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We propose an impulsive biological pest control of the sugarcane borer (Diatraea saccharalis) by
its egg parasitoid Trichogramma galloi based on a mathematical model in which the sugarcane
borer is represented by the egg and larval stages, and the parasitoid is considered in terms of
the parasitized eggs. By using the Floquet theory and the small amplitude perturbation method,
we show that there exists a globally asymptotically stable pest-eradication periodic solution when
some conditions hold. The numerical simulations show that the impulsive release of parasitoids
provides reliable strategies of the biological pest control of the sugarcane borer.

1. Introduction

One of the challenges for the improvements in the farming and harvesting of cane is the
biological pest control. Biological control is defined as the reduction of pest populations by
using their natural enemies: predators, parasitoids, and pathogens [1]. Parasitoids are species
which develop within or on the host and ultimately kill it. Thus, parasitoids are commonly
reared in laboratories and periodically released in high-density populations as biological
control agents of crop pests [2].

The sugarcane borerDiatraea saccharalis is reported to be the most important sugarcane
pest in the southeast region of Brazil [3]. The sugarcane borer builds internal galleries in the
sugarcane plants causing direct damage that results in apical bud death, weight loss, and
atrophy. Indirect damage occurs when there is contamination by yeasts that cause red rot in
the stalks, either causing contamination or inverting the sugar, increasing yield loss in both
sugar and alcohol [4].

There is an important larvae parasitoid of the sugarcane borer, a wasp named Cotesia
flavipes which is widely used in biological control in Brazil [3]. In spite of this control being
considered successful in Brazil, there are some areas where Cotesia flavipes does not control the
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sugarcane borer efficiently. The using of the egg parasitoid Trichogramma galloi is considered
an interesting option in this case [5].

Mathematical modelling is an important tool used in studying agricultural problems.
Thus, a good strategy of biological pest control, based on mathematical modelling, can
increase the ethanol production. The applications of host-parasitoid models for biological
control were reviewed in [6].

In [7], a mathematical model of interaction between the sugarcane borer (Diatraea
saccharalis) and its egg parasitoid Trichogramma galloi was proposed which consists of three
differential equations

dx1
dt

= r
(
1 − x1

K

)
x1 −m1x1 − n1x1 − βx1x2,

dx2
dt

= β x1x2 −m2x2 − n2x2,
dx3
dt

= n1x1 −m3x3 − n3x3,

(1.1)

where x1 is the egg density of the sugarcane borer, x2 is the density of eggs parasitized
by Trichogramma galloi, and x3 is the larvae density of the sugarcane borer; r is the net
reproduction rate;K is the carrying capacity of the environment;m1,m2, andm3 are mortality
rates of the egg, parasitized egg, and larvae populations; n1 is the fraction of the eggs from
which the larvae emerge at time t; n2 is the fraction of the parasitized eggs from which the
adult parasitoids emerge at time t; n3 is the fraction of the larvae population which moults
into pupal stage at time t; β is the rate of parasitism. The dynamics of this model without
control was considered in [7].

The proposed model (1.1) is a simplified compartmental one which considers only
three easy monitoring stages of the sugarcane borer species: egg stage, parasitized egg
stage, and larvae stage. Then, a reducing effect related to the searching efficiency of the
adult parasitoid may be ignored by this model. According to [5], the searching time of the
parasitoid Trichogramma galloi is 1-2 day, and it can cause some augmentation of the parasitoid
egg numbers when biological control measures are implemented.

Meanwhile, many authors have investigated the different population models concern-
ing the impulsive pest control [8–15]. The impulsive pest control strategies based on prey-
predator models were presented in [8, 11, 13]. The host-parasitoid model with impulsive
control was considered in [10]. Impulsive strategies of a pest management for SI epidemic
models were proposed in [9, 12]. Pulse vaccination strategies for SIR epidemic models were
considered in [14, 15].

In this paper, we suggest impulsive differential equations [16] to model the process of
the biological pest control of the sugarcane borer. So we develop (1.1) introducing a periodic
releasing of the parasitoids at fixed times

dx1
dt

= r
(
1 − x1

K

)
x1 −m1x1 − n1x1 − βx1x2

dx2
dt

= β x1x2 −m2x2 − n2x2 t /=nτ, n ∈ Z+,

dx3
dt

= n1x1 −m3x3 − n3x3
Δx1(t) = 0
Δx2(t) = p t = nτ, n ∈ Z+,

Δx3(t) = 0,

(1.2)
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where p is the release amount of the parasitized eggs at t = nτ, n ∈ Z+, Z+ = {0, 1, 2, . . . , }, τ
is the period of the impulsive effect. Δxi = xi(t+) − xi(t), xi(t+) = limt→ t+xi(t), i = 1, 2, 3. That
is, we can use releasing parasitized eggs to eradicate pests or keep the pest population below
the economic damage level.

2. Preliminary

In this section, we will give some definitions, notations, and some lemmas which will be
useful for our main results.

Let R+ = [0,∞), R3
+ = {x ∈ R3 : x > 0}. Denote f = (f1, f2, f3)

T , the map defined by the
right-hand side of the first three equations of the system (1.2). Let V0 = {V : R+ × R3

+ –→R+}
be continuous on (nτ, (n + 1)τ] × R3

+, lim(t,y)→ (nτ+,x)V (t, y) = V (nτ+, x) exist and V is locally

Lipschitzian in x.

Definition 2.1. V ∈ V0, then for (t, x) ∈ (nτ, (n+1)τ]×R3
+, the upper right derivative of V (t, x)

with respect to the impulsive differential system (1.2) is defined as

D+V (t, x) = lim
h→ 0

sup
1
h

[
V
(
t + h, x + hf(t, x)

) − V (t, x)
]
. (2.1)

The solution of system (1.2), denoted by x(t) : R+ –→R3
+, is continuously differentiable

on (nτ, (n + 1)τ] × R3
+. Obviously, the global existence and uniqueness of solution of system

(1.2) is guaranteed by the smoothness properties of f , for details see [16].
We will use a basic comparison result from impulsive differential equations.

Lemma 2.2 (see [16]). Let V ∈ V0, assume that

D+V (t, x) ≤ g(t, V (t, x)), t /=nτ,

V (t, x(t+)) ≤ ψn(V (t, x(t))), t = nτ,
(2.2)

where g : R+ × R3
+ –→R+ is continuous on (nτ, (n + 1)τ] × R+ and ψn : R+ –→R+ is nondecreasing.

Let R(t) be the maximal solution of the scalar impulsive differential equation

u̇(t, x) = g(t, u(t)), t /=nτ,

u(t+) = ψn(u(t)), t = nτ,

u(0+) = u0

(2.3)

existing on [0,∞). Then V (0+, x0) ≤ u0 implies that V (t, x(t)) ≤ R(t), t ≥ 0, where x(t) is any
solution of (1.2), similar results can be obtained when all the directions of the inequalities in the
lemma are reversed and ψn is nonincreasing. Note that if one has some smoothness conditions of g to
guarantee the existence and uniqueness of solutions for (2.3), then R(t) is exactly the unique solution
of (2.3).
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Next, we consider the following system:

du2
dt

= a −m2u2 − n2u2, t /=nτ,

Δu2(t) = b, t = nτ

u2(0+) = u20 ≥ 0.

(2.4)

Lemma 2.3. System (2.4) has a unique positive periodic solution ũ2(t) with period τ and for every
solution u2(t) of (2.4) |u2(t) − ũ2(t)(t)| → 0 as t → ∞, where

ũ2(t) =
a

m2 + n2
+
be−(m2+n2)(t−nτ)

1 − e−(m2+n2)τ
, t ∈ (nτ, (n + 1)τ], n ∈ Z+,

ũ2(0+) =
a

m2 + n2
+

p

1 − e−(m2+n2)τ
.

(2.5)

Proof. Integrating and solving the first equation of (2.4) between pulses, we get

u2(t) =
a

m2 + n2
+ u2(nτ+)e−(m2+n2)(t−nτ), t ∈ (nτ, (n + 1)τ]. (2.6)

After each successive pulse, we can deduce the following map of system (2.6):

u2((n + 1)τ+) =
a

m2 + n2
+
[
u2(nτ+) − a

m2 + n2

]
e−(m2+n2)τ + p, t ∈ (nτ, (n + 1)τ]. (2.7)

Equation (2.7) has a unique fixed point u∗2 = a/(m2 + n2) + p/(1 − e−(m2+n2)τ), it corresponds
to the unique positive periodic solution ũ2(t) of system (2.4) with the initial value ũ2 (0+) =
a/(m2 + n2 ) + p/(1 − e−(m 2+n 2)τ ). The fixed point u∗2 of map (2.7) implies that there is a
corresponding cycle of period τ in u2(t), that is, ũ2 (t) = (a/m2 + n2) + (pe−(m2+n2)(t−nτ)/(1 −
e−(m2+n2)τ )), t ∈ (nτ, (n + 1)τ], n ∈ Z+. From (2.7)we obtain

u2(nτ+) = u2(0+)e−n(m2+n2)τ +
(
p +

a

m2 + n2

(
1 − e−(m2+n2)τ

)) (1 − e−n(m2+n2)τ
)

1 − e−(m2+n2)τ
, (2.8)

thus, u2(nτ+) → u∗2 as t → ∞, so ũ2(t) is globally asymptotically stable. Thus, we have u2(t) =
(u2(0+) − ũ2(0+))e−(m2+n2)t + ũ2(t).

Consequently, u2(t) → ũ2(t) as t → ∞, that is, |u2(t) − ũ2(t)| → 0 as t → ∞.
If a = 0, the system (2.4) has a unique positive periodic solution ũ2 (t) =

(pe−(m2+n2)(t−nτ)/(1 − e−(m2+n2)τ) with initial condition ũ2 (0+) = p/(1 − e−(m2+n2)τ) and ũ2(t)
is globally asymptotically stable. This completes the proof.

Therefore, system (1.2) has a pest-eradication periodic solution (0, x̃2(t), 0), where
x̃2(t) = pe(−(m2+n2)(t−nτ))/(1 − e−(m2+n2)τ).
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To study the stability of the pest-eradication periodic solution of (1.2), we present the
Floquet theory for a linear τ periodic impulsive equation

dx

dt
= A(t)x, t /= τk, t ∈ R,

x(t+) = x(t) + Bkx(t), t = τk, k ∈ Z+.

(2.9)

Then, we introduce the following conditions:

(H1) A(·) ∈ PC(R,Cn×n) and A(t + τ) = A(t) (t ∈ R) , where PC(R,Cn×n) is the set of all
piecewise continuous matrix functions which is left continuous at t = τk, and Cn×n

is the set of all n × nmatrices.

(H2) Bk ∈ Cn×n, det(E + Bk)/= 0, τk < τk+1 (k ∈ Z+).

(H3) There exist a h ∈ Z+, such that Bk+h = Bk, τk+h = τk + τ (k ∈ Z+).

Let Φ(t) be the fundamental matrix of (2.9), then there exists a unique nonsingular
matrixM ∈ Cn×n such that

Φ(t + τ) = Φ(t) M. (2.10)

By equality (2.10) there correspondents to the fundamental matrix Φ(t) the constant
matrix M which is called monodromy matrix of (2.9). All monodromy matrices of (2.9) are
similar and have the same eigenvalues. The eigenvalues λ1, λ2, . . . , λn of the monodromy
matrices are called the Floquet multipliers of (2.9).

Lemma 2.4 (Floquet theory [16]). Let conditions (H1 − H3) hold. Then the linear τ periodic
impulsive system (2.9) is as follows:

(a) stable if and only if all multipliers λi (i = 1, 2, . . . , n) of equation (2.9) satisfy the inequality
|λi| ≤ 1,

(b) asymptotically stable if and only if all multipliers λi (i = 1, 2, . . . , n) of equation (2.9) satisfy
the inequality |λi| < 1,

(c) unstable if |λi| > 1 for some i = 1, 2, . . . , n.

3. Stability of the Pest-Eradication Periodic Solution

In this section, we study the stability of the pest-eradication periodic solution (0, x̃2(t), 0) of
the system (1.2). Next, we present an important result, concerning a condition that guarantees
the global stability of this solution.

Theorem 3.1. The pest-eradication periodic solution (0, x̃2(t), 0) of the system (1.2) is globally
asymptotically stable provided that inequality

p >
(r −m1 − n1)(m2 + n2) τ

β
(3.1)

holds.



6 Mathematical Problems in Engineering

Proof. The local stability of a periodic solution (0, x̃2(t), 0) of system (1.2)may be determined
by considering the behavior of small-amplitude perturbations (y1(t), y2(t), y3(t)) of the
solution.

Define

x1(t) = y1(t), x2(t) = x̃2(t) + y2(t), x3(t) = y3(t), (3.2)

where y1(t), y2(t), y3(t) are small perturbations.
Linearizing the system (1.2), we have the following linear τ periodic impulsive system:

dy1
dt

= r y1 −m1y1 − n1y1 − βx̃2y1
dy2
dt

= β x̃2y1 −m2y2 − n2y2 t /=nτ, n ∈ Z+,

dy3
dt

= n1y1 −m3y3 − n3y3

y1(t+) = y1(t)

y2(t+) = y2(t) t = nτ, n ∈ Z+,

y3(t+) = y3(t).

(3.3)

Let Φ(t) be the fundamental matrix of (3.3). Then we have

⎡⎣y1(t)y2(t)
y3(t)

⎤⎦ = Φ(t)

⎡⎣y1(0)y2(0)
y3(0)

⎤⎦, (3.4)

where Φ(t)must satisfy the following equation:

d Φ(t)
d t

=

⎡⎣r −m1 − n1 − β x̃2 0 0
β x̃2 −m2 − n2 0
n1 0 −m3 − n3

⎤⎦ Φ(t), (3.5)

and initial condition

Φ(t) = I, (3.6)

where I is the identity matrix.
The solution of (3.5) is

Φ(t) =

⎡⎢⎣exp
( ∫ t

0

(
r −m1 − n1 − β x̃2(s)

)
ds
)

0 0
∗ exp(−(m2 + n2)τ) 0
∗ ∗ exp(−(m3 + n3)τ)

⎤⎥⎦.
(3.7)
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There is no need to calculate the exact form of (∗) as it is not required in the analysis
that follows. The resetting impulsive condition of (3.3) becomes

⎡⎣y1(nτ+)y2(nτ+)
y3(nτ+)

⎤⎦ =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ ⎡⎣y1(nτ)y2(nτ)
y3(nτ)

⎤⎦. (3.8)

Hence, if absolute values of all eigenvalues of

M =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ Φ(τ) = Φ(τ) (3.9)

are less than one, the τ periodic solution is locally stable. Then the eigenvalues ofM are the
following:

λ1 = exp

(∫ t
0

(
r −m1 − n1 − β x̃2(s)

)
ds

)

λ2 = exp(−(m2 + n2)τ) < 1

λ3 = exp(−(m3 + n3)τ) < 1.

(3.10)

From (3.10), one can see that |λ1| < 1 if and only if condition (3.1) holds true. According to
Lemma 2.4, the pest-eradication periodic solution (0, x̃2(t), 0) is locally asymptotically stable.

In the following, we prove the global attractivity. Choose sufficiently small ε > 0 such
that

δ = exp
(∫ τ

0

(
r −m1 − n1 − β(x̃2(t) − ε)

)
dt

)
< 1. (3.11)

From the second equation of system (1.2), noting that ((dx2)/dt) ≥ −(m2+n2)x2, we consider
the following impulsive differential equation

du2
dt

= −(m2 + n2)u2, t /=nτ

Δu2(t) = p, t = nτ,

u2(0+) = x2(0+).

(3.12)

From Lemma 2.3, system (3.12) has a globally asymptotically stable positive periodic solution

ũ2(t) =
pe−(m2+n2)(t−nτ)

1 − e−(m2+n2)τ
= x̃2, t ∈ (nτ, (n + 1)τ], n ∈ Z+. (3.13)
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So by Lemma 2.2, we get

x2(t) ≥ u2(t) ≥ x̃2(t) − ε, (3.14)

for all t large enough.
From system, (1.2) and (3.14), we obtain that

dx1
dt

≤ r
(
1 − x1

K

)
x1 −m1x1 − n1x1 − β x1(x̃2 − ε), t /=nτ,

Δx1(t) = 0, t = nτ.
(3.15)

Integrating (3.15) on (nτ, (n + 1)τ], we get

x1((n + 1)τ+) ≤ x1(nτ) exp
(∫ τ

0

(
r −m1 − n1 − β(x̃2(t) − ε)

)
dt

)
= x1(nτ)δ. (3.16)

Thus, x1(nτ) ≤ x1(0+) δn and x1(nτ) → 0 as n → ∞. Therefore, x1(t) → 0 as n → ∞, since
0 < x1(t) ≤ x1(nτ) for t ∈ (nτ, (n + 1)τ], n ∈ Z+.

Next, we prove that x2(t) → x̃2(t) as t → ∞. For 0 < ε1 ≤ m2 + n2, there must exist a
t0 > 0 such that 0 < x1(t) ≤ ε1 for all t ≥ t0. Without loss of generality, we may assume that
0 < x1(t) ≤ ε1 for all t ≥ 0, from system (1.2)we have

dx2
dt

≤ [ε1 − (m2 + n2)]x2. (3.17)

Then, we have x2(t) ≤ v2(t), while v2(t) is the solution of

dv2
dt

= [ε1 − (m2 + n2)]v2, t /=nτ,

Δv2(t) = p, t = nτ,

v2(0+) = x2(0+).

(3.18)

By Lemma 2.3, system (3.18) has a positive periodic solution

ṽ2(t) =
pe[ε1−(m2+n2)](t−nτ)

1 − e[ε1−(m2+n2)]τ
, t ∈ (nτ, (n + 1)τ], n ∈ Z+. (3.19)

Therefore, for any ε2 > 0, there exists a t1, t > t1 such that

x2(t) ≤ v2(t) < ṽ2(t) + ε2. (3.20)
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Combining (3.14) and (3.20), we obtain

x̃2(t) − ε ≤ x2(t) < ṽ2(t) + ε2, (3.21)

for t large enough. Let ε1, ε2 → 0, we get ṽ2(t) → x̃2(t), then x2(t) → x̃2(t) as t → ∞.
Assuming that 0 < x1(t) ≤ ε1 for all t ≥ 0, from system (1.2) we have

dx3
dt

≤ n1ε1 − (m3 + n3)x3. (3.22)

Then, we have x3(t) ≤ v3(t), while v3(t) is the solution of the following system:

dv3
dt

= n1ε1 −m3v3 − n3v3, t /=nτ,

Δv3(t) = 0, t = nτ,

v3(0+) = v30 ≥ 0.

(3.23)

By Lemma 2.3, system (3.23) has a positive solution

ṽ3 =
n1ε1

m3 + n3
. (3.24)

Thus, for any ε3 > 0, there exists a t1, t > t1 such that

x3(t) ≤ v3(t) < ṽ3(t) + ε3. (3.25)

Let ε1, ε3 → 0, we get ṽ3(t) → 0, then x3(t) → 0 as t → ∞. This completes the proof.

4. Numerical Simulations of the Impulsive Biological Control

For numerical simulations of interactions between the sugarcane borer and its parasitoid the
following values of model coefficients were used: n1 = 0.1, n2 = 0.1, n3 = 0.02439, m1 =
0.03566, m2 = 0.03566, m3 = 0.00256, K = 25000. These values were obtained based on data
published about the use of the egg parasitoid Trichogramma galloi against the sugarcane borer
Diatraea saccharalis [3, 5, 7]. Figure 1 shows the population oscillations for r = 0.1908 and
β = 0.0001723 without control.

According to [10], economic injury level (EIL) cause economic damage. Economic
threshold (ET) is population density at which control measures should be determined to pre-
vent an increasing pest population from reaching the economic injury level. One can see from
Figure 1 that the sugarcane borer larvae density x3 takes on values more than the EIL for this
pest xEIL = 2500 numbers/ha [3]. In this case, it is necessary to apply the biological control.
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Figure 1: Evolution of the egg (a), parasitized egg (b), larvae populations (c), and phase portraits (d) of
system (1.2) without control.

From Theorem 3.1, we have shown that the pest-eradication periodic solution
(0, x̃2(t), 0) of the system (1.2) is globally asymptotically stable if the condition (3.1) holds

p > pmin =
(r −m1 − n1)(m2 + n2)τ

β
. (4.1)

Choosing τ = 70 days from (4.1), we derive that when p > pmin = 3027 parasitoids/ha,
the pest-eradication periodic solution of the host-parasitoid system is asymptotically stable.
Dynamical behavior of the system with impulsive control p = 3500 parasitoids/ha and with
economic threshold xET = 2000 is shown in Figure 2. We can conclude that this control
strategy seems successful because the larvae population of the sugarcane borer goes to
extinction. But the aim of the biological control is not to eliminate all larvae population.
The aim of the biological control of the sugarcane borer is to keep the larvae population
at an acceptable low level (below the EIL) that indicates the pest densities at which applied
biological control is economically justified.
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Figure 2: Evolution of the egg (a), parasitized egg (b), larvae populations (c), and phase portraits (d) of
system (1.2) for p = 3500 parasitoids/ha.

Choosing the release amount p = 1500 parasitoids/ha, we can control the larvae
population and keep it below the EIL (see Figure 3). It is obvious that the cost of the control
strategy p = 1500 is less than the cost of p = 3500.

Applying the control strategy p = 1000, we can see that the number of larvae individ-
uals exceed xEIL at some time (see Figure 4).

5. Discussion and Conclusion

In this paper, we suggest a system of impulsive differential equations to model the process of
the biological control of the sugarcane borer by periodically releasing its parasitoids. By using
the Floquet theory and small amplitude perturbation method, we have proved that for any
fixed period τ there exists a globally asymptotically stable pest-eradication periodic solution
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Figure 3: Evolution of the egg (a), parasitized egg (b), larvae populations (c), and phase portraits (d) of
system (1.2) for p = 1500 parasitoids/ha.

(0, x̃2(t), 0) of the system (1.2) if the number of the parasitoids in periodic releases is greater
than some critical value pmin.

When the stability of the pest-eradication periodic solution is lost, the numerical
results show that the system (1.2) has rich dynamics.

If we choose the biological control strategy by periodical releases of the constant
amount of parasitoids, the results of Theorem 3.1 can help in designing the control strategy
by informing decisions on the timing of parasitoid releases. In this case, from (3.1) we have

τ < τmax =
βp

(r −m1 − n1)(m2 + n2)
. (5.1)

From (5.1)we can conclude that there exists a globally asymptotically stable pest-eradication
periodic solution (0, x̃2(t), 0) of the system (1.2) if the impulsive period is less than some
critical value τmax.

It is interesting to discuss the result of Theorem 3.1, comparing the condition of the
pest-free globally stable solution (3.1)with the similar result presented in [10]. In their paper,
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Figure 4: Evolution of the egg (a), parasitized egg (b), larvae populations (c), and phase portraits (d) of
system (1.2) for p = 1000 parasitoids/ha.

the authors considered integrated pest management strategies based on discrete-time host-
parasitoid models. Integrated pest management (IPM) is a long-term control strategy that
combines biological, cultural, and chemical tactics to reduce pest populations to tolerable
levels when the pests reach the ET [17]. IPM control strategy is not used in sugarcane crops
because it is impossible to kill the sugarcane borer larvae by insecticides when it builds
internal galleries in the sugarcane plants. The biological control is unique strategy of the pest
control in this case.

The resetting impulsive condition (3.1) which guarantees the global stability of the
host-eradication periodic solution becomes

r −m1 − n1 <
βp

τ (m2 + n2)
, (5.2)

which means that if the intrinsic growth rate is less than the mean parasitization rate
over period τ , then the host population will become extinct eventually. This is the same
conclusion which Tang et al. presented in [10] based on the inequality (3.9) from [10]. Then,



14 Mathematical Problems in Engineering

the inequality (5.2) for the continuous-time model (1.2) and the inequality (3.9) for the
discrete-time host-parasitoid model from [10] lead to similar results.

Thus, the results of the present study show that the impulsive release of the parasitoids
provides reliable strategies of the biological pest control of the sugarcane borer.
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