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The paper proposes a new design method based on linear matrix inequalities (LMIs) for tracking
constant signals (regulation) considering nonlinear plants described by the Takagi-Sugeno fuzzy
models. The procedure consists in designing a single controller that stabilizes the system at
operation points belonging to a certain range or region, without the need of remaking the design of
the controller gains at each new chosen equilibrium point. The control system design of a magnetic
levitator illustrates the proposed methodology.

1. Introduction

In recent years the design of tracking control systems for nonlinear plants described by
Takagi-Sugeno fuzzy models [1] has been the subject of several studies [2–10]. For the
tracking problem the goal is to make the tracking error (difference between the output and
desired output) equal to zero, ensuring the asymptotic stability of the equilibrium point.
The linear matrix inequality (LMI) formulation [11] has emerged recently as a useful tool
for solving a great number of practical control problems [9, 12–17]. The advantage is that
LMIs, when feasible, can be easily solved using available software [18, 19]. Furthermore,
the procedure based on LMIs can also consider other design specifications regarding plant
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uncertainties, such as decay rate (related to the setting time) and output and input constraints
[20].

An interesting method for the design of tracking control systems using LMIs was
studied in [2]. The tracking process uses the concept of virtual desired variable, and the
design is divided into two steps: first determine the virtual desired variables of the system;
then determine the control gains based on LMIs, for the stabilization of the system. In [4] is
proposed a design method for tracking system with disturbance rejection applied to a class
of nonlinear systems using fuzzy control. The method is based on the minimization of the
H∞ norm between the reference signal and the tracking error signal, where the tracking error
signal is the difference between the reference input signal and the output signal. In [6] is
addressed the speed tracking control problem of permanent magnet synchronous motors
with parameter uncertainties and load torque disturbance. Fuzzy logic systems are used
to approximate the nonlinearities, and an adaptive backstepping technique is employed
to construct the controllers. The proposed controller guarantees the convergence of the
tracking error to a small neighborhood of the origin and achieves good tracking performance.
A similar study is presented in [7], where a robust reference-tracking control problem
for nonlinear distributed parameter systems with time delays, external disturbances, and
measurement noises is studied; the nonlinear distributed parameter systems are measured
at several sensor locations for output-feedback tracking control. A fuzzy-spatial state-space
model derived via finite-difference approach was introduced to represent the nonlinear
distributed parameter time-delayed system.

In this context there exist many other researches. In [21] a neural network-based
approach was developed which combines H∞ control performance with the Takagi-Sugeno
fuzzy control for the purpose of stabilization and stability analysis of nonlinear systems. In
[22] an analytical solution was derived to describe the wave-induced flow field and surge
motion of a deformable platform structure controlled with fuzzy controllers in an oceanic
environment. In the controller design procedure, a parallel distributed compensation scheme
was utilized to construct a global fuzzy logic controller by blending all local state feedback
controllers, and the Lyapunovmethodwas used to carry out stability analysis of a real system
structure.

This paper proposes a new control methodology for tracking constant signals for a
class of nonlinear plants. This method is based on LMIs and uses the Takagi-Sugeno fuzzy
models to accurately describe the nonlinear model of the plant. The main idea of the method
was to add in the domain of the nonlinear functions of the plant the coordinate of the
equilibrium point that we desire to track. An application of the methodology in the control
of a magnetic levitator, given in [23], is presented.

The main advantage of this new procedure is its practical application because the
designer chooses the desired region of the equilibrium points and designs a single set of
gains of the regulator that guarantees asymptotic stability of the system at any equilibrium
point previously chosen in the region. This region is flexible and can be specified by the
designer. The project considers that the change from an operating point to another occurs
after large time intervals, such that in the instants of the changes the system is practically in
steady-state. In addition, this new methodology allows the use of well-known LMIs-based
design methods, for the design of fuzzy regulators for plants described by the Takagi-Sugeno
fuzzy models, for instance presented in [11, 14, 15, 24–28], which allows the inclusion of the
specification of performance indices such as decay rate and constraints on the plant input and
output.
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2. Preliminary Results

2.1. The Takagi-Sugeno Fuzzy Regulator

As described in [1], the Takagi-Sugeno fuzzy model is as follows.

Rule i: If z1(t) is Mi
1, . . . , zp(t) is Mi

p, then ẋ(t) = Aix(t) + Biu(t), y(t) = Cix(t),
(2.1)

where i = 1, 2, . . . , r, Mi
j , j = 1, 2, . . . , p is the fuzzy set j of Rule i, x(t) ∈ R

n is the state vector,
u(t) ∈ R

m is the input vector, y(t) ∈ R
q is the output vector, Ai ∈ R

n×n, Bi ∈ R
n×m, Ci ∈ R

q×n,
and z1(t), . . . , zp(t) are premise variables, which in this paper are the state variables.

As in [24], ẋ(t) given in (2.1) can be written as follows:

ẋ(t) =
r∑

i=1

αi(x(t))(Aix(t) + Biu(t)), (2.2)

where αi(x(t)) is the normalized weight of each local model system Aix(t) + Biu(t) that
satisfies the following properties:

αi(x(t)) ≥ 0, for i = 1, 2, . . . , r,
r∑

i=1

αi(x(t)) = 1. (2.3)

Considering the Takagi-Sugeno fuzzy model (2.1), the control input of fuzzy
regulators via parallel distributed compensation (PDC) has the following structure [24]:

Rule j: If z1(t) is M
j

1, . . . , zp(t) is M
j
p, then u(t) = −Fjx(t). (2.4)

Similar to (2.2), it can be concluded that

u(t) = −
r∑

j=1

αj(x(t))Fjx(t). (2.5)

From (2.5), (2.2) and observing that
∑r

i=1 αi(x(t)) = 1, we obtain that

ẋ(t) =
r∑

i=1

r∑

j=1

αi(x(t))αj(x(t))
[
Ai − BiFj

]
x(t). (2.6)

Defining

Gij = Ai − BiFj , (2.7)
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then (2.6) can be written as follows:

ẋ(t) =
r∑

i=1

r∑

j=1

αi(x(t))αj(x(t))Gijx(t). (2.8)

2.2. Stability of the Takagi-Sugeno Fuzzy Systems via LMIs

The following theorem, whose proof can be seen in [24], guarantees the asymptotic stability
of the origin of the system (2.8).

Theorem 2.1. The equilibrium point of the continuous time fuzzy control system given in (2.6) is
asymptotically stable in the large if a common symmetric positive definite matrix X ∈ R

n×n(X � 0)
and Mi ∈ R

n×m, i = 1, 2, . . . , r exists such that the following LMIs are satisfied:

XAT
i +AiX − BiMi −MT

i B
T
i ≺ 0,

(
Ai +Aj

)
X +X

(
Ai +Aj

)T − BiMj − BjMi −MT
i B

T
j −MT

j B
T
i � 0, i < j,

(2.9)

for all i, j = 1, 2, . . . , r, excepting the pairs (i, j) such that αi(x(t))αj(x(t)) = 0, for all x(t). If there
exists such a solution, the controller gains are given by Fi = MiX

−1, i = 1, 2, . . . , r.

In a control design it is important to assure stability and usually other indices of
performance for the controlled system, such as the response speed, restrictions on input
control, and output signals. The speed of the response is related to the decay rate of the
system (2.6) or largest Lyapunov exponent, which is defined as the largest β > 0 such that

lim
t→∞

eβt‖x(t)‖ = 0 (2.10)

holds for all trajectories x(t).
As in [11, page 66], one can use a quadratic Lyapunov function V (x(t)) = x(t)TPx(t)

to establish a lower bound for the decay rate of system (2.6). The condition V̇ (x(t)) ≤
−2βV (x(t)) for all trajectories x(t) assures that the system has a decay rate greater or equal
to β. This condition is considered in Theorem 2.2, whose proof can be found, for instance, in
[24].

Theorem 2.2. The equilibrium point of the continuous time fuzzy control system given in (2.8) is
globally asymptotically stable, with decay rate greater or equal to β, if there exists a positive definite
symmetric matrixX ∈ R

n×n(X � 0) and matricesMi ∈ R
n×m, i = 1, 2, . . . , r, such that the following

LMIs are satisfied:

XAT
i +AiX − BiMi −MT

i B
T
i + 2βX ≺ 0,

(
Ai +Aj

)
X +X

(
Ai +Aj

)T − BiMj − BjMi −MT
i B

T
j −MT

j B
T
i + 4βX � 0, i < j,

(2.11)

for all i, j = 1, 2, . . . , r, excepting the pairs (i, j) such that αi(x(t))αj(x(t)) = 0, for all x(t). If there
exists this solution, the controller gains are given by Fi = MiX

−1, i = 1, 2, . . . , r.
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Figure 1: Magnetic levitator.

3. Magnetic Levitator

Currently, magnetic suspension systems are mainly used in applications where the reduction
of friction force due to mechanical contact is essential. They are usually found in high-speed
trains, gyroscopes, and accelerometers [23, page 23].

This paper considers the mathematical model of a magnetic levitator to illustrate
the proposed control design method. Figure 1 shows the basic configuration of a magnetic
levitator whose mathematical model [23, page 24] is given by

mÿ = −kẏ +mg − λμi2

2
(
1 + μy

)2 , (3.1)

wherem is the mass of the ball; g is the gravity acceleration; μ and k are positive constants;
i is the electric current; and y is the position of the ball.

Define the state variable x1 = y and x2 = ẏ. Then, (3.1) can be written as follows [29]:

ẋ1 = x2, ẋ2 = g − k

m
x2 −

λμi2

2m
(
1 + μx1

)2 . (3.2)

Consider that, during the required operation, [x1 x2]
T ∈ D, where

D =
{
[x1 x2]

T ∈ R
2 : 0 ≤ x1 ≤ 0.15

}
. (3.3)

The paper aims to design a controller that keeps the ball in a desired position y = x1 = y0,
after a transient response. Thus, the equilibrium point of the system (3.2) is xe = [x1e x2e]

T =
[y0 0]T .

From the second equation ẋ2 in (3.2), observe that, in the equilibrium point, ẋ2 = 0 and
i = i0, where

i20 =
2mg

λμ

(
1 + μy0

)2
. (3.4)
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Note that the equilibrium point is not in the origin [x1 x2]
T = [0 0]T . Thus, the

following change of coordinates is necessary for the stability analysis:

⎧
⎪⎪⎨

⎪⎪⎩

x1 = x1 − y0,

x2 = x2,

u = i2 − i20,

=⇒

⎧
⎪⎪⎨

⎪⎪⎩

x1 = x1 + y0,

x2 = x2,

i2 = u + i20.

(3.5)

Therefore, ẋ1 = ẋ1, ẋ2 = ẋ2, and from (3.4), i2 = u + (2mg/λμ)(1 + μy0)
2.

Hence, the system (3.2) can be written as follows:

ẋ1 = x2, ẋ2 = g − k

m
x2 −

λμ
(
u +

(
2mg/λμ

)(
1 + μy0

)2)

2m
(
1 + μ

(
x1 + y0

))2 , (3.6)

and also, after some simple calculations, by

ẋ1 = x2, ẋ2 =
gμ

(
μx1 + 2μy0 + 2

)

(
1 + μ

(
x1 + y0

))2 x1 − k

m
x2 −

λμ

2m
(
1 + μ

(
x1 + y0

))2u. (3.7)

Finally, from (3.7) it follows that

[
ẋ1

ẋ2

]
=

⎡

⎣
0 1

f21
(
x1, y0

) −k
m

⎤

⎦
[
x1

x2

]
+
[

0
g21

(
x1, y0

)
]
u, (3.8)

where

f21
(
x1, y0

)
=

gμ
(
μx1 + 2μy0 + 2

)

(
1 + μ

(
x1 + y0

))2 , (3.9)

g21
(
x1, y0

)
=

−λμ
2m

(
1 + μ

(
x1 + y0

))2 . (3.10)

4. Regulator Design for an Operating Point

The goal of the design in this subsection is to keep the ball in a given position x1 = y0. In the
first design, y0 = 0.1m, and in the second, y0 = 0.05m. Table 1 presents the parameters of the
plant (3.8)–(3.10), for the controller design.

First, assume that y0 = 0.1m and consider the following domain during the operation

D1 =
{
[x1 x2]T ∈ R

2 : −0.1 ≤ x1 ≤ 0.05, y0 = 0.1
}
. (4.1)
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Table 1: Parameters of the plant (3.8)–(3.10) [29].

m 0.05Kg
g 9.8m/s2

k 0.001Ns/m
λ 0.460H
μ 2m−1

Now, from the generalized form proposed in [26], it is necessary to obtain the
maximum and minimum values of the functions f21 and g21 in the domain D1. After the
calculations, it follows that

a211 = max
x1∈D1

{
f21(x1)

}
= 43.1200,

a212 = min
x1∈D1

{
f21(x1)

}
= 28.9941,

b211 = max
x1∈D1

{
g21(x1)

}
= −5.4438,

b212 = min
x1∈D1

{
g21(x1)

}
= −9.2000.

(4.2)

Thus, the nonlinear the function f21 can be represented by a Takagi-Sugeno fuzzy
model, considering that there exists a convex combination with membership functions
σ211(x1) and σ212(x1) and constant values a211 and a212 given in (4.2) such that [26]

f21(x1) = σ211(x1)a211 + σ212(x1)a212 , (4.3)

with

0 ≤ σ211(x1), σ212(x1) ≤ 1, σ211(x1) + σ212(x1) = 1. (4.4)

Therefore, from (4.3) and (4.4) note that

σ211(x1) =
f21(x1) − a212

a211 − a212
, σ212(x1) = 1 − σ211(x1). (4.5)

Similarly, from (4.2) there exist ξ211(x1) and ξ212(x1) such that

g21(x1) = ξ211(x1)b211 + ξ212(x1)b212 , (4.6)

with

0 ≤ ξ211(x1), ξ212(x1) ≤ 1, ξ211(x1) + ξ212(x1) = 1. (4.7)
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Hence, from (4.6) and (4.7) observe that

ξ211(x1) =
g21(x1) − b212
b211 − b212

, ξ212(x1) = 1 − ξ211(x1). (4.8)

Recall that ξ211(x1) + ξ212(x1) = 1. Therefore, from (4.3) it follows that

f21(x1) = (ξ211(x1) + ξ212(x1))(σ211(x1)a211 + σ212(x1)a212)

= σ211(x1)ξ211(x1)a211 + σ211(x1)ξ212(x1)a211 + σ212(x1)ξ211(x1)a212 + σ212(x1)ξ212(x1)a212 .

(4.9)

Similarly, from (4.6) and σ211(x1) + σ212(x1) = 1, we obtain

g21(x1) = (σ211(x1) + σ212(x1))(ξ211(x1)b211 + ξ212(x1)b212)

= σ211(x1)ξ211(x1)b211 + σ211(x1)ξ212(x1)b212 + σ212(x1)ξ211(x1)b211 + σ212(x1)ξ212(x1)b212 .
(4.10)

Now, define

α1(x1) = σ211(x1)ξ211(x1),

α2(x1) = σ211(x1)ξ212(x1),

α3(x1) = σ212(x1)ξ211(x1),

α4(x1) = σ212(x1)ξ212(x1),

(4.11)

as the membership functions of the system (3.8)–(3.10), and their local models

A1 = A2 =
[

0 1
a211 −0.02

]
, A3 = A4 =

[
0 1

a212 −0.02
]
,

B1 = B3 = [0 b211]
T , B2 = B4 = [0 b212]

T ,

(4.12)

where a211 and a212 , b211 and b212 are the maximum and minimum values of the functions
f21(x1) and g21(x1), respectively, as described in (4.2).

Therefore, the system (3.8)–(3.10), with the control law (2.5), can be represented as a
Takagi-Sugeno fuzzy model, given in (2.6) and (2.8), with r = 4:

ẋ(t) =
4∑

i=1

4∑

j=1

αi(x(t))αj(x(t))Gijx(t), where Gij = Ai − BiFj . (4.13)
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Figure 2: Position y(t) = x1(t) and velocity (x2(t)) of the controlled system for y0 = 0.1m.
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Figure 3: Control signal (u(t) = i(t)2−i20) and electrical current (i(t)) of the controlled system for y0 = 0.1m.

Thus, using the LMIs (2.9) from Theorem 2.1, we obtain the following controller gains:

F1 =
[−38.3098 −4.7610],

F2 =
[−26.0150 −3.1937],

F3 =
[−37.2796 −4.8423],

F4 =
[−23.3273 −3.0979].

(4.14)

Considering the initial condition x0 = [0.04 1]T and y0 = 0.1m for the system (3.2)
(for the system (3.8)–(3.10), the initial condition is x0 = x0 − [y0 0]T = [−0.06 1]T ), the
simulation of the controlled system (3.8)–(3.10), (2.5), and (4.14) presented the responses
shown in Figures 2 and 3. Note that y(∞) = y0, as desired.
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Figure 4: Position y(t) = x1(t) and velocity (x2(t)) of the controlled system for y0 = 0.05m.

Now, suppose that the wanted position of the magnetic levitator is y0 = 0.05m. Thus,
for the design of the control law, consider that in the required operation the domain is

D2 =
{
[x1 x2]T ∈ R

2 : −0.05 ≤ x1 ≤ 0.1, y0 = 0.05
}
. (4.15)

For the generalized form, as proposed in [26], it is necessary to find the maximum and
minimum values of the functions f21 and g21 in the domainD2. The obtained values were the
following:

a211 = max
x1∈D2

{
f21(x1)

}
= 41.1600,

a212 = min
x1∈D2

{
f21(x1)

}
= 27.8343,

b211 = max
x1∈D2

{
g21(x1)

}
= −5.4438,

b212 = min
x1∈D2

{
g21(x1)

}
= −9.2000.

(4.16)

Considering the same procedure adopted in (4.3)–(4.12) and from the condition given
in Theorem 2.1, we obtain the following controller gains:

F1 =
[−17.5514 −1.7747],

F2 =
[−12.0856 −1.1922],

F3 =
[−16.2911 −1.8098],

F4 =
[−10.0255 −1.1717].

(4.17)

For the initial condition x0 = [0.1 1] and y0 = 0.05m (for the system (3.8)–(3.10), the initial
condition is x0 = [0.05 1]T ), the simulation of the controlled system (3.8)–(3.10), (2.5), and
(4.17) presented the responses given in Figures 4 and 5.
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Figure 5: Control signal (u(t) = i(t)2 − i20) and electrical current (i(t)) of the controlled system for y0 =
0.05m.

Note that the gains of the controllers (4.14) and (4.17) change according to the change
of y0. It happens because each time we change the value of y0, the operation point changes.
Thus, the local models and membership functions also change. Therefore, following the
presented control design method, it is necessary to design a new regulator when the value
of y0 changes, which makes difficult the practical implementation in cases where the system
can work in different operating points. To solve this problem, in the next section we present
a method for designing a single Takagi-Sugeno fuzzy controller via LMIs, for all of the range
of known values of y0, related to the operation of the system.

5. Regulator Design for a Set of Operation Points

Before presenting the method, it is necessary to understand the following property.

Property 1. Let I1 ⊂ R
n1 and I0 ⊂ R

n0 be compact subsets such that I = I1 × I0, f : I ⊂ R
nt → R

a continuous function and nt = n1 + n0. If for some given y0 ∈ I0, M = maxy∈I1{f(y, y0)} and
m = miny∈I1{f(y, y0)}, then M ≤ max(y,y0)∈I{f(y, y0)} andm ≥ min(y,y0)∈I{f(y, y0)}.

Proof. Suppose, by contradiction, that M > max(y,y0)∈I{f(y, y0)}. Then, this implies that
f(y, y0) < M for all (y, y0) ∈ I which is an absurd because I is compact. Thus, there exists
(y∗, y∗

0) ∈ I such that M ≤ f(y∗, y∗
0).

Similarly it is shown that m ≥ min(y,y0)∈I{f(y, y0)}.

Property 1 is important to justify the proposed methodology. For instance, suppose
that the plant can work in the region x1 ∈ [0, 0.15] and that we want the asymptotic stability
of operating points [x1 x2]

T = [y0 0]T , where y0 is a known constant and y0 ∈ I0 = [0.04, 0.11].
Thus the range of x1 = x1 − y0 for all y0 ∈ I0 is I1 = [−0.11, 0.11]. So we could get the gains of
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regulator for all y0 ∈ I0, where y0 will be considered as a new variable for the specification of
the domain D3 of the nonlinear functions f21 and g21:

D3 =
{[

x1 x2 y0
]T ∈ R

3 : −0.11 ≤ x1 ≤ 0.11, 0.04 ≤ y0 ≤ 0.11
}
. (5.1)

From Property 1, (4.1), (4.15), and (5.1) note that

max
(x1,y0)∈D1,D2

{
f21

(
x1, y0

)} ≤ max
(x1,y0)∈D3

{
f21

(
x1, y0

)}
,

min
(x1,y0)∈D1,D2

{
f21

(
x1, y0

)} ≥ min
(x1,y0)∈D3

{
f21

(
x1, y0

)}
,

max
(x1,y0)∈D1,D2

{
g21

(
x1, y0

)} ≤ max
(x1,y0)∈D3

{
g21

(
x1, y0

)}
,

min
(x1,y0)∈D1,D2

{
g21

(
x1, y0

)} ≥ min
(x1,y0)∈D3

{
g21

(
x1, y0

)}
.

(5.2)

Indeed, after the calculations, considering (3.9), (3.10), Table 1, and (5.1), we obtain

a211 = max
(x1,y0)∈D3

{
f21

(
x1, y0

)}
= 51.4116,

a212 = min
(x1,y0)∈D3

{
f21

(
x1, y0

)}
= 25.1427,

b211 = max
(x1,y0)∈D3

{
g21

(
x1, y0

)}
= −4.4367,

b212 = min
(x1,y0)∈D3

{
g21

(
x1, y0

)}
= −12.4392.

(5.3)

Based on the same procedure adopted in (4.3)–(4.12) (now for the domain D3) and
from the LMIs of Theorem 2.1, the controller gains are the following:

F1 =
[−23.5425 −2.4447],

F2 =
[−14.1328 −1.3935],

F3 =
[−22.2383 −2.5629],

F4 =
[−10.8040 −1.2964].

(5.4)

For numerical simulation, at t = 0 s, the initial conditions are x0 = [0.04 1]T and y0 =
0.1m. Thus, x(0) = x(0) − [y0 0]T = [−0.06 1]T . In t = 1 s, from Figure 6, the system is
practically at the point x(1) = [x1(1) x2(1)]

T = [0.1 0]T . After changing y0 from 0.1m to
0.05m at t = 1 s, we can see that the system is practically at the point x(2) = [0.05 0]T at
t = 2 s from Figure 6. After changing again y0 from 0.05m to 0.08m at t = 2 s, we can see from
Figure 6 that x(∞) = [0.08 0]T . Figures 6 and 7 illustrate the system response.

Note that the control law, given in (2.5)with r = 4, uses a single set of gains presented
in (5.4). However, the membership functions αi(x(t)), i = 1, 2, 3, 4, specified in (3.9), (3.10),
(4.3)–(4.11), and (5.3), are functions of y0, and so they must be updated each time that there
is a change in the value of y0. Finally, observe that x = [x1 x2]

T −[y0 0]T also must be changed
in the control law (2.5), when y0 is modified.
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Figure 6: Position (y(t) = x1(t)) and velocity (x2(t)) of the controlled system for y0 ∈ [0.04, 0.11],
considering y0 = 0.1m, 0.05m, and 0.08m for t ∈ [0, 1), t ∈ [1, 2), and t ≥ 2 s, respectively.
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Figure 7: Control signal (u(t) = i(t)2 − i20) and electrical current (i(t)) for y0 ∈ [0.04, 0.11], considering
y0 = 0.1m, 0.05m, and 0.08m for t ∈ [0, 1), t ∈ [1, 2), and t ≥ 2 s, respectively.

Remark 5.1. In the example of the levitator, the range considered for the desired position point
y0 was [0.04, 0.11] and the domain of x1 was [0, 0.15]. Thus, in general, the restriction for the
proposed method is only that the region containing the desired equilibrium points must be
contained in the domain of the state variables of the system. This region is flexible and can be
chosen by the designer.
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Figure 8: Position (y(t) = x1(t)) and velocity (x2(t)) of the controlled system for y0 ∈ [0.04, 0.11],
considering y0 = 0.1m, 0.05m, and 0.08m for t ∈ [0, 1), t ∈ [1, 2), and t ≥ 2 s, respectively, and decay
rate β = 0.8.

5.1. Regulator Design for a Set of Points of Operation with Rate of Decay

Usually, in control system designs, it is important to consider the stability and other
performance indices for the controlled system, such as response speed, input constraint, and
output constraint. The proposed methodology allows the specification of these performance
indices, without changing the LMIs given in [11] (the same presented in Theorems 2.1 and
2.2), or their relaxations presented, for instance, in [14, 24], by adding a new set of LMIs.

Now, a decay rate will be specified for designing the new control gains for themagnetic
levitator. Thus, it was considered (4.3)–(4.12), (5.3), and LMIs (2.11) from Theorem 2.2, with
decay rate β = 0.8, and the obtained controller gains are the following:

F1 =
[−36.2829 −3.9509],

F2 =
[−21.8487 −2.3121],

F3 =
[−36.6258 −4.2662],

F4 =
[−17.9936 −2.1555].

(5.5)

The numerical simulation supposes the same condition of the last simulation; that is,
initially it was considered the initial condition x0 = [0.04 1]T and y0 = 0.1m. In t = 1 s the
system is practically at the point x0 = [0.1 0]T , and then, y0 is changed from 0.1m to 0.05m.
At t = 2 s the system is almost at the point x0 = [0.05 0]T , and now y0 is changed from 0.05m
to 0.08m. Figures 8 and 9 illustrate the response of the system.

As can be seen in Figure 8, using a decay rate greater than or equal to β = 0.8, the
response of the system was adequate and faster, when compared with Figure 6. However,
from (5.4) and (5.5), note that the controller gains are now greater and consequently the
control signal and the electric current are also greater, as can be seen by comparing Figures 7
and 9.
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Figure 9: Control signal (u(t) = i(t)2 − i20) and electrical current (i(t)) for y0 ∈ [0.04, 0.11], considering
y0 = 0.1m, 0.05m, and 0.08m for t ∈ [0, 1), t ∈ [1, 2), and t ≥ 2 s, respectively, and decay rate β = 0.8.

Remark 5.2. The proposed methodology can also be applied when the plant has known
parameters belonging to a given region. In this case, one must consider these parameters
as new variables in the domain of the nonlinearities and obtain the maximum and minimum
values of the nonlinearities, in the region of operation. In the example of the levitator, we can
consider, for instance, that the mass m is a known constant parameter, belonging to the range
m ∈ [mmin, mmax] with mmin and mmax known constants. Thus, the nonlinearities (3.9) and
(3.10) are now given by f21(x1, y0, m) and g21(x1, y0, m), respectively. Note that, from (3.4),
in this case i0 also depends on the mass m and therefore must be updated when the mass
changes. The design considers that the change of the mass occurs after large time intervals,
such that in the instants of the changes the system is practically in steady state.

6. Conclusions

In this paper we proposed a new design method of regulators with operating points
belonging to a given region, which allows the tracking of constant signals for nonlinear
plants described by the Takagi-Sugeno fuzzy models. The design is based on LMIs, and an
application in the control design of a magnetic levitator illustrated the proposed procedure.

An advantage of the proposed methodology is that it does not change the LMIs
given in the control design methods usually adopted for plants described by the Takagi-
Sugeno fuzzy models, for instance, as proposed in [4, 11, 14, 15, 24–28, 30–32]. Furthermore,
it allows to choose an equilibrium point of the system in a region of values previously
established without needing of remaking the design of the controller gains for each new
chosen equilibrium point. Moreover, the simulation of the application of this new control
design method in a magnetic levitator presented an appropriate transient response, as can be
seen in Figures 8 and 9. Thus, the authors think that the proposed method can be useful in
practical applications of nonlinear control systems.
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