

r )t≤T is an (Ft, P
u∗,v∗

)-martingale, then we get

Y ∗
0 = Eu∗,v∗

[
Y ∗
τ∗∧θ∗ +

∫ τ∗∧θ∗

0
C(s, xs, Y

∗
s , u

∗
s, v

∗
s)ds +K∗+

τ∗∧θ∗ −K∗−
τ∗∧θ∗ −

∫ τ∗∧θ∗

0
Z∗

sdB
u∗,v∗

s

]

= Eu∗,v∗

[
Y ∗
τ∗∧θ∗ +

∫ τ∗∧θ∗

0
C(s, xs, Y

∗
s , u

∗
s, v

∗
s)ds

]
.

(3.7)

We know that Y ∗
τ∗∧θ∗ = Y ∗

τ∗1[τ∗<θ∗] + Y ∗
θ∗1[θ∗<τ∗] + Y ∗

θ∗1[θ∗=τ∗<T] + g(xT )1[θ∗=τ∗=T] and
Y ∗
τ∗1[τ∗<θ∗] = Uτ∗1[τ∗<θ∗], Y ∗

θ∗
1[θ∗<τ∗] = Lθ∗1[θ∗<τ∗], Y ∗

θ∗
1[θ∗=τ∗<T] = Qθ∗1[θ∗=τ∗<T]. So,

Y ∗
0 = Eu∗,v∗

[
Uτ∗1[θ∗<τ∗] + Lθ∗1[θ∗<τ∗] +Qθ∗1[θ∗=τ∗<T] + g(xT )1[θ∗=τ∗=T]

+
∫ τ∗∧θ∗

0
C(s, xs, Y

∗
s , u

∗
s, v

∗
s)ds

]
= J(x0, u

∗, τ∗;v∗, θ∗).

(3.8)
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Next, let vt be an admissible control, and let θ ∈ T. We desire to show that Y ∗
0 ≥

J(x0, u
∗, τ∗;v, θ). We have

Y ∗
0 = Y ∗

τ∗∧θ +
∫ τ∗∧θ

0
H(s, xs, Y

∗
s , Z

∗
s, u

∗
s, v

∗
s)ds +K∗+

τ∗∧θ −
∫ τ∗∧θ

0
Z∗

sdBs

= Uτ∗1[τ∗<θ] + Y ∗
θ1[θ<τ∗] +Qθ1[θ=τ∗<T] + g(xT )1[θ=τ∗=T]

+
∫ τ∗∧θ

0
H(s, xs, Y

∗
s , Z

∗
s, u

∗
s, v

∗
s)ds +K∗+

τ∗∧θ −
∫ τ∗∧θ

0
Z∗

sdBs.

(3.9)

The payoff J(x0, u
∗, τ∗;v, θ) can be described by the solution of following BSDE:

Y0 = Uτ∗1[τ∗<θ] + Lθ1[θ<τ∗<T] +Qθ1[τ∗=θ<T] + g(xT )1[τ∗=θ=T]

+
∫ τ∗∧θ

0
C(s, xs, Ys, u

∗
s, vs)ds −

∫ τ∗∧θ

0
ZsdB

u∗,v
s

= Uτ∗1[τ∗<θ] + Lθ1[θ<τ∗<T] +Qθ1[τ∗=θ<T] + g(xT )1[τ∗=θ=T]

+
∫ τ∗∧θ

0
H(s, xs, Ys, Zs, u

∗
s, vs)ds −

∫ τ∗∧θ

0
ZsdBs,

(3.10)

then

Y0 = Eu∗,v

[
Uτ∗1[τ∗<θ] + Lθ1[θ<τ∗<T] +Qθ1[τ∗=θ<T] + g(xT )1[τ∗=θ=T]

+
∫ τ∗∧θ

0
H(s, xs, Ys, Zs, u

∗
s, vs)ds −

∫ τ∗∧θ

0
ZsdBs

]

= Eu∗,v

[
Uτ∗1[τ∗<θ] + Lθ1[θ<τ∗<T] +Qθ1[τ∗=θ<T] + g(xT )1[τ∗=θ=T] +

∫ τ∗∧θ

0
C(s, xs, Ys, u

∗
s, vs)ds

]
,

(3.11)

and J(x0;u∗, τ∗;v, θ) = Y0. Thanks to H(s, xs, Ys, Zs, u
∗
s, v

∗
s) ≥ H(s, xs, Ys, Zs, u

∗
s, vs),

Y ∗
θ
1[θ<τ∗] ≥ Lθ1[θ<τ∗<T], and K∗+

τ∗∧θ ≥ 0 by the comparison theorem of BSDEs to compare (3.9)
and (3.10) to get Y ∗

0 ≥ Y0 = J(x0;u∗, τ∗;v, θ).
In the same way, we can show that Y ∗

0 = J(x0;u∗, τ∗;v∗, θ∗) ≤ J(x0;u, τ ;v∗, θ∗) for any
τ ∈ T and any admissible control u. It follows that (u∗, τ∗;v∗, θ∗) is a saddle point for the
recursive game.

Finally, let us show that the value of the game is Y ∗
0 . We have proved that

J(x0;u∗, τ∗;v, θ) ≤ Y ∗
0 = J(x0;u∗, τ∗;v∗, θ∗) ≤ J(x0;u, τ ;v∗, θ∗), (3.12)
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for any (u, v) ∈ U × V and τ, θ ∈ T. Thereby,

Y ∗
0 ≤ inf

u∈U,τ∈T
J(x0;u, τ ;v∗, θ∗) ≤ sup

v∈V,θ∈T
inf

u∈U,τ∈T
J(x0;u, τ ;v, θ). (3.13)

On the other hand,

Y ∗
0 ≥ sup

v∈V,θ∈T
J(x0;u∗, τ∗;v, θ) ≥ inf

u∈U,τ∈T
sup

v∈V,θ∈T
J(x0;u, τ ;v, θ). (3.14)

Now, due to the inequality

inf
u∈U,τ∈T

sup
v∈V,θ∈T

J(x0;u, τ ;v, θ) ≥ sup
v∈V,θ∈T

inf
u∈U,τ∈T

J(x0;u, τ ;v, θ), (3.15)

we have

Y ∗
0 = inf

u∈U,τ∈T
sup

v∈V,θ∈T
J(x0;u, τ ;v, θ) = sup

v∈V,θ∈T
inf

u∈U,τ∈T
J(x0;u, τ ;v, θ). (3.16)

The proof is now completed.

4. Application

In this section, we present two examples to show the applications of Section 3.
The first example is about the American game option pricing problem. We formulate

it to be one stochastic recursive mixed game problem. This can be regarded as the application
background of our stochastic game problem.

Example 4.1. American game option when loan interest is higher than deposit interest is
shown.

In El Karoui et al. [13], they proved that the price of an American option corresponds
to the solution of a reflected BSDE. And Hamadène [9] proved that the price of American
game option corresponds to the solution of a reflected BSDE with two barriers. Now, we
will show that under some constraints in financial market such as when loan interest rate is
higher than deposit interest rate, the price of an American game option corresponds to the
value function of stochastic recursive mixed zero-sum differential game problem.

We suppose that the investor is allowed to borrow money at time t at an interest rate
Rt > rt, where rt is the bond rate. Then, the wealth of the investor satisfies

−dXt = b(t, Xt, Zt)dt − dCt − ZtdWt, 0 ≤ t ≤ T,

b(t, Xt, Zt) := −
[
rtXt + θtZt − (Rt − rt)

(
Xt −

Zt

σt

)−]
,

(4.1)

where Zt := σtπt, θt := σ−1
t (bt − rt). bt represents the instantaneous expected return rate

in stock, σt which is invertible represents the instantaneous volatility of the stock, and Ct
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is interpreted as a cumulative consumption process. bt, rt, Rt, and σt are all deterministic
bounded functions, and σ−1

t is also bounded.
An American game is a contract between a broker c1 and a trader c2 who are,

respectively, the seller and the buyer of the option. The trader pays an initial amount (the
price of the option)which guarantees a payment of (Lt)t≤T . The trader can exercise whenever
he decides before the maturity T of the option. Thus, if the trader decides to exercise at θ, he
gets the amount Lθ. On the other hand, the broker is allowed to cancel the contract. Therefore,
if he chooses τ as the contract cancellation time, he pays the amount Uτ , and Uτ ≥ Lτ . The
differenceUτ − Lτ is the premium that the broker pays for his decision to cancel the contract.
If c1 and c2 decide together to stop the contract at the time τ , then c2 gets a reward equal to
Qτ1[τ<T] + ξ1[τ=T]. Naturally, Uτ ≥ Qτ ≥ Lτ . Ut, Lt, and Qt are stochastic processes which are
related to the stock price in the market.

We consider the problem of pricing an American game contingent claim at each time t
which consists of the selection of a stopping time τ ∈ Fτ (or θ ∈ Fθ) and a payoff Uτ (or Lθ)
on exercise if τ < θ < T (or θ < τ < T) and ξ if τ = T . Set

S̃τ∧θ = ξ1{τ=θ=T} +Qτ1{τ=θ<T} + Lθ1{θ<τ<T} +Uτ1{τ<θ<T}, 0 ≤ (τ ∧ θ) ≤ T, (4.2)

then the price of American game contingent claim (S̃τ∧θ, 0 ≤ (τ ∧ θ) ≤ T) at time t is given by

Xt = ess inf
τ∈Fτ

ess sup
θ∈Fθ

Xt

(
τ ∧ θ, S̃τ∧θ

)
, (4.3)

where Xt(τ ∧ θ, S̃τ∧θ) noted by Xτ∧θ
t satisfies BSDE

−dXτ∧θ
s = b

(
s,Xτ∧θ

s , Zτ∧θ
s

)
ds − dCs − Zτ∧θ

s dWs,

Xτ∧θ
τ∧θ = S̃τ∧θ.

(4.4)

For each (ω, t), b(t, x, z) is a convex function of (x, z). It follows from [14] that we haveXτ∧θ
t =

ess suprt≤βt≤Rt
ess infCtX

β,C,τ∧θ. Here, Xβ,C,τ∧θ satisfies

−dXβ,C,τ∧θ
s = bβ

(
s,X

β,C,τ∧θ
s , Z

β,C,τ∧θ
s

)
ds − dCs − Zτ∧θ

s dWs,

X
β,C,τ∧θ
τ∧θ = S̃τ∧θ,

bβ(s,Xt, Zt) := −βtXt −
[
θt +

rt − βt
σt

]
Zt,

(4.5)
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where βt is a bounded R-valued adapted process which can be regarded as an interest rate
process in finance. So,

Xt := ess inf
τ∈Fτ

ess sup
θ∈Fθ

Xt

(
τ ∧ θ, S̃τ∧θ

)

= ess inf
τ∈Ft,Ct

ess sup
θ∈Ft,rt≤βt≤Rt

X
β,C,τ∧θ
t

= ess sup
θ∈Ft,rt≤βt≤Rt

ess inf
τ∈Ft,Ct

X
β,C,τ∧θ
t .

(4.6)

Here, Xβ,C
t := ess supθ∈Ft,rt≤βt≤Rt

ess infτ∈Ft,Ct X
β,C,τ∧θ
t . Then, from [13], there exist Zβ,C

t ∈ H2

and K
β,C,+
t K

β,C,−
t , which are increasing adapted continuous processes with K

β,C,+
0 = 0 and

K
β,C,−
0 = 0, such that (Xβ,C

t , Z
β,C
t ,K

β,C,+
t , K

β,C,−
t ) satisfies the following reflected BSDE:

−dXβ,C
s = bβ

(
s,X

β,C
s , Z

β,C
s

)
ds − dCs + dK

β,C,+
s − dK

β,C,−
s − Z

β,C
s dWs,

X
β,C

T = ξ, 0 ≤ s ≤ T,

(4.7)

withUt ≥ X
β,C
t ≥ Lt, 0 ≤ t ≤ T , and

∫T
0 (X

β,C
t − Lt)

−dK
β,C,+
t = 0,

∫T
0 (Ut −X

β,C
t )−dKβ,C,−

t = 0. Then,

the stopping time τ = inf{t ≤ s ≤ T ; Xβ,C
s = Us}, and θ = inf{t ≤ s ≤ T ; Xβ,C

s = Ls}.
We formulate the pricing problem of American game option to the stochastic recursive

mixed zero-sum differential game problem which was studied in Section 3, so the previous
example provides the practical background for our problem. This is also one of our
motivations to study the recursive mixed game problem in this paper.

In the following, we give another example, where we obtain the explicit saddle point
strategy and optimal value of the stochastic recursive game. The purpose of this example is
to illustrate the application of our theoretical results.

Example 4.2. We let the dynamics of the system (xt)t≤T satisfy

dxt = xtdBt, t ≤ 1, where the initial value is x0. (4.8)

The control action for c1 (resp. c2) is u (resp. v) which belongs to U (resp. V). The U is [0, 1],
and the V is [0, 1], while the function Φ = xt(ut + vt). Then, by the Girsanov’s theorem, we
can define the probability Pu,v by

dPu,v

dP
= exp

{∫T

0
(us + vs)dBs −

1
2

∫T

0
(us + vs)2ds

}
. (4.9)

Under the probability Pu,v, the process Bu,v
t = Bt −

∫ t
0(us + vs)ds is a Brownian motion.
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First, we consider the following stochastic recursive zero-sum differential game:

J(x0, u, v) = Y0 = Eu,v

[
xT +

∫T

0
min{|xt|, 2} + Yt(ut + vt)dt

]
. (4.10)

(Yt)0≤t≤T satisfies BSDE

−dYs = min{|xs|, 2} + Ys(us + vs)ds − ZsdB
u,v
s ,

YT = xT .
(4.11)

Therefore,

H(t, x, z, Y, u, v) = Z(u + v) +min{|xt|, 2} + Y (u + v), (4.12)

and obviously, the Isaacs condition is satisfied with u∗ = 1[Z+Y≤0], v
∗ = 1[Z+Y≥0]. It follows that

min
u∈U

max
v∈V

H(t, x, Z, Y, u, v) = max
v∈V

min
u∈U

H(t, x, Z, Y, u, v) = Z +min{|xt|, 2} + Y,

J(x0, u
∗, v∗) = Y0

= xT +
∫T

0
(Zt +min{|xt|, 2} + Yt)dtv −

∫T

0
ZtdBt

= E

[
x0 exp(2BT ) +

∫T

0
exp

(
Bt +

1
2
t

)
min

{∣∣∣∣x0 exp
(
Bt −

1
2
t

)∣∣∣∣, 2
}
dt

]
.

(4.13)

We also can get the conclusion that the optimal game value Y ∗
0 = J(x0, u

∗, v∗) is an increasing
function with the initial value of the dynamics system x0 from the previous representation.
Now, we give the numerical simulation and draw Figure 1 to show this point. Let T = 2,
when x0 = 1, the optimal game value Y0 = 147.8, Z0 = 147.8 and the saddle point strategy
(u∗

0, v
∗
0) = (0, 1); when x0 = 2, Y0 = 295.6, Z0 = 295.6, (u∗

0, v
∗
0) = (0, 1); and x0 = 3, Y0 = 443.4,

Z0 = 443.4, and (u∗
0, v

∗
0) = (0, 1). Y0 is increasing function of x0 which coincides with our

conclusion.
Second, we consider the following stochastic recursive mixed zero-sum differential

game:

J(x0;u, τ ;v, θ) = Yu,τ ;v,θ
0 = Eu,v

[∫ τ∧θ

0
[min{|xt|, 2} + Yt(ut + vt)]dt

+ (xτ + 1)I[τ<θ] + (xθ − 1)I[θ<τ<T] + xTI[θ=τ]

]
.

(4.14)
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Figure 1: Y0 stands for the optimal game value, and x0 stand for the initial value of the dynamics system.

Then, (Yt)0≤t≤(τ∧θ) satisfies the following BSDE:

Yt = (xτ + 1)I[τ<θ] + (xθ − 1)I[θ<τ<T] + xTI[θ=τ]

+
∫ τ∧θ

t

[min{|xs|, 2} + Ys(us + vs)]ds −
∫ τ∧θ

t

ZsdB
u,v
s .

(4.15)

Therefore, H(t, x, z, Y, u, v) = Z(u + v) + min{|xt|, 2} + Y (u + v), and obviously, the Isaacs
condition is satisfied with u∗ = 1[Z+Y≤0], v

∗ = 1[Z+Y≥0]. It follows that

min
u∈U

max
v∈V

H(t, x, Z, Y, u, v) = max
v∈V

min
u∈U

H(t, x, Z, Y, u, v) = Z +min{|xt|, 2} + Y,

J(x0;u∗, τ ;v∗, θ) = Yu∗,τ ;v∗,θ
0

= Yτ∧θ +
∫ τ∧θ

0
(Zt +min{|xt|, 2} + Yt)dt −

∫ τ∧θ

0
ZtdBt

= Yτ∧θ exp
(
1
2
(τ ∧ θ) + Bτ∧θ

)
+
∫ τ∧θ

0
min{|xt|, 2} exp

(
1
2
(t) + Bt

)
dt

−
∫ τ∧θ

0
exp

(
1
2
(t) + Bt

)
(Zt + Yt)dBt,

(4.16)
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where τ∗ = inf{t ∈ [0, T], Yt ≥ (xt + 1)}, and θ∗ = inf{t ∈ [0, T], Yt ≤ (xt − 1)}, while
(u∗, τ∗;v∗, θ∗) is the saddle point. So, the optimal value is

J(x0;u∗, τ∗;v∗, θ∗) = Yu∗,τ∗;v∗,θ∗

0

= Yτ∗∧θ∗ exp
(
1
2
(τ∗ ∧ θ∗) + Bτ∗∧θ∗

)
+
∫ τ∗∧θ∗

0
min{|xt|, 2} exp

(
1
2
t + Bt

)
dt

−
∫ τ∗∧θ∗

0
exp

(
1
2
t + Bt

)
(Zt + Yt)dBt

= E

[
x0 exp(2Bτ∗∧θ∗) + 1τ∗<θ∗ exp

(
B∗
τ +

1
2
τ∗
)
− 1θ∗<τ∗ exp

(
B∗
θ +

1
2
θ∗
)

+
∫ τ∗∧θ∗

0
min

{∣∣∣∣x0 exp
(
Bt −

1
2
t

)∣∣∣∣, 2
}
exp

(
1
2
t + Bt

)
dt

]
.

(4.17)

We also can get the conclusion that the optimal game value Y ∗
0 = J(x0, u

∗, τ∗;v∗, θ∗)
is an increasing function with the initial value of the dynamics system x0 from the previous
representation.
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