
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 730941, 18 pages
doi:10.1155/2012/730941

Research Article
Master-Slave Synchronization of Stochastic Neural
Networks with Mixed Time-Varying Delays

Yongyong Ge,1 Tao Li,2 and Shumin Fei3

1 School of Resources and Safety Engineering, China University of Mining and Technology,
Beijing 100083, China

2 College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing
210016, China

3 Key Laboratory of Measurement and Control of CSE School of Automation, Southeast University,
Ministry of Education, Nanjing 210096, China

Correspondence should be addressed to Tao Li, fengtailitao@yahoo.com.cn

Received 11 April 2011; Revised 29 July 2011; Accepted 4 August 2011

Academic Editor: Xue-Jun Xie

Copyright q 2012 Yongyong Ge et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper investigates the problem on master-salve synchronization for stochastic neural
networks with both time-varying and distributed time-varying delays. Together with the drive-
response concept, LMI approach, and generalized convex combination, one novel synchronization
criterion is obtained in terms of LMIs and the condition heavily depends on the upper and lower
bounds of state delay and distributed one. Moreover, the addressed systems can include some
famous network models as its special cases, which means that our methods extend those present
ones. Finally, two numerical examples are given to demonstrate the effectiveness of the presented
scheme.

1. Introduction

In the past decade, synchronization of chaotic systems has attracted considerable attention
since the pioneeringworks of Pecora and Carroll [1], in which it showswhen some conditions
are satisfied, a chaotic system (the slave/response system) may become synchronized to
another identical chaotic system (the master/drive system) if the master system sends some
driving signals to the slave one. Now, it is widely known that there exist many benefits of
having synchronization or chaos synchronization in various engineering fields, such as secure
communication [2], image processing [3], and harmonic oscillation generation. Meanwhile,
there exists synchronization in language development, which comes up with a common
vocabulary, while agents’ synchronization in organization management will improve their
work efficiency. Recently, chaos synchronization has been widely investigated due to its
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great potential applications. Especially, since artificial neural network model can exhibit the
chaotic behaviors [4, 5], the synchronization has become an important area of study, see [6–
23] and references therein. As special complex networks, delayed neural networks have been
also found to exhibit some complex and unpredictable behaviors including stable equilibria,
periodic oscillations, bifurcation, and chaotic attractors [24–27]. Presently, many literatures
dealing with chaos synchronization phenomena in delayed neural networks have appeared.
Together with various techniques such as LMI tool, M-matrix, and Jensen’s inequalities,
some elegant results have been derived for global synchronization of various delayed neural
networks including discrete-time ones in [6–14]. Moreover, some authors have considered
the problems on adaptive synchronization andH∞ synchronization in [15, 16].

Meanwhile, it is worth noting that, like time-delay and parameter uncertainties, noises
are ubiquitous in both nature and man-made systems and the stochastic effects on neural
networks have drawn much particular attention. Thus a large number of elegant results
concerning dynamics of stochastic neural networks have already been presented in [17–23,
28, 29]. Since noise can induce stability and instability oscillations to the system, by virtue of
the stability theory for stochastic differential equations, there has been an increasing interest
in the study of synchronization for delayed neural networks with stochastic perturbations
[17–23]. Based on LMI technique, in [17–19], some novel results have been derived on the
global synchronization as the addressed networks were involved in distributed delay or
neutral type. Also the works [20–23] have considered the adaptive synchronization and lag
synchronization for stochastic delayed neural networks. However, the control schemes in
[17–19] cannot tackle the cases as the upper bound of delay’s derivative is not less than
1, and the presented results in [20–23] are not formulated in terms of LMIs, which makes
them checked inconveniently by most recently developed algorithms. Meanwhile, in order
to implement the practical point of view better, distributed delay should be taken into
consideration and thus, some researchers have began to give some preliminary discussions
in [9–11, 19]. It is worth pointing out that the range of time delays considered in [17–
23] is from 0 to an upper bound. In practice, the range of delay may vary in a range for
which the lower bound is not restricted to be 0. Thus the criteria in the above literature
can be more conservative because they have not considered the information on the lower
bound of delay. Meanwhile, it has been verified that the convex combination idea was more
efficient than some previous techniques when tackling time-varying delay, and furthermore,
the novel idea needs some improvements since it has not taken distributed delay into
consideration altogether [30]. Yet, few authors have employed improved convex combination
to consider the stochastic neural networks with both variable and distributed variable delays
and proposed some less conservative and easy-to-test control scheme for the exponential
synchronization, which constitutes the main focus of the presented work.

Motivated by the above-mentioned discussion, this paper focuses on the exponential
synchronization for a broad class of stochastic neural networks with mixed time-varying
delays, in which two involved delays belong to the intervals. The form of addressed networks
can include several well-known neural networkmodels as the special cases. Together with the
drive-response concept and Lyapunov stability theorem, a memory control law is proposed
which guarantees the exponential synchronization of the drive system and response one.
Finally, two illustrative examples are given to illustrate that the obtained results can improve
some earlier reported works.

Notation 1. For symmetric matrix X,X > 0 (resp., X ≥ 0) means that X > 0 (X ≥ 0) is
a positive-definite (resp., positive-semidefinite) matrix; AT,A−T represent the transposes of
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matrices A and A−1, respectively. For τ > 0, C([−τ, 0];Rn) denotes the family of continuous
functions ϕ from [−τ, 0] to Rn with the norm ‖ϕ‖ = sup−τ≤θ≤0|ϕ|. Let (Ω,F, {Ft}t≥0, P)
be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions;
L
p

F0
([−τ, 0];Rn) is the family of all F0-measurable C([−τ, 0];Rn)-valued random variables

ξ = {ξ(θ) : −τ ≤ θ ≤ 0} such that sup−τ≤θ≤0E|ξ(θ)|p < ∞, where E{·} stands for the
mathematical expectation operator with respect to the given probability measure P ; I denotes
the identity matrix with an appropriate dimension and

[
X Y
YT Z

]
=
[
X Y
∗ Z

]
with ∗ denoting the

symmetric term in a symmetric matrix.

2. Problem Formulations

Consider the following stochastic neural networks with time-varying delays described by

dz(t) =

[

−b(z(t)) +Ag(z(t)) + Bg(z(t − τ(t))) +D
∫ t

t−�(t)
g(z(s))ds + I

]

dt, (2.1)

where z(t) = [z1(t), . . . , zn(t)]
T ∈ Rn is the neuron state vector, g(z(·)) =

[g1(z1(·)), . . . , gn(zn(·))]T ∈ R represents the neuron activation function, I ∈ Rn is a constant
external input vector, and A, B, D are the connection weight matrix, the delayed weight
matrix, and the distributively delayed connection weight one, respectively.

In the paper, we consider the system (2.1) as the master system and the slave system
as follows:

dy(t) =

[

−b(y(t)) +Ag(y(t)) + Bg(y(t − τ(t))) +D
∫ t

t−�(t)
g
(
y(s)

)
ds + I + u(t)

]

dt

+ σ(t, ε(t), ε(t − τ(t)))dw(t)

(2.2)

with ε(t) = [ε1(t), . . . , εn(t)]
T = y(t) − z(t), where A, B, D are constant matrices similar to

the relevant ones (2.1) and u(t) is the appropriate control input that will be designed in order
to obtain a certain control objective. In practical situations, the output signals of the drive
system (2.1) can be received by the response one (2.2).

The following assumptions are imposed on systems (2.1) and (2.2) throughout the
paper.

(A1) Here τ(t) and �(t) denote the time-varying delay and the distributed one satisfying

0 ≤ τ0 ≤ τ(t) ≤ τm, τ̇(t) ≤ μ, 0 ≤ �0 ≤ �(t) ≤ �m, (2.3)

and we introduce τm = τm − τ0, �m = �m − �0, and τmax = max{τm, �m}.
(A2) Each function bi(·) : R → R is locally Lipschitz, and there exist positive scalars πi

and γi (i = 1, 2, . . . , n) such that πi ≥ ḃi(z) ≥ γi > 0 for all z ∈ R. Here, we denote
Π = diag{π1, . . . , πn} and Γ = diag{γ1, . . . , γn}.
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(A3) For the constants σ+
i , σ

−
i , the neuron activation functions in (2.1) are bounded and

satisfy

σ−
i ≤ gi(x) − gi

(
y
)

x − y ≤ σ+
i , ∀x, y ∈ R, x /=y, i = 1, 2, . . . , n. (2.4)

(A4) In system (2.2), the function σ(t, ·, ·) : R+ ×Rn ×Rn → Rn×m (σ(t, 0, 0) = 0) is locally
Lipschitz continuous and satisfies the linear growth condition as well. Moreover,
σ(t, ·, ·) satisfies the following condition:

trace
[
σT

(
t, x, y

)
σ
(
t, x, y

)] ≤ xTΠT
1Π1x + yTΠT

2Π2y, ∀x, y ∈ Rn, (2.5)

where Πi (i = 1, 2) are the known constant matrices of appropriate dimensions.

Let ε(t) be the error state and subtract (2.1) from (2.2); it yields the synchronization
error dynamical systems as follows:

dε(t) =

[

−β(ε(t)) +Af(ε(t)) + Bf(ε(t − τ(t))) +D
∫ t

t−�(t)
f(ε(s))ds + u(t)

]

dt

+ σ(t, ε(t), ε(t − τ(t)))dw(t),

(2.6)

where f(ε(·)) = g(y(·)) − g(z(·)). One can check that the function fi(·) satisfies fi(0) = 0, and

σ−
i ≤ fi(x) − fi

(
y
)

x − y ≤ σ+
i , ∀x, y ∈ R, x /=y, i = 1, 2, . . . , n. (2.7)

Moreover, we denote Σ = diag{σ+
1 , . . . , σ

+
n}, Σ = diag{σ−

1 , . . . , σ
−
n}, and

Σ1 = diag
{
σ+
1 σ

−
1 , . . . , σ

+
nσ

−
n

}
, Σ2 = diag

{
σ+
1 + σ−

1

2
, . . . ,

σ+
n + σ−

n

2

}

. (2.8)

In the paper, we adopt the following definition.

Definition 2.1 (see [18]). For the system (2.6) and every initial condition ϕ = φ − ψ ∈
L2
F([−2τmax, 0];Rn), the trivial solution is globally exponentially stable in the mean square,

if there exist two positive scalars μ, k such that

E
∥∥ε

(
t;ϕ

)∥∥2 ≤ μ sup
−τmax≤s≤0

E
∥∥φ(s) − ψ(s)∥∥2

e−kt, ∀t ≥ 0, (2.9)

where E stands for the mathematical expectation and φ, ψ are the initial conditions of systems
(2.1) and (2.2), respectively.
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In many real applications, we are interested in designing a memoryless state-feedback
controller u(t) = Kε(t), where K ∈ Rn×n is a constant gain matrix. In the paper, for a special
case that the information on the size of τ(t) is available, we consider the delayed feedback
controller of the following form:

u(t) = Kε(t) +K1ε(t − τ(t)), (2.10)

then replacing u(t) into system (2.6) yields

dε(t) =

[

−β(ε(t)) +Kε(t) +K1ε(t − τ(t)) +Af(ε(t)) + Bf(ε(t − τ(t))) +D
∫ t

t−�(t)
f(ε(s))ds

]

dt

+ σ(t, ε(t), ε(t − τ(t)))dw(t).
(2.11)

Then the purpose of the paper is to design a controller u(t) in (2.10) to let the slave system
(2.2) synchronize with the master one (2.1).

3. Main Results

In this section, some lemmas are introduced firstly.

Lemma 3.1 (see [18]). For any symmetric matrix W ∈ Rn×n, W = WT ≥ 0, scalar h > 0,
vector function ω : [0, h] → Rn such that the integrations concerned are well defined, then
(
∫h
0 ω(s)ds)

TW(
∫h
0 ω(s)ds) ≤ h

∫h
0 ω

T (s)Wω(s)ds.

Lemma 3.2 (see [19]). Given constant matrices P, Q, R, where PT = P, QT = Q, then the linear
matrix inequality (LMI)

[
P R
RT −Q

]
< 0 is equivalent to the condition: Q > 0, P + RQ−1RT < 0.

Lemma 3.3 (see [31]). Suppose that Ω, Ξ1i, Ξ2i, i = 1, 2 are the constant matrices of the
appropriate dimensions, α ∈ [0, 1], and β ∈ [0, 1], then the inequalityΩ+[αΞ11+(1−α)Ξ12]+[βΞ21+
(1 − β)Ξ22] < 0 holds, if the four inequalities Ω+Ξ11 + Ξ21 < 0, Ω+Ξ11 + Ξ22 < 0, Ω+Ξ12 + Ξ21 <
0,Ω + Ξ12 + Ξ22 < 0 hold simultaneously.

Then, a novel criterion is presented for the exponential stability for system (2.11)
which can guarantee the master system (2.1) to synchronize the slave one (2.2).

Theorem 3.4. Supposing that assumptions (A1)–(A4) hold, then system (2.11) has one equilibrium
point and is globally exponentially stable in the mean square, if there exist n×nmatrices P > 0, Qj >
0, Rj > 0 (j = 1, 2, 3), Zi > 0, Si > 0, Ti > 0, Pi (i = 1, 2), n × n diagonal matrices L > 0, Q >
0, H > 0, U > 0, V > 0, W > 0, R > 0, E > 0, 13n × n matricesM, N, G, and one scalar λ ≥ 0
such that the matrix inequalities (3.1)-(3.2) hold:

−λI + P + (L +H)
(
Σ − Σ

)
+Q(Π − Γ) + τmZ2 + τ0S2 ≤ 0, (3.1)

[
Ω + $ + $T − IiT2ITi Ξ1

∗ Φ

]

< 0,

[
Ω + $ + $T − IiT2ITi Ξ2

∗ Φ

]

< 0, i = 1, 2, (3.2)



6 Mathematical Problems in Engineering

where I1 = [0n·10n In 0n·2n], I2 = [0n·11n In 0n·n] and

Ω =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ω11 0 0 PT1 A +UΣ2 0 0 Ω17 PT1 K1 PT1 B PT1 D PT1 D 0 Ω1,13

∗ Ω22 0 0 WΣ2 0 0 0 0 0 0 0 0

∗ ∗ Ω33 0 0 RΣ2 0 0 0 0 0 0 0

∗ ∗ ∗ Ω44 0 0 Ω47 0 0 0 0 0 ATQ

∗ ∗ ∗ ∗ Ω55 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Ω66 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω77 PT2 K1 PT2 B PT2 D PT2 D 0 −PT2
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω88 VΣ2 0 0 0 KT

1Q

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω99 0 0 0 BTQ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −T1 0 0 DTQ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −T2 0 DTQ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −T2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q −QT

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

$ =
[
M −M +N −G 013n·4n −N +G 013n·5n

]
, Ξ1 =

[√
τ0M

√
τmN M N G

]
,

Ξ2 =
[√

τ0M
√
τmG M N G

]
, Φ = −diag{S1, Z1, S2, Z2, Z2},

(3.3)

With

Ω11 = PT1 K +KTP1 +Q2 −UΣ1 − 2ΓE + λΠT
1Π1,

Ω17 = KTP2 + P − PT1 + ΣH − ΣL − ΓQ,

Ω1,13 = −PT1 +KTQ + E, Ω22 = −WΣ1 +Q1 +Q3 −Q2,

Ω33 = −Q3 − RΣ1, Ω44 = −U + R2 + �20T1 + �
2
mT2,

Ω47 = L −H +ATP2, Ω55 = −W + R1 + R3 − R2, Ω66 = −R − R3,

Ω77 = −PT2 − P2 + τmZ1 + τ0S1, Ω88 = −(1 − μ)Q1 − VΣ1 + λΠT
2Π2,

Ω99 = −(1 − μ)R1 − V.

(3.4)

Proof. Denoting σ(t) = σ(t, ε(t), ε(t − τ(t))), we represent system (2.11) as the following
equivalent form:

dε(t) = ν(t)dt + σ(t)dw(t),

ν(t) = −β(ε(t)) +Kε(t) +K1ε(t − τ(t)) +Af(ε(t)) + Bf(ε(t − τ(t)))

+D
∫ t

t−�(t)
f(ε(s))ds.

(3.5)
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Now, together with assumptions (A1) and (A2), we construct the following Lyapunov-
Krasovskii functional:

V (εt) = V1(εt) + V2(εt) + V3(εt) + V4(εt), (3.6)

where

V1(εt) = εT (t)Pε(t) + 2
n∑

j=1

lj

∫ εj

0

[
fj(s) − σ−

j s
]
ds + 2

n∑

j=1

hj

∫ εj

0

[
σ+
j s − fj(s)

]
ds

+ 2
n∑

j=1

qj

∫ εj

0

[
βj(s) − γjs

]
ds,

V2(εt) =
∫ t−τ0

t−τ(t)

[
εT (s)Q1ε(s) + fT (ε(s))R1f(ε(s))

]
ds

+
∫ t

t−τ0

[
εT (s)Q2ε(s) + fT (ε(s))R2f(ε(s))

]
ds

+
∫ t−τ0

t−τm

[
εT (s)Q3ε(s) + fT (ε(s))R3f(ε(s))

]
ds,

V3(εt) =
∫−τ0

−τm

∫ t

t+θ
νT (s)Z1ν(s)dsdθ +

∫−τ0

−τm

∫ t

t+θ
trace

(
σT (s)Z2σ(s)

)
dsdθ

+
∫0

−τ0

∫ t

t+θ
νT (s)S1ν(s)dsdθ +

∫0

−τ0

∫ t

t+θ
trace

(
σT (s)S2σ(s)

)
dsdθ,

V4(εt) = �0

∫0

−�0

∫ t

t+θ
fT (ε(s))T1f(ε(s))dsdθ + �m

∫−�0

−�m

∫ t

t+θ
fT (ε(s))T2f(ε(s))dsdθ

(3.7)

with setting L = diag{l1, . . . , ln} > 0, H = diag{h1, . . . , hn} > 0, and Q = diag{q1, . . . , qn} > 0.
In the following, the weak infinitesimal operatorL of the stochastic process {εt, t ≥ 0} is given
in [32].

By employing (A1) and (A2) and directly computing LVi(εt) (i = 1, 2, 3, 4), it follows
from any n × nmatrices P1, P2 that

LV1(εt)

≤ 2εT (t)Pν(t) + 2
[
fT (ε(t)) − εT (t)Σ

]
Lν(t) + 2

[
εT (t)Σ − fT (ε(t))

]
Hν(t) + 2βT (ε(t))Q

×
[

−β(ε(t)) +Kε(t) +K1ε(t − τ(t)) +Af(ε(t)) + Bf(ε(t − τ(t))) +D
∫ t

t−�(t)
f(ε(s))ds

]

− 2εT (t)ΓTQν(t) + trace
[
σT (t)

[
P + (L +H)

(
Σ − Σ

)
+Q(Π − Γ)

]
σ(t)

]
+ 2

[
εT (t)PT1 + ν(t)PT2

]
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×
[

− ν(t) − β(ε(t)) +Kε(t) +K1ε(t − τ(t)) +Af(ε(t)) + Bf(ε(t − τ(t)))

+D
∫ t

t−�(t)
f(ε(s))ds

]

,

(3.8)

LV2(εt)

≤
[
εT (t − τ0)Q1ε(t − τ0) + fT (ε(t − τ0))R1f(ε(t − τ0))

]

− (
1 − μ)

[
εT (t − τ(t))Q1ε(t − τ(t)) + fT (ε(t − τ(t)))R1f(ε(t − τ(t)))

]

+
[
εT (t)Q2ε(t) + fT (ε(t))R2f(ε(t))

]

+
[
εT (t − τ0) × (Q3 −Q2)ε(t − τ0) + fT (ε(t − τ0))(R3 − R2)f(ε(t − τ0))

]

−
[
εT (t − τm)Q3ε(t − τm) + fT (ε(t − τm))R3f(ε(t − τm))

]
,

(3.9)

LV3(εt)

= τmνT (t)Z1ν(t) −
∫ t−τ0

t−τm
νT (s)Z1ν(s)ds + τmtrace

[
σT (t)Z2σ(t)

]
−
∫ t−τ0

t−τm
trace

[
σT (s)Z2σ(s)

]
ds

+ τ0νT (t)S1ν(t) −
∫ t

t−τ0
νT (s)S1ν(s)ds + τ0trace

[
σT (t)S2σ(t)

]
−
∫ t

t−τ0
trace

[
σT (s)S2σ(s)

]
ds,

(3.10)

LV4(εt)

= fT (ε(t))
(
�20T1 + �

2
mT2

)
f(ε(t)) −

∫ t

t−�0
�0f

T (ε(s))T1f(ε(s))ds −
∫ t−�0

t−�m
�mf

T (ε(s))T2f(ε(s))ds

≤ fT (ε(t))
(
�20T1 + �

2
mT2

)
f(ε(t)) −

[∫ t

t−�0
f(ε(s))ds

]T
T1

[∫ t

t−�0
f(ε(s))ds

]

− (
1 + μ1

)

×
[∫ t−�0

t−�(t)
f(ε(s))ds

]T
T2

[∫ t−�0

t−�(t)
f(ε(s))ds

]

− (
1 + μ2

)
[∫ t−�(t)

t−�m
fT (ε(s))ds

]

T2

[∫ t−�(t)

t−�m
f(ε(s))ds

]

,

(3.11)

where μ1 = (�m − �(t))/�m and μ2 = (�(t) − �0)/�m.
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Now adding the terms on the right side of (3.8)–(3.11) to LV (εt) and employing (2.5),
(3.1), it is easy to obtain

LV (εt) ≤ 2εT (t)Pν(t) + 2
[
fT (ε(t)) − εT (t)Σ

]
Lν(t) + 2

[
εT (t)Σ − fT (ε(t))

]
Hν(t)

+ 2
[
εT (t)PT1 + ν(t)PT2 + βT (ε(t))Q

]

×
[

− β(ε(t)) +Kε(t) +K1ε(t − τ(t)) +Af(ε(t)) + Bf(ε(t − τ(t)))

+D

[∫ t

t−�0
f(ε(s))ds +

∫ t−�0

t−�(t)
f(ε(s))ds

]]

− 2
[
εT (t)PT1 + ν(t)PT2

]
ν(t) − 2εT (t)ΓTQν(t)

+
[
εT (t − τ0)Q1ε(t − τ0) + fT (ε(t − τ0))R1f(ε(t − τ0))

]

− (
1 − μ)

[
εT (t − τ(t))Q1ε(t − τ(t)) + fT (ε(t − τ(t)))R1f(ε(t − τ(t)))

]

+
[
εT (t)Q2ε(t) + fT (ε(t))R2f(ε(t))

]

+
[
εT (t − τ0)(Q3 −Q2)ε(t − τ0) + fT (ε(t − τ0))(R3 − R2)f(ε(t − τ0))

]

−
[
εT (t − τm)Q3ε(t − τm) + fT (ε(t − τm))R3f(ε(t − τm))

]
+ νT (t)(τmZ1 + τ0S1)ν(t)

−
∫ t−τ0

t−τm
νT (s)Z1ν(s)ds −

∫ t

t−τ0
νT (s)S1ν(s)ds −

∫ t−τ0

t−τm
trace

[
σT (s)Z2σ(s)

]
ds

−
∫ t

t−τ0
trace

[
σT (s)S2σ(s)

]
ds + λ

[
εT (t)ΠT

1Π1ε(t) + εT (t − τ(t))ΠT
2Π2ε(t − τ(t))

]

+ fT (ε(t))
(
�20T1 + �

2
mT2

)
f(ε(t)) −

[∫ t

t−�0
f(ε(s))ds

]T
T1

[∫ t

t−�0
f(ε(s))ds

]

− (
1 + μ1

)

×
[∫ t−�0

t−�(t)
f(ε(s))ds

]T
T2

[∫ t−�0

t−�(t)
f(ε(s))ds

]

− (
1 + μ2

)
[∫ t−�(t)

t−�m
fT (ε(s))ds

]

T2

[∫ t−�(t)

t−�m
f(ε(s))ds

]

.

(3.12)
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Based on methods in [33] and (2.7), for any n × n diagonal matrices U > 0, V > 0, W >
0, R > 0, the following inequality can be achieved:

0 ≤ −
[
xT (t)UΣ1x(t) − 2xT (t)UΣ2f(x(t)) + fT (x(t))Uf(x(t))

]

−
[
xT (t − τ(t))VΣ1x(t − τ(t)) − 2xT (t − τ(t))VΣ2f(x(t − τ(t)))

+fT (x(t − τ(t)))Vf(x(t − τ(t)))
]

−
[
xT (t − τ0)WΣ1x(t − τ0) − 2xT (t − τ0)WΣ2f(x(t − τ0)) + fT (x(t − τ0))Wf(x(t − τ0))

]

−
[
xT (t − τm)RΣ1x(t − τm) − 2xT (t − τm)RΣ2f(x(t − τm)) + fT (x(t − τm))Rf(x(t − τm))

]
.

(3.13)

From (A1), for any n × n diagonal matrix E, one can yield

0 ≤ 2
[
β(ε(t)) − Γε(t)

]T
Eε(t). (3.14)

Furthermore, for any 13n × n constant matricesM, N, G, we can obtain

0 = 2ζT (t)M

[

ε(t) − ε(t − τ0) −
∫ t

t−τ0
ν(s)ds −

∫ t

t−τ0
σ(s)dω(s)

]

+ 2ζT (t)N

[

ε(t − τ0) − ε(t − τ(t)) −
∫ t−τ0

t−τ(t)
ν(s)ds −

∫ t−τ0

t−τ(t)
σ(s)dω(s)

]

+ 2ζT (t)G

[

ε(t − τ(t)) − ε(t − τm) −
∫ t−τ(t)

t−τm
ν(s)ds −

∫ t−τ(t)

t−τm
σ(s)dω(s)

]

,

(3.15)

where

ζT (t) =

⎡

⎣εT (t)εT (t − τ0)εT (t − τm)fT (ε(t))fT (ε(t − τ0))fT (ε(t − τm))

νT (t)εT (t − τ(t))fT (ε(t − τ(t)))
[∫ t

t−�0
f(ε(s)ds)

]T

[∫ t−�0

t−�(t)
f(ε(s)ds)

]T[∫ t−�(t)

t−�m
f(ε(s)ds)

]T
βT (ε(t))

⎤

⎦.

(3.16)
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Then together with the methods in [28, 29], combining (3.12)–(3.15) yields

LV (εt) ≤ ζT (t)
[
Ω + $ + $T + τ0MS−1

1 M
T + [τ(t) − τ0]NZ−1

1 N
T + [τm − τ(t)]GZ−1

1 G
T

−μ1I1T2IT1 − μ2I2T2IT2 +MS−1
2 M

T +NZ−1
2 N

T +GZ−1
2 G

T
]

× ζ(t) + h(t) := ζT (t)Δ(t)ζ(t) + h(t),

(3.17)

where Ω, $ are presented in (3.2) and

h(t) =

[∫ t

t−τ0
σ(s)dω(s)

]T
S2

[∫ t

t−τ0
σ(s)dω(s)

]

+

[∫ t−τ0

t−τ(t)
σ(s)dω(s)

]T
Z2

[∫ t−τ0

t−τ(t)
σ(s)dω(s)

]

+

[∫ t−τ(t)

t−τm
σ(s)dω(s)

]T
Z2

[∫ t−τ(t)

t−τm
σ(s)dω(s)

]

−
∫ t

t−τ0
trace

[
σT (s)S2σ(s)

]
ds

−
∫ t−τ0

t−τ(t)
trace

[
σT (s)Z2σ(s)

]
ds −

∫ t−τ(t)

t−τm
trace

[
σT (s)Z2σ(s)

]
ds.

(3.18)

Together with Lemmas 3.2 and 3.3, the nonlinear matrix inequalities in (3.2) can guarantee
Δ(t) < 0 to be true. Therefore, there must exist a negative scalar χ < 0 such that

LV (εt) ≤ ζT (t)Δ(t)ζ(t) + h(t) ≤ χ
[
‖ε(t)‖2 + ‖ε(t − τ(t))‖2

]
+ h(t). (3.19)

Taking the mathematic expectation of (3.19), we can deduce Eh(t) = 0,ELV (εt) ≤
χE[‖ε(t)‖2 + ‖ε(t − τ(t))‖2], which indicates that the dynamics of the system (2.11) is globally
asymptotically stable in the mean square. Based on V (εt) in (3.6) and directly computing,
there must exist three positive scalars Θi > 0, i = 1, 2, 3 such that

V (εt) ≤ Θ1‖ε(t)‖2 + Θ2

∫ t

t−τmax

‖ε(v)‖2dv + Θ3

∫ t

t−τm
‖ε(v − τ(v))‖2dv. (3.20)

Letting V (εt) = ektV (εt), we can deduce

EV (εt) − EV (ε0) = E
∫ t

0
L
(
eksV (εs)

)
ds

≤ E
∫ t

0
eks

{

k

[

Θ1‖ε(s)‖2 + Θ2

∫s

s−τmax

‖ε(v)‖2dv + Θ3

∫ s

s−τm
‖ε(v − τ(v))‖2dv

]

+χ
[
‖ε(s)‖2 + ‖ε(s − τ(s))‖2

]}

ds.

(3.21)
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By changing the integration sequence, it can be deduced that
∫ t

0
eks

∫s

s−τmax

‖ε(v)‖2dv ds

≤
∫ t

−τmax

∫v+τmax

v

eks‖ε(v)‖2dsdv

≤ τmaxe
kτmax

∫ t

−τmax

‖ε(v)‖2ekvdv,

∫ t

0
eks

∫s

s−τm
‖ε(v − τ(v))‖2dv ds ≤ τmekτm

∫ t

−τm
‖ε(v − τ(v))‖2ekvdv.

(3.22)

Substituting the terms (3.22) into the relevant ones in (3.21), it is easy to have

EV (εt) ≤ EV (ε0) + E

{[
kΘ1 + kΘ2τmaxe

kτmax + χ
] ∫ t

0
‖ε(v)‖2ekvdv

+
[
kΘ3τme

kτm + χ
] ∫ t

0
‖ε(v − τ(v))‖2ekvdv + h0(k)

}

,

(3.23)

where h0(k) = kΘ2τmaxe
kτmax

∫0
−τmax

‖ε(v)‖2ekvdv+kΘ3τme
kτm

∫0
−τm ‖ε(v − τ(v))‖2ekvdv. Choose

one sufficiently small scalar k0 > 0 such that k0Θ1 + k0Θ2τmaxe
k0τmax+ χ ≤ 0, k0Θ3τme

k0τm+χ ≤
0. Then, EV (εt) ≤ Eh0(k0) + EV (ε0). Through directly computing, there must exist a positive
scalar Υ > 0 such that

EV (ε0) + Eh0(k0) ≤ Υ sup
−2τmax≤s≤0

E
∥∥ϕ(s)

∥∥2
. (3.24)

Meanwhile, EV (εt) ≥ λmin(P)ek0tE‖ε(t)‖2. Thus with (3.24), one can obtain

E‖ε(t)‖2 ≤ λ−1min(P)Υ sup
−2τmax≤s≤0

E
∥∥ϕ(s)

∥∥2
e−k0t, ∀t ≥ 0, (3.25)

which indicates that system (2.11) is globally exponentially stable in the mean square, and
the proof is completed.

Remark 3.5. As for systems (2.1) and (2.2), many present literatures have much attention to
β(z(t)) = Cz(t)with C positive-definite diagonal matrix, which can be checked as one special
case of assumption (A3). Also in Theorem 3.4, it can be checked that Δ(t) < 0 in (3.17) was
not simply enlarged by Ω + $ + $T + τ0MS−1

1 M
T + τmNZ−1

1 N
T + τmGZ

−1
1 G

T + MS−1
2 M

T +
NZ−1

2 N
T+GZ−1

2 G
T < 0, but equivalently guaranteed by utilizing twomatrix inequalities (3.2)

and Lemma 3.3, which can be more effective than these techniques employed in [18, 28, 29].
Moreover, we compute and estimateLV5(εt) in (3.11)more efficiently than those present ones
owing to that some previously ignored terms have been taken into consideration.

In order to show the design of the estimate gain matrices K and K1, a simple
transformation is made to obtain the following theorem.
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Theorem 3.6. Supposing that assumptions (A1)–(A4) hold and setting ε1, ε2 > 0, then the system
(2.1) and system (2.2) can exponentially achieve the master-slave synchronization in the mean square,
if there exist n × n matrices P > 0, Qj > 0, Rj > 0 (j = 1, 2, 3), Zi > 0, Si > 0, Ti > 0 (i =
1, 2), F, F1n × n diagonal matrices L > 0, Q > 0, H > 0, U > 0, V > 0, W > 0, R > 0, E >
0, 13n × n matricesM,N,G, and one scalar λ ≥ 0 such that the LMIs in (3.26)-(3.27) hold

−λI + P + (L +H)
(
Σ − Σ

)
+Q(Π − Γ) + τmZ2 + τ0S2 ≤ 0, (3.26)

[
Ξ + $ + $T − IiT2ITi Ξ1

∗ Φ

]

< 0,

[
Ξ + $ + $T − IiT2ITi Ξ2

∗ Φ

]

< 0, i = 1, 2, (3.27)

where Ii, Ξi (i = 1, 2), $,Φ are similar to the relevant ones in (3.2), and

Ξ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ξ11 0 0 Ξ14 0 0 Ξ17 ε1F1 ε1QB ε1QD ε1QD 0 Ξ1,13

∗ Ξ22 0 0 WΣ2 0 0 0 0 0 0 0 0

∗ ∗ Ξ33 0 0 RΣ2 0 0 0 0 0 0 0

∗ ∗ ∗ Ξ44 0 0 Ξ47 0 0 0 0 0 ATQ

∗ ∗ ∗ ∗ Ξ55 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −R − R3 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ξ77 ε2F1 ε2QB ε2QD ε2QD 0 −ε2Q
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 VΣ2 0 0 0 FT1

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 0 0 0 BTQ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −T1 0 0 DTQ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −T2 0 DTQ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −T2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q −QT

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

(3.28)

with

Ξ11 = ε1F + ε1FT +Q2 −UΣ1 − 2ΓE + λΠT
1Π1, Ξ14 = ε1QA +UΣ2,

Ξ17 = ε2FT + P − ε1Q + ΣH − ΣL − ΓQ, Ξ1,13 = −ε1Q + FT + E,

Ξ22 = −WΣ1 +Q1 +Q3 −Q2,

Ξ33 = −Q3 − RΣ1, Ξ44 = −U + R2 + �20T1 + �
2
mT2,

Ξ47 = L −H + ε2ATQ, Ξ55 = −W + R1 + R3 − R2,

Ξ77 = −ε2Q − ε2Q + τmZ1 + τ0S1, Ξ88 = −(1 − μ)Q1 − VΣ1 + λΠT
2Π2,

Ξ99 = −(1 − μ)R1 − V.

(3.29)

Moreover, the estimation gains K = Q−TF and K1 = Q−TF1.
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Proof. Letting P1 = ε1Q, P2 = ε2Q and setting F = QTK, F1 = QTK1 in (3.2) of Theorem 3.4, it
is easy to derive the result and the detailed proof is omitted here.

Remark 3.7. Theorem 3.6 presents one novel delay-dependent criterion guaranteeing the
systems (2.1) and (2.2) to achieve the master-slave synchronization in an exponential way.
The method is presented in terms of LMIs, therefore, by using LMI in MATLAB Toolbox, it is
straightforward and convenient to check the feasibility of the proposed results without tuning
any parameters. Moreover, the systems addressed in this paper can include some famous
networks in [17, 19–21, 23] as its special cases or τ(t) is not differentiable.

Remark 3.8. Through setting Q1 = R1 = 0 in (3.6) and employing similar methods, Theorems
3.4 and 3.6 can be applicable without taking the upper bound on derivative of τ(t) into
consideration, which means that Theorems 3.4 and 3.6 can be true even as μ is unknown.

Remark 3.9. As we all know, most of n × n free-weighting matrices ofM, N, G in Theorems
3.4 and 3.6 cannot help reduce the conservatism but only result in computational complexity.
Thus we can choose the simplified slack matricesM, N, G as follows:

M =
[
M1 M2 0n·11n

]T
, N =

[
0n·n N1 0n·5n N2 0n·5n

]T
,

G =
[
0n·2n G1 0n·4n G2 0n·5n

]T
,

(3.30)

with n × n matrices Mi, Ni, Gi (i = 1, 2). Though the number of n × n matrix variables in
(3.30) is much smaller than the one in (3.2) and (3.27), the numerical examples given in the
paper still demonstrate that the simplified criteria can reduce the conservatism as effectively
as Theorems 3.4 and 3.6 do.

4. Numerical Examples

In this section, two numerical examples will be given to illustrate the effectiveness of the
proposed results.

Example 4.1. Consider the drive system (2.1) and response one (2.2) of delayed neural
networks as follows:

b(z) =

[
0.7z1 + 0.5 tanh(z1)

0.7z2 + 0.5 tanh(z2)

]

, A =

[
0.2 −0.4
−0.4 0.2

]

, B =

[
0.2 0.2

0.2 0.2

]

, D =

[
0.2 0.3

0.1 0.21

]

,

g(z) =

[
0.25(|z1 + 1| − |z1 − 1|)
0.25(|z2 + 1| − |z2 − 1|)

]

, σ(t, ε(t), ε(t − τ(t))) = 0.1 ×
[‖ε(t)‖ 0

0 ‖ε(t − τ(t))‖

]

,

τ(t) = 1.0sin2(10t) + 0.5, �(t) = 2cos2t + 0.5.
(4.1)
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Then it is easy to check that τ0 = 0.5, τm = 1.5, �0 = 0.5, �m = 2.5, μ = 10, and

Γ =

[
0.7 0

0 0.7

]

, Π =

[
1.2 0

0 1.2

]

, Σ =

[−0.5 0

0 −0.5

]

, Σ =

[
0.5 0

0 0.5

]

,

Π1 = Π2 =

[
0.1 0

0 0.1

]

.

(4.2)

By setting ε1 = 0.05, ε2 = 0.01 and utilizing Theorem 3.6, then the estimator gain matrices K
and K1 in (2.10) can be worked out

K = Q−TF =

[−2.3981 −0.0575
−0.0575 −2.3994

]

, K1 = Q−TF1 =

[−0.2175 0.3347

0.3347 −0.2175

]

. (4.3)

Furthermore, as for τ(t) = | sin(20t)| + 0.5, �(t) = 2| cos(6t)| + 0.5, and setting ε1 =
0.05, ε2 = 0.01, we can obtain the following estimator gain matrices by using Theorem 3.6
and Remark 3.8:

K = Q−TF =

[−2.5374 −0.0528
−0.0528 −2.5385

]

, K1 = Q−TF1 =

[−0.3021 0.3812

0.3812 −0.3021

]

, (4.4)

which means that the obtained results still hold as the time delay is not differentiable.
However, the methods proposed in [17–19] fail to solve the synchronization problem even
without the distributed delay.

Example 4.2. As a special case, we consider the master system (2.1) of delayed stochastic
neural networks as follows:

dz(t) =

[

−Cz(t) +Ag(z(t)) + Bg(z(t − τ(t))) +D
∫ t

t−�(t)
g(z(s))ds + I

]

dt, (4.5)

where C =
[
1 0
0 1

]
, A =

[
1.8 −0.3
−5.1 2.6

]
, B =

[ −1.6 −0.1
−0.3 −2.5

]
, D =

[
2 1
1 2

]
, I =

[
0
0

]
, and τ(t) = 0.95 +

0.05sin2(40t), �(t) = 0.1. It can be verified that τ0 = 0.95, τm = 1.0, μ = 2, and �0 = �m = 0.1. The
activation functions can be taken as gi(s) = tanh(s), s ∈ R (i = 1, 2). The corresponding slave
system can be

dy(t) =

[

−Cy(t) +Ag(y(t)) + Bg(y(t − τ(t))) +D
∫ t

t−�(t)
g
(
y(s)

)
ds + I + u(t)

]

dt

+ σ(t, ε(t), ε(t − τ(t)))dω(t),
(4.6)
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Figure 1: Phase trajectories and state trajectories of drive system, response system and error system.

where σ(t, ε(t), ε(t − τ(t))) =
[ ‖ε(t)‖ 0

0 ‖ε(t−τ(t))‖
]
. Then together with Theorem 3.6, ε1 = 0.05, and

ε2 = 0.1, we can obtain part feasible solution to the LMIs in (3.26) and (3.27) by resorting to
the Matlab LMI Toolbox:

Q =

[
0.2526 0

0 0.2526

]

, F =

[−4.0139 −0.0421
0.0486 −4.0182

]

, F1 =

[
0.1133 0.0043

0.0168 0.1707

]

. (4.7)

Then the estimator gain matrices K,K1 can be deduced as follows:

K = Q−TF =

[−15.8892 −0.1667
0.1923 −15.9062

]

, K1 = Q−TF1 =

[
0.4486 0.0170

0.0666 0.6758

]

. (4.8)

It follows from Theorem 3.6 that the drive system with the initial condition [0.5, 0.4]T for
−1 ≤ t ≤ 0 synchronizes with the response system when the initial condition is [0.7, 0.6]T for
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−1 ≤ t ≤ 0. The phase trajectories and state ones of drive system and response one and state
trajectories of error system are shown in Figure 1. Therefore, from Figure 1, we can see that
the master system synchronizes with the slave system.

5. Conclusions

In this paper, we consider the synchronization control of stochastic neural networks with both
time-varying and distributed time-varying delays. By using the Lyapunov functional and
LMI technique, one sufficient condition has been derived to ensure the global exponential
stability for the error system, and thus, the slave system can synchronize the master one.
Then, the estimation gains can be obtained. The obtained results are novel since the addressed
networks are of more general forms and some good mathematical techniques are employed.
Finally, we give two numerical examples to verify the theoretical results.
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