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We present some observations on the stability and reducibility of quasiperiodic systems. In a
quasiperiodic system, the periodicity of parametric excitation is incommensurate with the peri-
odicity of certain terms multiplying the state vector. We present a Lyapunov-type approach and
the Lyapunov-Floquet (L-F) transformation to derive the stability conditions. This approach can
be utilized to investigate the robustness, stability margin, and design controller for the system.

1. Introduction

A large class of engineering systems, such as structures subjected to quasiperiodic excitations,
is described by linear ordinary differential equations with time varying coefficients. These
linear systems, in general, are described as

ẏ = A(t)y, (1.1)

where A(t) is an n × n quasiperiodic matrix and y is an n dimensional vector. In general,
it is not a trivial problem to determine if (1.1) is asymptotically stable, simply stable, or
unstable. The researchers have used perturbation-type techniques or numerical approaches
to investigate the stability of this system [1–3].

In this work, we address the stability of a special class of quasiperiodic systems called
as periodic quasiperiodic systems where (1.1) can be written as

ẏ = [A0(t) +A1(t)]y, (1.2)

where A0(t) has the principal period T and A1(t) has the period T1. It is noted that these
periods are incommensurate. These types of equations arise in parametrically excited Micro
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Electro Mechanical Systems (MEMS) [4]. It is noted that A(t) has a strong parametric excita-
tion. In this paper, we present the methodology to investigate the stability of system given by
(1.2) using the L-Ftransformation and Lyapunov’s method.

This paper is organized as follows. In Section 2, a brief mathematical background on
the L-F transformation is provided. Section 3 discusses the stability conditions followed by
an example. We present the L-F-transformation-type approach for quasiperiodic systems in
Section 4. The discussion and conclusions are presented in Section 5.

2. Mathematical Background

2.1. Floquet Theory and L-F Transformation

Consider (1.1), ifA1(t) = 0, that is, the system is purely time periodic, then the State Transition
Matrix (STM)Φ(t) of (1.2) can be factored as [5]

Φ(t) = Q(t)eRt, Q(t) = Q(t + 2T), Q(0) = I, (2.1)

where the matrix Q(t) is real and periodic with period 2T , R is an n × n real time invariant
matrix, and I is the identity matrix. Matrix Q(t) is known as the L-F transformation matrix
[5].

The transformation y(t) = Q(t)z(t) produces a real-time invariant representation of
purely time periodic system ((1.2)with A1(t) = 0) given by

ż(t) = Az(t). (2.2)

It is to be noted that matrix A in (2.2) is time invariant.

2.2. Construction of Lyapunov Functions

Lyapunov’s direct method is widely used in the stability analysis of general dynamical
systems. It makes use of a Lyapunov function V (x, t). This scalar function of the state and
time may be considered as some form of time-dependent generalized energy. The basic idea
of the method is to utilize the time rate of energy change in V (x, t) for a given system to
judge whether the system is stable or not. The details about Lyapunov’s method and stability
theorems can be found in reference [6].

For a linear system with constant coefficients, it is rather simple to find a Lyapunov
function. Consider the linear system

ẋ
∼
(t) = ˜Ax

∼
(t), (2.3)

where ˜A is a constant matrix. A quadratic form of V (x) may be assumed as

V

(

x
∼

)

= x
∼
TPx

∼
, (2.4)



Mathematical Problems in Engineering 3

where P is a real, symmetric, and positive definite matrix. Then

V̇

(

x
∼

)

= ẋ
∼
TPx

∼
+ x

∼
TPẋ

∼
=
(

˜Ax
∼

)T

Px
∼
+ x

∼
TP ˜Ax

∼
(2.5)

or

V̇

(

x
∼

)

= x
∼
T
(

˜ATP + P ˜A
)

x
∼
. (2.6)

According to the Lyapunov theorem for autonomous systems, if V̇ (x) is negative
definite, then the system is asymptotically stable [6]. Therefore, one can write

˜ATP + P ˜A = −C, (2.7)

where C is a positive definite matrix. Equation (2.7) is called the Lyapunov equation. It has
been shown by Kalman and Bertram [7] that if there were eigenvalues with negative real
parts (asymptotically stable), then for every given positive definite matrix C, there exists a
unique Lyapunov matrix P. In this study, matrix C is always taken as the identity matrix.

3. Stability of Quasiperiodic Systems

Consider the quasiperiodic linear differential equation given by (1.2). In order to determine
the stability bounds on A1(t), we first use the L-F transformation y(t) = Q(t)z(t) to (1.2).
After the L-F transformation, (1.2) can be written as

ż =
[

A +G(t)
]

z, (3.1)

whereG(t) = Q−1(t)A1(t)Q(t). It is to be noted that A is a constant matrix whose eigenvalues
have negative real parts. We follow the approach presented by Infante [8] to obtain stability
bounds.

Theorem 3.1 (see [8]). If, for some positive definite matrix B and some ε > 0,

E
{

λmax

[

A
T
+G(t)T + B

[

A +G(t)
]

B−1
]}

≤ −ε, (3.2)

then (3.1) is almost surely asymptotically stable in the large, where E{·} is the expectation operator
and λmax is maximum real eigenvalues of a pencil [9].

Proof. Consider the quadratic (Lyapunov) function V (z) = zTBz. Then along the trajectories
of (3.1), define

λ(t) =
V̇ (z)
V (z)

=
zT
[

(

A +G(t)
)T

B + B
(

A +G(t)
)

]

z

zTB z
. (3.3)
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It is noted that the numerator and denominator in (3.3) are quadratic forms. The pencil of
quadratic forms ̂A(x, x) =

∑n
i,k=1 aikxixk and ̂B(x, x) =

∑n
i,k=1 bikxixk is a matrix-valued func-

tion defined over complex numbers λ given by ̂A(x, x) + λ̂B(x, x) [9]. From the properties of
pencils of quadratic forms [9], we can obtain the following inequality:

λmin

[

(

A +G(t)
)T

+ B
(

A +G(t)
)

B−1
]

≤ λ(t) ≤ λmax

[

(

A +G(t)
)T

+ B
(

A +G(t)
)

B−1
]

,

(3.4)

where λmax is defined before and λmin is the minimum real eigenvalues of a pencil. Consider
‖z‖p = (zTBz)1/2; it can be shown [10] that ‖z‖p satisfies

d

dt
log ‖z‖p =

zT
[

(

A +G(t)
)T

B + B
(

A +G(t)
)

]

z

zTB z
. (3.5)

Thus, integrating and dividing (3.5) by t,

1
t

[

log ‖z(t)‖p − log ‖z(0)‖p
]

=
1
t

∫ t

0

zT
[

(

A +G(s)
)T

B + B
(

A +G(s)
)

]

z

zTB z
ds. (3.6)

For (1/t)[log ‖z(t)‖p − log ‖z(0)‖p] < 0 as t → ∞ follows limt→∞‖z‖ = 0. Thus, algebraic sign

of limt→∞[(1/t)
∫ t

0((z
T [(A+G(s))TB+B (A+G(s))] z)/zTB z)ds] provides the condition for

stability [10]. The solution of (3.3) can be given as

V [z(t)] = V [z(t0)]e
∫ t
t0
λ(τ)dτ ≡ V [z(t0)]e

(t−t0)[(1/(t−t0))
∫ t
t0
λ(τ)dτ]

. (3.7)

It can be observed that if E{λ(t)} ≤ −ε for some ε > 0, V [z(t)] is bounded and that V [z(t)] →
0 as t → ∞. This is the condition imposed by inequality given by (3.4), which proves the
results. Since y(t) = Q(t)z(t), the stability of (3.1) implies the stability of (1.2).

It is remarked that a necessary condition for inequality (3.4) to hold is that the
eigenvalues of matrix A have negative real parts. It is also possible to obtain a result that
is easier to compute but not as sharp.

Corollary 3.2. If, for some positive definite matrix B and some ε > 0,

E
{

λmax

[

GT (t) + BG(t)B−1
]}

≤ −λmax

[

A
T
+ BAB−1

]

− ε, (3.8)

then (3.1) is almost surely asymptotically stable in the large.

Proof. The proof follows immediately from theorem by noting that

λ(t) ≤ λmax

[

(

A +G(t)
)T

+ B
(

A +G(t)
)

B−1
]

≤ λmax

[

A
T
+ BAB−1

]

+ λmax

[

GT (t) + BG(t)B−1
]

.

(3.9)
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The second inequality is obtained by performing two maximizations separately. Further, us-
ing an E{·} operator

E{λ(t)} ≤ λmax

[

A
T
+ BAB−1

]

+ E
{

λmax

[

GT (t) + BG(t)B−1
]}

≤ −ε, (3.10)

yields the desired result. It is obvious that, unless the second inequality in (3.10) is an equality,
the stability results obtained will not be as good as those given by the theorem. It is noted that
this theorem and corollary can be extended to study stability and robustness of a linear time-
periodic system subjected to random perturbations in a straightforward fashion, and for the
details, we refer the reader to reference [11].

Example 3.3. Consider the system

ẏ =
[

˜A(t) + ̂A(t)
]

y, (3.11)

where

˜A(t) = ω

[ −1 + αcos2(ωt) 1 − α sin(ωt) cos(ωt)
−1 − α sin(ωt) cos(ωt) −1 + αsin2(ωt)

]

, ̂A(t) =
[

0 0
f(t) 0

]

(3.12)

α is a system parameter and ω = 2π . The state transition matrix (STM), Φ(t), when the
quasiperiodic term ̂A(t) = 0, is given as [12]

Φ(t) =
[

e(α−1)ωt cos(ωt) e−ωt sin(ωt)
−e(α−1)ωt sin(ωt) e−ωt cos(ωt)

]

= Q(t)eRt. (3.13)

Factoring the state transition matrix as shown above, the L-F transformation matrix
Q(t) is found as

Q(t) =
[

cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

]

, eRt =
[

e(α−1)ωt 0
0 e−ωt

]

. (3.14)

It is noted that the system is unstable for all α > 1. Using the L-F transformation z(t) =
Q(t)y(t) (c.f. (3.14)) (3.11) to yield a time-invariant system given by

ż(t) = Az(t). (3.15)

Let V = zT (t)Bz(t), where B is a constant, symmetric, positive definite matrix.
Then

V̇ = żTBz + zTBż = zT
[

A
T
B + BA

]

z ≡ −zTCz. (3.16)
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Setting

B =
[

B11 B12

B12 B22

]

, C = I2 =
[

1 0
0 1

]

, (3.17)

substituting (3.17) into (3.16), yields B11 = −1/(2ω(α − 1)) (α < 1), B12 = 0 and . . .
Therefore,

B =

⎡

⎢

⎣

− 1
2ω(α − 1)

0

0
1
2ω

⎤

⎥

⎦
, B−1 =

[−2ω(α − 1) 0
0 2ω

]

. (3.18)

Since B11 > 0 for α < 1 and

Det(B) =

∣

∣

∣

∣

∣

∣

∣

− 1
2ω(α − 1)

0

0
1
2ω

∣

∣

∣

∣

∣

∣

∣

= − 1
2ω2(α − 1)

> 0. (3.19)

Therefore, B is a positive definite symmetric matrix and Lyapunov stability conditions are
satisfied.

Once the B matrix is constructed, the stability theorem and the corollary can be used
to determine the stability conditions for the system. Simple computations yield

D = A
T
+GT (t) + B

[

A +G(t)
]

B−1

=

⎡

⎢

⎣

2ω(α − 1) + 2f(t) sin(ωt) cos(ωt)
−[(α − 2)cos2(ωt) + 1

]

f(t)
α − 1

[

(α − 2)cos2(ωt) + 1
]

f(t) −2ω − 2f(t) sin(ωt) cos(ωt)

⎤

⎥

⎦
.

(3.20)

Setting Det[D − λI] = 0, the eigenvalues λ of the D matrix are computed as

λ1,2 = −ω(2 − α)

±
√

ω2α2 +
1

α − 1
[

2ωα(α − 1)f(t) sin(ωt) +
(

2αcos2(ωt) − α2cos4(ωt) − 1
)

f2(t)
]

.

(3.21)

Application of the theorem yields

E{λmax[D]}
= −ω(2 − α)

+ E

⎧

⎨

⎩

√

ω2α2+
1

α−1
[

2ωα(α−1)f(t) sin(ωt)+
(

2αcos2(ωt)−α2cos4(ωt)−1)f2(t)
]

⎫

⎬

⎭

≤ 0

(3.22)



Mathematical Problems in Engineering 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
α

Theorem

Corollary

160

140

120

100

80

60

40

20

0

E
[f

2 (
t)
]

Figure 1: Stability results for example 1 obtained by the Theorem and Corollary.

or

E

⎧

⎨

⎩

√

ω2α2+
1

α−1
[

2ωα(α−1)f(t) sin(ωt)+
(

2αcos2(ωt)−α2cos4(ωt)−1)f2(t)
]

⎫

⎬

⎭

≤ ω(2 − α).

(3.23)

Using Schwarz’s Inequality [13], (E{f(t)})2 ≤ E{f2(t)}, and simplification yields

E
{

f2(t)
}

≤ 32ω2(1 − α)2

8 + 3α2 − 8α
. (3.24)

The results obtained from condition (3.24) for α from 0 to 1 are shown in Figure 1.
In order to get the conditions for almost sure asymptotic stability from the corollary,

matrices [GT (t) + BG(t)B−1] and [A + BAB−1] are calculated as

GT (t) + BG(t)B−1 = f(t)

⎡

⎣

2 sin(ωt) cos(ωt) − (α − 2)cos2(ωt) + 1
α − 1

(α − 2)cos2(ωt) + 1 −2 sin(ωt) cos(ωt)

⎤

⎦,

A + BAB−1 =
⌊

2(α − 1)ω 0
0 −2ω

⌋

.

(3.25)

The maximum eigenvalues of matrices given by (3.25) are computed as

λmax

[

GT (t) + BG(t)B−1
]

=
∣

∣f(t)
∣

∣

√

1 − 2αcos2(ωt) + α2cos4(ωt)
1 − α

,

λmax

[

A
T
+ BAB−1

]

= −2(1 − α)ω.

(3.26)
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Applying the corollary

E
{

λmax

[

GT (t) + BG(t)B−1
]}

≤ −λmax

[

A
T
+ BAB−1

]

− ε (3.27)

yields

E

⎧

⎨

⎩

∣

∣f(t)
∣

∣

√

1 − 2αcos2(ωt) + α2cos4(ωt)
1 − α

⎫

⎬

⎭

≤ 2(1 − α)ω. (3.28)

Then using Schwarz’s Inequality in (3.28), one obtains

E

{

f2(t)

[

1 − 2αcos2(ωt) + α2cos4(ωt)
1 − α

]}

≤ 4(1 − α)2ω2 (3.29)

or

E
{

f2(t)
}[

1 − 2αE
{

cos2ωt
}

+ α2E
{

cos4ωt
}]

≤ 4(1 − α)3ω2. (3.30)

Since E{cos2(ωt)} = 1/2 and E{cos4(ωt)} = 3/8, inequality (3.30) provides the condi-
tion for almost sure asymptotic stability from corollary as

E
{

f2(t)
}

≤ 32(1 − α)3ω2

8 − 8α + 3α2
. (3.31)

As expected, condition (3.31) is weaker than condition (3.24). Figure 1 displays the result
obtained from (3.31) for α in the range of 0 to 1. A comparison of conditions yielding from
the theorem and corollary is shown in Figure 1.

4. L-F Transformation Approach for Quasiperiodic System

In the previous section, we presented the theorem and corollary that provide the bounds
on the quasiperiodic term so that the system described by (1.2) is stable. Alternatively, one
can use L-F transformation type approach to ascertain the stability of quasiperiodic system.
Unlike the theorem and corollary, this approach does not need A to have negative real parts
(c.f. (3.1)).

Consider a quasiperiodic system given in second order form [14] by

ẍ + (δ + α(cos t + cosωt))x = 0, (4.1)
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where δ, α are constants, quasiperiodicity ω ≈ p/q where p, q are integers and ẍ = d2x/dt2.
Equation (4.1) can be written in the state space form as

˙̃x = ˜A(t)x̃, (4.2)

where x̃ = {x ẋ}T , ˜A =
[

0 1
−(δ+α(cos t+cosωt)) 0

]

.
Now using the transformation t = 2qτ , (4.1) can be transformed to

[

1
4q2

]

d2x

dτ2
+
(

cos 2qτ + cos 2pτ
)

x = 0. (4.3)

It can be noted that (4.3) is a time periodic system with principle period π . The stability of
(4.3) is governed by the Floquet theory. It is possible to find out the State Transtion Matrix
(STM) Φ(τ) at the end of the principle period (also called as the Floquet Transition Matrix
(FTM) Φ(τ = π)) numerically [14, 15] or analytically using Picard iterations [16, 17]. For the
details on the analytical computation of STM using Picard iteration approximation, we refer
to reference [16]. It is noted that the Picard iteration approach yields an approximate closed
form symbolic expression of the STM for time periodic system.

If eigenvalues of the FTM are inside the unit circle, then (4.3) is asymptotically stable.
If the eigenvalues are on the unit circle then the system is simply stable, and if the eigenvalues
are outside the unit circle, then the system is unstable. The stability (or instability) of the time
periodic system given by (4.3) implies the stability (or instability) of (4.1). It can be noted
that the Floquet theory states that the STM (Φ(τ)) of (4.3) can be partitioned as

Φ(τ) = Q(τ)eBτ , (4.4)

where Q(τ) is the time periodic L-F transformation matrix and B is the constant matrix of
appropriate dimensions. The eigenvalues of B are called the Floquet exponent and govern the
stability of the time periodic system given by (4.3). For computation of the L-F transformation
matrix via Chebyshev polynomials, we refer the reader to reference [18].

5. Conclusion

In this paper, simple and efficient computational techniques to guarantee sufficient conditions
for almost sure asymptotic stability of periodic quasiperiodic systems have been presented.
First, the L-F transformation has been utilized to convert the periodic part of time-periodic
system to a time-invariant form. For the linear periodic-quasiperiodic system, a theorem
and related corollary have been suggested using the results previously obtained by Infante
[8]. In order to apply the theorem and the corollary successfully, it is observed that the
eigenvalues of matrix A, which governs the stability of the system, must have negative
real parts and matrix B must be positive definite. One example is presented to show the
application. Another apporach pressed here is based on the Floquet-type approach, where
a quasiperiodic system is approximated as a periodic system and the Floquet theory can be
applied to investigate the stability. Unlike the Infante type approch, the Floquet approach
does not require eigenvalues of matrix A to have negative real parts. In certain cases, Floquet
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type decomposition for quasiperiodic system can be used to reduce quasiperiodic system to
LTI system. It is expected that these methodology would be useful in studying stability and
designing controllers for a number of MEMS, where governing differential equations have
time periodic quasiperiodic coefficients. The approaches presented in this paper can be ex-
tended to study stability and robustness of a linear time-periodic system subjected to random
perturbations.
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