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We apply the two-variable (G'/G, 1/G)-expansion method to construct new exact traveling wave
solutions with parameters of the nonlinear (1 +1)-dimensional KdV-mKdV equation. This method
can be thought of as the generalization of the well-known (G'/G)-expansion method given
recently by M. Wang et al. When the parameters are replaced by special values, the well-known
solitary wave solutions of this equation are rediscovered from the traveling waves. It is shown that
the proposed method provides a more general powerful mathematical tool for solving nonlinear
evolution equations in mathematical physics.

1. Introduction

In the recent years, investigations of exact solutions to nonlinear PDEs play an important
role in the study of nonlinear physical phenomena. Many powerful methods have been
presented, such as the inverse scattering transform method [1], the Hirota method [2], the
truncated Painleve expansion method [3-6], the Backlund transform method [7, 8], the
exp-function method [9-13], the tanh function method [14-17], the Jacobi elliptic function
expansion method [18-20], the original (G'/G)-expansion method [21-29], the two-variable
(G'/G,1/G)-expansion method [30], and the first integral method [31]. The key idea of
the original (G'/G)-expansion method is that the exact solutions of nonlinear PDEs can be
expressed by a polynomial in one variable (G'/G) in which G = G(¢) satisfies the second
ordinary differential equation G"(¢) + AG' (¢) + uG(¢) = 0, where A and p are constants.
In this paper, we will use the two-variable (G'/G,1/G)-expansion method, which can be
considered as an extension of the original (G'/G)-expansion method. The key idea of the
two-variable (G'/G,1/G)-expansion method is that the exact traveling wave solutions of
nonlinear PDEs can be expressed by a polynomial in the two variables (G'/G) and (1/G),
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in which G = G(¢) satisfies a second-order linear ODE, namely G"(¢) + AG(¢) = p, where
A and p are constants. The degree of this polynomial can be determined by considering
the homogeneous balance between the highest-order derivatives and nonlinear terms in the
given nonlinear PDEs, while the coefficients of this polynomial can be obtained by solving a
set of algebraic equations resulted from the process of using the method. Recently, Li et al.
[30] have applied the two-variable (G' /G, 1/G)-expansion method and determined the exact
solutions of Zakharov equations.

The objective of this paper is to apply the two-variable (G'/G, 1/G)-expansion method
to find the exact traveling wave solutions of the following nonlinear (1+1)-dimensional Kd V-
mKdV equation:

U + AU, + ﬁuzux + Uyrx =0, (1.1)
where a and ff are nonzero constants. This equation may describe the wave propagation of the
bound particle, sound wave, and thermal pulse. It is the most popular soliton equation and
often exists in practical problems, such as fluid physics and quantum field theory. Recently,

Zayed and Gepreel [23] have found the exact solutions of (1.1) using the original (G'/G)-
expansion method.

2. Description of the Two-Variable (G'/G,1/G)-Expansion Method
Before we describe the main steps of this method, we need the following remarks (see [30]):

Remark 2.1. 1f we consider the second-order linear ODE
G"(§) +AG(E) = (2.1)
and set ¢ = G'/G and ¢ = 1/G, then we get
$=-¢"+up-1 ¢ =-dp. (2.2)
Remark 2.2. If A < 0, then the general solution of (2.1) is

G(¢) = Arsinh (V1) + A cosh (§V/-1) + g (2.3)

where A; and A, are arbitrary constants. Consequently, we have

2 _ 2 _
V= o+ (¢ ZWM), (2.4)

where 0 = A? - A2

Remark 2.3. 1f A > 0, then the general solution of (2.1) is

G(@) = Arsin(¢V1) + As cos(£V1) + ’f 2.5)
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and hence

-1
2 _ 2 _
¢ = 1o 2 ((I) 2up + )L), (2.6)

where 0 = A7 + A3.

Remark 2.4. If A = 0, then the general solution of (2.1) is

G@) = 52+ Mg+ s, 27)
and hence
S ) (2.8)
A% - 2/1A2 ’

Suppose we have the following NLPDEs in the form:
F(u/ Ut, Uy, Uxx, Utt, - - ) = 0/ (29)

where F is a polynomial in u and its partial derivatives. In the following, we give the main
steps of the two-variable (G'/G, 1/G)-expansion method [30].

Step 1. The traveling wave variable
u(x,t) =u(@), &é¢=x-Vt (2.10)
reduces (2.9) to an ODE in the form

P(uu',u",...) =0, (2.11)

where V is a constant and P is a polynomial in # and its total derivatives, while ' = d/d¢.

Step 2. Suppose that the solutions of (2.11) can be expressed by a polynomial in the two
variables ¢ and ¢ as follows:

u(@) = '+ 3 bipy, (2.12)

i=0 i=1

where a;(i=0,1,...,N) and b;(i = 1,..., N) are constants to be determined later.

Step 3. Determine the positive integer N in (2.12) by using the homogeneous balance
between the highest-order derivatives and the nonlinear terms in (2.11).
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Step 4. Substituting (2.12) into (2.11) along with (2.2) and (2.4), the left-hand side of (2.11)
can be covered into a polynomial in ¢ and ¢, in which the degree of ¢ is not longer than 1.
Equating each coefficient of this polynomial to zero yields a system of algebraic equations
that can be solved by using the Maple or Mathematica to get the values of a;, b;, V, y, A1, Az,
and A where A < 0. Thus, we get the exact solutions in terms of the hyperbolic functions.

Step 5. Similar to Step 4, substituting (2.12) into (2.11) along with (2.2) and (2.6) for A > 0 (or
(2.2) and (2.8) for A = 0), we obtain the exact solutions of (2.11) expressed by trigonometric
functions (or by rational functions), respectively.

3. An Application

In this section, we apply the method described in Section 2 to find the exact traveling wave
solutions of the nonlinear (1+1)-dimensional KdV-mKdV Equation (1.1). To this end, we see
that the traveling wave variable (2.10) permits us to convert (1.1) into the following ODE:

V' +auu + pu*u’ +u” = 0. (3.1)

By balancing »” with u?u’ in (3.1), we get N = 1. Consequently, we get

u(é) = ao+ a1(§) + brg(3), (3.2)

where ag, a;, and b; are constants to be determined later. There are three cases to be discussed
as follows.

Case 1. Hyperbolic function solutions (A < 0).

If X <0, substituting (3.2) into (3.1) and using (2.2) and (2.4), the left-hand side of (3.1)
becomes a polynomial in ¢ and ¢. Setting the coefficients of this polynomial to zero yields a
system of algebraic equations in ay, a1, by, 4, 0, and A as follows:

¢*  12a10 %042 + 6arpt + PajAto’ + 2ai N op’ + faSpt + 6a\to?
- 3Ba1b? V%0 - 3arb2A\p* =0,

P* : 4PagaiNou® + 2pagai ) o’ + aatdto? — abip? - 2pbIN
—abi\3o = 2BaghtA\ 0 + 6by A + 2aibi NP po + 2Paibi \p + aad it

+2aai A\ op® + 6b1p\>0 — 2Bagb? A + 2faga’yt =0,
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P> : 6b1A 0% — pUIN 0 + 3atbipt + 6Paibi\ op’ + 6bipt + 12b1 N op?
- o\ + 3Paibi\io? = 0,
¢* 1 ~Vai\'o? + abiVajpo + aagarp* + pajarp’ + pajr’o” + pajiu’
+13a1M30p? = Vayut - 2Var A op? + 5ar iyt + 8a1X°0% + 2pa Vop?
+ ﬁagal)ﬁloz +aaga io? + acbl)u11/[g - Zﬁb%)tzawz + Zﬁaobllallf
- 4ﬂb%)u4a10 + Zaaoay\za‘uz + Zﬂaéal)uzoyz + Zﬁaobl)fal‘uo =0,
P*¢ : —pap’ + 7pb3 N3 a po — 12a1pro? - 2pa’ P\ o - paiu)to?
+ 2aa1b1y4 + 4ﬂa0a1b1)t40'2 + Sﬂaoalblﬂo,uz - 24a1y3A20
+ 4aa1b1)u20//12 + 4ﬂa0a1b1‘u4 + 7ﬂb%)ta1//t3 + 2aa1bi\o? - 12a1y5 =0,
P 1 6b1p° A\ — abi\o + 2Bagal\’0” + aailo? + aal Ayt + 2aal \Pop?
—ab?\ P = 2Bb3N3p + 2Baibi N2 + 2Bagai Aut + 6byp)to — 2Bagb? Ay’
+4BagaiNou® - 2Bagbi\ o + 2paibi\ uc = 0,
Pl i —pbINto + aagbipt + Padbipt - VbiAto? + 3bIN U — 201\ oy
- 2Bagaty® + 2ab? Ay’ — aa?y® — Vbt + 5b10°0% — 7by At + aagbi A o?
+ padbiAto? + 2aagb N op? — 2aai A\ o — aadplto? - 2V N op?
- 2Bagaiu\io? — 4Bagat i \’o + 2Basbi N op? + 2paibi N o? — 2Bt
+2ab? 2 po + 4Pagb? A2 uo + 4Pagbi Ay’ = 0,
¢0 : al)L40'y2 - Va\e? - Vl.ll)tll4 +aagaN°o? + ocaoal)ty‘1 - a112/44
+2a10%67% + abl)ﬁlamo + ﬂb%)ﬁal,uz - ﬂb%/\‘r’alo + ﬁa(z)al)usoz - 2Va1)t30y2
+ Zﬂaéal)@oyz + txb1)tzu1/13 + Zﬁaoblﬁal‘ug + 2aa0u1A3oy2 + 2ﬂa0b1A4a1yo
+ ﬁaéal)u‘u‘} =0,

P : —abiag\pt - Bajaip\io® — poiN an® + anp’ A — aagarp + 3pbiN aypuo
+abya \o? - Zaaoa1y3/\20 - ﬂaéalpf + 2Va1‘u3)lzo + Vahu/\‘loz + Va1/45
- 2Baja1p’A*o — 4a1p° N30 + 2Pagbiar N0 - 2Bagbiar A’ — 5aypl’o?

- aaoaly/\402 =0.

(3.3)

Solving the algebraic equations (3.3) by the Maple or Mathematica, we get the
following results.
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Result 1. We have

1 | 6pA 3(\%0 + p?)
aoz—ﬁ<a:ﬁ:y m), a1=0, b1::|: T,

40PA3 + ca?A? = 2P\p? + o p?
4p(Vo+p?)

(3.4)

,  o0=A]-A]

From (2.3) and (3.2) and (3.4), we deduce the traveling wave solution of (1.1) as

follows:
6pA 3(\%0 + p?)
ue) = _p<“i”\/ )Lzo+yz>i 251
(3.5)
5 1
Ay sinh<§\/3> + A Cosh<§m> +u/L
where
~ 40PA3 + oaA\? = 2BAp? + a®u?
E=x+ < 4_[5()@0‘ n #2) >t. (3.6)

In particular, by setting A; =0, A > 0, and ¢ = 0in (3.5), we have the solitary solution

) = 55 1/ gy sech(3V-D), 7)

while, if A =0, A1 >0, and p = 0, then we have the solitary solution

u(@) = ;—;‘ + \/%csch(éﬂ). (3.8)

Result 2. We have

6()@0 +u?)
=2 \/ T
(3.9)

26\ — a?

A7 - A
p - 7

V=
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In this result, we deduce the traveling wave solution of (1.1) as follows:

u@) = 55+ VB[ Arsinh(¢v=1) + 1Az cosh(¢v=1) + /]
x {\/g[fh cosh(§V/=1) + Aasinh (§V-1)] + \/@} ' h
where
e ()

In particular, by setting A; = 0,4, > 0, and ¢ = 0 in (3.10), we have the solitary
solution

u@) =55 \/% tanh(¢V/-1) + \/_T?sech@@), (3.12)

while, if Ay =0, A; >0, and u = 0, then we have the solitary solution

u(@) = % + \/% coth(§V-1) = \/%csch(éﬂ). (3.13)

Case 2. Trigonometric function solutions (A > 0).
If X > 0, substituting (3.2) into (3.1) and using (2.2) and (2.6), we get a polynomial in ¢
and . We vanish each coefficient of this polynomial to get the following algebraic equations.

Pt —padu’ - pairto’ + 2pad\’op? - barpt — 6a1\*o? + 12a10 op?
- Bﬂalbffo + 3ﬂa1b%)ulu2 =0,

¢* : 6b N30 + abi\p® - 2Baibi i’ — 6b P A + APagai N op? + 2pb3N
- 2Bagbt V30 + 2Pagbi \p* — aat\*o? — aajut — abi\ o - 2Bagaiito’

- 2Bagaiy’ +2aa’\ op® + 2Baib N’ uc =0,
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P - —3pacbip’ + 6paibi N ou’ — 6b1 1 o? — 6byu* - 3paibi\to?
+ 1201\ %op? - Bb3 V%0 + pbiap? = 0,
¢* : Vard'o? — aagarp* - pajaip’ - pai\°o? — pajiyt — S5aiipt
+13a1 %04 + Vayp* - 8a10°0% — Bajai\*o? + 2pai\Pop? — aagar\*o?
+2Baiar N op? + 202\ a1 p? + abi\aypo — abjhayp® + 2Pagbi N aypo
+ Zaaoal)uzo,uz - 2Va1)uzoptz - 4ﬁbf)t4a10 - Zﬂaobllalye’ =0,
P : faSp’ - 24a1° V20 + 12a11° + 12a1p)*0? + padprio? + 7pbi N3 arpo
- 4ﬂa0a1b1)t4 2 Zﬂa?‘ua)tzo —4papa; b1y4 - 2aa1b1y4 + 4aa1b1A20y2
+ Sﬂaoalbl)LZG‘uz - 7ﬂb%/\a1y3 —2aabiAto? =0,
P! —abi\o — aa?\0? — aad iyt - 2Bagai Ayt — 2Batbi\?pd + abiA P
+2BbI A3 + 2Baibi A uo + 6bipud*o — 6bi P\ + APagaiiop® - 2Pagaia o’
+2Bagb? \*y* - 2Bagb?\*o + 2aai’ou’ = 0,
Py i —pbiNto — Badbipt + VbiAto? — aagbipt - 3LIN P - 2b1\ 3oy
+2Bagaip’ = 2abi\p® + Vbt + aaiy® — 5b1A 0% + 7hi i - Bajbi Ao’
— aagbi\*o? + aatu)to? + 2Badbi\ o p? + 2Bagad urto? — ABagad P\ o
- 2aa2y’\%0 - 2Vb N op? + 2aagb N op® — 2Ba’biA 0% + 2Batby Ayt
+2ab? A3 po + 4Pagh? A2 po — 4Pagb? Ay’ = 0,
(j)o : a1/\4o"uz +Va\oo? + Val)L,u4 + abl)fal,uo' - ﬂb%)ﬁalyz + al)@/ﬁ
—2a;\%0% - ﬂaﬁal)cr’ 2 ﬁaﬁal)gu‘l —aagaNo? - aaoal)qf + 2ﬂa§a1A3oy2
- 2Va1A30/42 - abl)tzalpt3 + 2aa0a1/\30‘u2 - Zﬂaob1A2a1y3 - ﬂb%/\salo
+ 2ﬂa0b1A4u1yo =0,
Py —Vayp’ = Vaipr*o® — aip°\ — abiai\°0? + abian \p* + pajar
+ pbiN ag i + Sayp°o? + paiaipdto’ + 3pbi N apo + aagarp® + 2Va Ao
- 4(11/13.)L3O' + aaoaly/\40'2 - 2faghy a1 V0% + 2Bapb; a1A;44 - Zaaoal‘pﬁ)tzo
- 2Basa;p\’o = 0.
(3.14)

Solving the algebraic equations (3.14) by the Maple or Mathematica, we obtain the
following results.
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Result 1. We have

1 fa pA - 6@ = Vo)
”0—7<§i3” m) w0 bR T

40PN + 0\ + 2P0y - oy
) 4p(\20 - p2)

(3.15)

,  o=Al+ A

From (2.5), (3.2), and (3.15), we deduce the traveling wave solution of (1.1) as follows:

-1fa pA 6(u* - \?0)

R R e ) R
(3.16)

5 1
Ay sin(@ﬂ) + Ay cos(éﬂ) +u/L '
where
- 40PA3 + oaA? + 2PAp? — a®y?

i=x+ < BP0 >t. (3.17)

In particular, by setting A; = 0,A, > 0, and ¢ = 0 in (3.16), we have the periodic
solution

u(g) = % i\/_T?/\sec(cj\/D, (3.18)

while, if A =0, A1 >0, and y = 0, then we have the periodic solution

u@) = ;—; £ /‘Tf)‘csc(gx@. (3.19)

Result 2. We have

_-a _ .8 _ 1/3(#2‘1\20)
ao—ﬁ/ al_:l: ﬁ/ b]—:l: T,

2L -a?
-

(3.20)
v

— A2 2
o=A]+A;.



10 Mathematical Problems in Engineering

In this result, we deduce the traveling wave solution of (1.1) as follows:

u@) =55+ \/‘—73 1
2p 2p A4 sin<§\/X> + Aj cos <§\/X> +u/A

(3.21)
X {\/X[Al cos(éﬁ) - A sin(é\/X)] + V )30/\— K },
where
2B\ — a?
t=x- BT (3:22)

In particular, by setting A; = 0,A, > 0, and ¢ = 0 in (3.21), we have the periodic
solution

u(g) = % + \/_2:?[— tan(é\/X) + sec<§\/X)], (3.23)

while, if A =0, A; >0, and y = 0, then we have the periodic solution

u(¢) = ;—; + \/%[cot(&/i) + csc(@ﬁ)]. (3.24)

Case 3. Rational function solutions (A = 0).

If A = 0, substituting (3.2) into (3.1) and using (2.2) and (2.8), we get a polynomial
in ¢ and . Setting each coefficient of this polynomial to zero yields the following algebraic
equations:

P*: Bal Al —APal ATuAr - 24a1 ATuAr + 24a1p* A + APa ut A3 + 6ar AT
+3Pa1b? AT — 6fa1bipuA; =0,

¢ —4Pagb?pAy — 6b1p A3 + daadd p* Al + 2Bagal AT + 8Pagaiyt A3 — 2abiu A,
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+12b1 2 Ag + 2Bagbt A2 - 2pb3p + aa AT — 2BadbipA? - 8Bagal A2uA, + abl A
+4Baibip* Ay — daat A2puA; =0,

P 12Batbip* Al + 6b1 AT + Pb A2 - 2BbuA, + 3patb Al - 12patb AT uA,
—24b A2pAs +24b A3 = 0,
P* : aagar Al + paiai A + 2pbap? - AVay it AL - Vay A] + 3aqp* Al
- 6a1,u3A2 —aby aLuA% + 4Va1A%‘uA2 - 4ﬂaéa1AiuA2 + 4ﬁa§a1y2A%
- 4aa0a1A‘%‘uA2 + 4aa0a1/42A§ +2aby alyzAz —2Paghy alyA%
+ 4ﬂa0b1a1‘u2A2 =0,
P - —48ay P Al + 48a1 P A2 Ay — 12a1p AT - 7PbParp Al + Aad i A2 Ay
— BaSpAT + 8aarbip? A} + 1402 a1 P As + 2aar by AT — 8aarbi AZp A, — ABaiy’ A3
+ 4:,[h10c11191A‘1l - 16ﬁa0a1b1A%‘uA2 + 16[3a0a1b1‘1¢2A§ =0,
'y aaob1 AT — aaipAl + aibi AT — AVt A] — daaipd A - 2abip Al
+4ab?u* Ay — Vb AT + A0S p* + 12b1p* A2 = 24b1i° Ay + AV ATpA,
+ 4aa0b1y2A§ —4aagby a%yAz - 2ﬁaoaiuA‘11 - 4ﬂa§b1AiuA2 + 4,[5a§b1‘uzA§
+daady? A2 Ay — ABagb? Al + 8Bagb? i’ Ay + APa’by p* A% + 8Pagaiu? A2 A,
- 8Bagaiy’ A} - 8palbi i’ A, = 0,
P VarpAl - 4poan’® + 4Vapd A3 - 6arp’ A? + 12a1p* As + daagar > A2 Ay
—aaga1pA; - pasaipAl - daagarp® A3 + Apaja pt A Ay — ABadar pd A3
- 4Va1/42A%A2 —4ab, a1y3A2 +4pagb, aLuZA% +2ab; alyzA%
- 8Bagbra1p’ A, = 0.
(3.25)

Solving the algebraic equations (3.25) by the Maple or Mathematica, we obtain the
following results.

Result 1. We have

1/ a B 6(2uA; — A?)
= —( =3/ ——= ), =0, b=+t 1V
“ ﬂ<2 ”Vé(ZyAz—A%>> " el

_ _aZA% +6ppu* - 20%pA;
1504~ 20A2)

(3.26)
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From (2.7), (3.2) and (3.26), we deduce the traveling wave solution of (1.1) as follows:

1/« B 6(2‘L£A2 - A%) 1
ue= 7<§ *3”\/%> iﬁ((wz)gz +A1é+Az>’

(3.27)
where
2A? + 6pu> — 20’ pA
foxs (20 f” il VY (3.28)
34T~ 2ury)
Result 2. We have
-0 3(2/1A2 - Az)
ap = E/ ay = +
(3.29)
_
=15
In this result, we deduce the traveling wave solution of (1.1) as follows:
(g) (X -3 ‘ug + A1 + \/A% - 2//1A2 (3 30)
u .
2% =\ 2p (H/2)8 + Arg+ Ay
where
2
—x+ 2t (3.31)

Remark 3.1. All solutions of this paper have been checked with Maple by putting them back
into the original equation (1.1).

4. Conclusions

In this paper, the (G'/G,1/G)-expansion method was employed to obtain some new as well
as some known solutions of a selected nonlinear equation, namely, the (1+1)-dimensional
KdV-mKdV equation. As the two parameters A; and A, take special values, we obtain
the solitary wave solutions. When ¢ = 0 and b; = 0 in (2.1) and (2.12), the two-variable
(G'/G,1/G)-expansion method reduces to the original (G'/G)-expansion method. So, the
two-variable (G'/G, 1/G)-expansion method is an extension of the original (G'/G)-expansion
method. The proposed method in this paper is more effective and more general than the
original (G'/G)-expansion method because it gives exact solutions in more general forms. In
summary, the advantage of the two-variable (G'/G, 1/G)-expansion method over the original
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(G'/G)-expansion method is that the solutions using the first method recover the solutions
using the second one.
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