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We present the numerical solutions for the PDE-constrained optimization problem arising in
cardiac electrophysiology, that is, the optimal control problem of monodomain model. The optimal
control problem of monodomain model is a nonlinear optimization problem that is constrained
by the monodomain model. The monodomain model consists of a parabolic partial differential
equation coupled to a system of nonlinear ordinary differential equations, which has been widely
used for simulating cardiac electrical activity. Our control objective is to dampen the excitation
wavefront using optimal applied extracellular current. Two hybrid conjugate gradient methods
are employed for computing the optimal applied extracellular current, namely, the Hestenes-
Stiefel-Dai-Yuan (HS-DY) method and the Liu-Storey-Conjugate-Descent (LS-CD) method. Our
experiment results show that the excitation wavefronts are successfully dampened out when these
methods are used. Our experiment results also show that the hybrid conjugate gradient methods
are superior to the classical conjugate gradient methods when Armijo line search is used.

1. Introduction

Many science and engineering problems can be expressed in the form of optimization
problems that are governed by partial differential equations (PDEs). This class of
optimization problems is known as PDE-constrained optimization problem. PDE-constrained
optimization problems arise widely in many areas such as environmental engineering [1],
atmospheric science [2], biomedical engineering [3], and aerodynamics [4, 5]. However,
solving such PDE-constrained optimization problems is a challenging task due to their size,
complexity, and infinite dimensional nature. In order to deal with these numerical challenges,
different approaches such as preconditioning [6–8] and parallel computing [9] have been
proposed by researchers.
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The specific PDE-constrained optimization problem considered in the present paper
is the optimal control problem arising in cardiac electrophysiology, where the monodomain
model appears as the governing equations. The monodomain model consists of a parabolic
PDE coupled to a system of nonlinear ordinary differential equations (ODEs), which has been
widely used for simulating cardiac electrical activity [10–13]. Thus, the above optimal control
problem can be generally known as optimal control problem of monodomain model.

The optimal control problem of monodomain model was first proposed by Nagaiah et
al. [14] with the control objective to dampen the excitation wavefront of the transmembrane
potential using optimal applied extracellular current. Three classical nonlinear conjugate
gradient methods have been applied by Nagaiah et al. [14] to solve the optimal control
problem, namely, Polak-Ribière-Polyak (PRP) method [15, 16], the Hager-Zhang (HZ)
method [17], and the Dai-Yuan (DY)method [18]. Later, Ng and Rohanin [11] employed the
modified conjugate gradient method for solving the optimal control problem of monodomain
model. For the present paper, we present the numerical solution for the optimal control
problem of monodomain model using hybrid conjugate gradient methods.

The structure of the paper is organized as follows. Section 2 presents the optimal
control problem of monodomain model with Rogers-modified FitzHugh-Nagumo ion
kinetic. In Section 3, we discuss the numerical approach used to discretize the optimal control
problem. Next, the optimization procedure is presented in Section 4 while the numerical
experiment results are given in Section 5. Finally, we conclude our paper with a short
discussion of our work in Section 6.

2. The Optimal Control Problem of Monodomain Model

Let Ω ⊂ �2 be the computational domain with Lipschitz boundary ∂Ω and T be the final
simulation time. We further set H = Ω × [0, T] and ∂H = ∂Ω × [0, T]. The optimal control
problem of monodomain model with Rogers-modified FitzHugh-Nagumo ion kinetic is
therefore given by the following:

min J(V,w, Ie) =
1
2

∫T

0

(∫
Ωo

|V |2dΩo + α

∫
Ωc

|Ie|2dΩc

)
dt (2.1)

s.t.
λ

1 + λ
∇ · (Di∇V ) − βCm

∂V

∂t
− βIion(V,w) − 1

1 + λ
Ie = 0, inH

∂w

∂t
− f(V,w) = 0, in H

(Di∇V ) · η = 0, on ∂H

V (x, 0) = V 0, w(x, 0) = w0, on Ω,

(2.2)

where

Iion(V,w) = c1V

(
1 − V

Vth

)(
1 − V

Vp

)
+ c2wV, (2.3)



Mathematical Problems in Engineering 3

f(V,w) = c3

(
V

Vp
− c4w

)
. (2.4)

Here Ωc ⊂ Ω is the control domain, Ωo ⊂ Ω is the observation domain, α is the regularization
parameter, η is the outer normal to Ω, V (x, t) is the transmembrane potential, Ie(x, t) is the
extracellular current density stimulus, λ is the constant scalar used to relate the intracellular
and extracellular conductivity tensors, Di is the intracellular conductivity tensor, β is the
surface-to-volume ratio of the cell membrane, Cm is the membrane capacitance, Iion(V,w)
is the current density flowing through the ionic channels,w(x, t) is the ionic current variable,
f(V,w) is the prescribed vector-value function, Vth is the threshold potential, Vp is the plateau
potential, and c1, c2, c3, c4 are positive parameters.

Notice that the optimal control problem of monodomain model consists of (2.1)–(2.4).
Equation (2.1) is the cost functional that we need to minimize, with V and w as the state
variables while Ie as the control variable. The control variable Ie is chosen such that it is
nontrivial only on the control domain Ωc and extended by zero on Ω \Ωc. The monodomain
model, as given by (2.2) appears as the only constraint for the optimal control problem of
monodomain model. Lastly, (2.3) and (2.4) are obtained from the Rogers-modified FitzHugh-
Nagumo model [19] for representing ion kinetics.

According to Kunisch and Wagner [20], the control-to-state mapping is well defined
for the optimal control problem of monodomain model, that is, C � Ie �→ (V (Ie), w(Ie)).
Consequently, the cost functional in (2.1) can be rewritten as the follwong:

min Ĵ(Ie) =
1
2

∫T

0

(∫
Ωo

|V (Ie)|2dΩo + α

∫
Ωc

|Ie|2dΩc

)
dt, (2.5)

where (2.5) is known as the reduced cost functional.

3. Discretization of the Optimal Control Problem

We adopt the optimize-then-discretize approach to discretize the optimal control problem of
monodomain model. This classical approach first derives the infinite dimensional optimality
system, and the resulting optimality system is then discretized.

3.1. First-Order Optimality System

For deriving the infinite dimensional optimality system, the Lagrange functionalL is formed
as follows:

L =
1
2

∫T

0

(∫
Ωo

|V (Ie)|2dΩo + α

∫
Ωc

|Ie|2dΩc

)
dt

+
∫T

0

∫
Ω

(
λ

1 + λ
∇ · (Di∇V ) − βCm

∂V

∂t
− βIion(V,w) − 1

1 + λ
Ie

)
p dΩdt

+
∫T

0

∫
Ω

(
∂w

∂t
− f(V,w)

)
q dΩdt,

(3.1)
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where p(x, t) and q(x, t) are the adjoint variables used to adjoin the constraints in (2.2) to the
reduced cost functional in (2.5). The first-order optimality system (infinite dimensional) is
obtained by equating the partial derivatives of (3.1) with respect to the state(V,w), adjoint
(p, q), and control (Ie) variables equal to zero:

LV : V |o +
λ

1 + λ
∇ · (Di∇p

)
+ βCm

∂p

∂t
− β[Iion]V p − [f]V q = 0 (3.2)

Lw : −β[Iion]wp − ∂q

∂t
− [f]wq = 0 (3.3)

Lp :
λ

1 + λ
∇ · (Di∇V ) − βCm

∂V

∂t
− βIion(V,w) − 1

1 + λ
Ie = 0 (3.4)

Lq :
∂w

∂t
− f(V,w) = 0 (3.5)

LIe : αIe −
1

1 + λ
p = 0, (3.6)

where V |o denotes the transmembrane potential in the observation domain Ωo and [·]∗
denotes the partial derivative with respect to ∗. We further obtain the boundary and terminal
conditions:

(
Di∇p

) · η = 0, on ∂H (3.7)

p(x, T) = 0, q(x, T) = 0, on Ω. (3.8)

Next, the state and adjoint systems can be formed using the boundary and initial
conditions in (2.2) as well as (3.2)–(3.8). As a result, the state system is given by the following:

βCm
∂V

∂t
=

λ

1 + λ
∇ · (Di∇V ) − βIion(V,w) − 1

1 + λ
Ie, inH

∂w

∂t
= f(V,w), inH

(Di∇V ) · η = 0, on ∂H

V (x, 0) = V 0, w(x, 0) = w0, on Ω,

(3.9)

and the adjoint system is given by the following:

βCm
∂p

∂t
= − λ

1 + λ
∇ · (Di∇p

)
+ β[Iion]V p +

[
f
]
V q − V |o, inH

∂q

∂t
= −β[Iion]wp − [f]wq, inH

(
Di∇p

) · η = 0, on ∂H

p(x, T) = 0, q(x, T) = 0, on Ω.

(3.10)
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Also, by utilizing (3.6), the reduced gradient is given by the following:

∇Ĵ(Ie) = αIe − 1
1 + λ

p. (3.11)

In order to compute the reduced gradient in (3.11), we are required to solve the state system
in (3.9) to obtain the value of Ie, and then the adjoint system in (3.10) to obtain the value of p.

3.2. Numerical Discretization

Once the first-order optimality system (as defined in (3.9)–(3.11)) has been derived, the
numerical discretization needs to be carried out. However, the state system in (3.9) and the
adjoint system in (3.10) are computationally demanding since they consist of a parabolic
PDE coupled to a system of nonlinear ODEs. In order to reduce this computational demand,
the operator splitting technique as proposed by Qu and Garfinkel [21] is applied to (3.9) and
(3.10) for decomposing the systems into subsystems that are much easier to solve. As a result,
the state system in (3.9) becomes

βCm
∂V

∂t
=

λ

1 + λ
∇ · (Di∇V ), inH

βCm
∂V

∂t
= −βIion(V,w) − 1

1 + λ
Ie, inH

∂w

∂t
= f(V,w), inH

(Di∇V ) · η = 0, on ∂H

V (x, 0) = V 0, on Ω

w(x, 0) = w0, on Ω,

(3.12)

while the adjoint system in (3.10) becomes

βCm
∂p

∂t
= − λ

1 + λ
∇ · (Di∇p

)
, in H

βCm
∂p

∂t
= β[Iion]V p +

[
f
]
V q − V |o, in H

∂q

∂t
= −β[Iion]wp − [f]wq, in H

(
Di∇p

) · η = 0, on ∂H

p(x, T) = 0, on Ω

q(x, T) = 0, on Ω.

(3.13)
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For the discretization procedure, the linear PDEs in (3.12) and (3.13) are discretized
with the Crank-Nicolson method in time and the Galerkin finite element method in space.
On the other hand, the nonlinear ODEs in (3.12) and (3.13) are discretized with forward
Euler method in time. The discretized state system is therefore given by the following:

(
βCmM +

Δt1
2

[
λ

1 + λ

]
K
)
Vn+1 =

(
βCmM − Δt1

2

[
λ

1 + λ

]
K
)
Vn,

Vn+1 = Vn + Δt2

(
− I

n
ion

Cm
− Ine
βCm(1 + λ)

)
,

wn+1 = wn + Δt2fn,

V(x, 0) = V0, w(x, 0) = w0.

(3.14)

Here Δt1 and Δt2 are the local time-steps,M is the mass matrix, and K is the stiffness matrix.
On the other hand, the discretized adjoint system is given by the following:

(
βCmM +

Δt1
2

[
λ

1 + λ

]
K
)
pn =

(
βCmM − Δt1

2

[
λ

1 + λ

]
K
)
pn+1,

pn = pn+1 + Δt2

(
Vn+1

∣∣
o

βCm
−
[
In+1ion

]
V

Cm
pn+1 −

[
fn+1
]
V

βCm
qn+1

)
,

qn = qn+1 + Δt2
(
β
[
In+1ion

]
w
pn+1 +

[
fn+1
]
w
qn+1

)
,

p(x, T) = 0, q(x, T) = 0.

(3.15)

4. Optimization Procedure

Two hybrid conjugate gradient methods are used to solve the discretized optimal control
problem of monodomain model, namely, the Hestenes-Stiefel-Dai-Yuan (HS-DY) method
[22] and the Liu-Storey-Conjugate-Descent (LS-CD) method [23]. These hybrid conjugate
gradient methods combine the good numerical performance of the Hestenes-Stiefel (HS) and
Liu-Storey (LS) methods with the strong convergence properties of the Dai-Yuan (DY) and
Conjugate-Descent (CD)methods.

4.1. Hybrid Conjugate Gradient Methods

Starting from an initial guess I0e, our control is updated using the following recurrence:

Ik+1e = Ike + δkdk, k = 0, 1, . . . , (4.1)
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where δk > 0 is the step-length computed by the Armijo line search and dk is the search
direction. Given an initial step-length δ > 0 and μ, ρ ∈ (0, 1), the Armijo line search chooses
δk = max{δ, δρ, δρ2, . . .} such that

Ĵ
(
Ike + δkdk

)
≤ Ĵ
(
Ike
)
+ μδk∇Ĵ

(
Ike
)T

dk. (4.2)

On the other hand, the search direction is defined by

dk =

⎧⎪⎨
⎪⎩
−∇Ĵ

(
Ike
)
, if k = 0

−∇Ĵ
(
Ike
)
+ θk

∗d
k−1, if k > 0,

(4.3)

where θk
∗ ∈ � is the conjugate gradient update parameter. The conjugate gradient update

parameters for the HS-DY and LS-CD methods are given as follows:

θk
HS-DY = max

{
0,min

{
θk
HS, θ

k
DY

}}

θk
LS-CD = max

{
0,min

{
θk
LS, θ

k
CD

}}
,

(4.4)

where

θk
HS =

∇Ĵ
(
Ike
)T[∇Ĵ

(
Ike
) − ∇Ĵ

(
Ik−1e
)]

(
dk−1)T[∇Ĵ

(
Ike
)
− ∇Ĵ

(
Ik−1e

)]

θk
DY =

∥∥∥∇Ĵ
(
Ike
)∥∥∥2

(
dk−1)T[∇Ĵ

(
Ike
)
− ∇Ĵ

(
Ik−1e

)]

θk
LS = −

∇Ĵ
(
Ike
)T[∇Ĵ

(
Ike
) − ∇Ĵ

(
Ik−1e
)]

(
dk−1)T∇Ĵ

(
Ik−1e

)

θk
CD = −

∥∥∥∇Ĵ
(
Ike
)∥∥∥2

(
dk−1)T∇Ĵ

(
Ik−1e

) .

(4.5)

4.2. Optimization Algorithm

In this section, we present the optimization algorithm for solving the discretized optimal
control problem of monodomain model using the HS-DY and LS-CD methods. The
optimization algorithm for these two hybrid conjugate gradient methods is therefore given
as follows.

Step 1. Provide an initial guess I0e and set k = 0.

Step 2. Solve the discretized state system in (3.14).
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Step 3. Evaluate the reduced cost functional Ĵ(Ike) in (2.5).

Step 4. Use the result obtained in Step 2 to solve the discretized adjoint system in (3.15).

Step 5. Update the reduced gradient ∇Ĵ(Ike) using (3.11).

Step 6. For k ≥ 1, check the following stopping criteria:

∣∣∣Ĵ(Ike
)
− Ĵ
(
Ik−1e

)∣∣∣ ≤ 10−3

∥∥∥∇Ĵ
(
Ike
)∥∥∥ ≤ 10−3

(
1 +
∣∣∣Ĵ(Ike

)∣∣∣).
(4.6)

If one of them is met, stop.

Step 7. Compute the conjugate gradient update parameters θk
HS-DY and θk

LS-CD using (4.4).

Step 8. Compute the search direction dk using (4.3).

Step 9. Compute the step-length δk that satisfies condition in (4.2).

Step 10. Update the control variable Ik+1e using (4.1). Set k = k + 1 and go to Step 2.

5. Numerical Experiment

In this section, we present the numerical experiment for the optimal control problem of
monodomain model. The experiment setup is presented first, followed by the experiment
results which are solved by the HS-DY and LS-CD methods.

5.1. Experiment Setup

The numerical experiment is carried out on a two-dimensional computational domain of size
1 × 1 cm2, that is,Ω = [0, 1]×[0, 1] and the final simulation time is set to be T = 2ms. Figure 1
displays the positions of the subdomains in the computational domainΩ. From Figure 1,Ωc1

and Ωc2 are the control domains, Ω̃c1 and Ω̃c2 are the neighborhoods of the control domains,
Ωo = Ω \ (Ω̃c1 ∪ Ω̃c2) is the observation domain, and Ωexi ⊂ Ωo is the excitation domain.
For domain discretization, the computational domain Ω is discretized into 8192 triangular
elements, with 7936 of them compose the observation domain Ωo, 144 of them compose the
control domainsΩc1 andΩc2, and the rest of them compose the neighborhoods of the control
domains Ω̃c1 and Ω̃c2.
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Figure 1: Computational domain Ω and its subdomains.

Table 1 lists the parameters that are used in our numerical experiment, with some of
them adopted from Colli Franzone et al. [24]. Lastly, the initial values for the state (V,w) and
control (Ie) variables are given as the following:

V (x, 0) = V 0 =

{
105mV, x ∈ Ωexi

0mV, otherwise

w(x, 0) = w0 = 0, x ∈ Ω

Ie(x, 0) = I0e =

{
0mAcm−3, x ∈ Ωc

0mAcm−3, otherwise.

(5.1)

5.2. Experiment Results

In this section, we present the experiment results for the optimal control problem of
monodomain model. The minimum values of the reduced cost functional Ĵ(Ike) along the
optimization process for the HS-DY and LS-CD methods are depicted in Figures 2 and
3, respectively. Notice that the logarithmic scales are used in Figures 2 and 3 for clear
presentation on how the minimum values of Ĵ(Ike) are decreased during the optimization
process.

As shown in Figure 2, the HS-DY method successfully converges to the optimal
solution by taking 704 optimization iterations. However, this is not the case for the HS
method. For the HS method, it failed to converge to the optimal solution and stopped at the
2nd iteration. This phenomenon happens because the search direction generated by the HS
method may not be a descent direction and its global convergence is not guaranteed when
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Table 1: Parameters used in the numerical experiment.

Parameter Value Units
β 103 cm−1

Cm 10−3 mF cm−2

Dl
i 3 × 10−3 S cm−1

Dt
i 3.1525 × 10−4 S cm−1

Vth 1.3 × 101 mV
Vp 102 mV
c1 1.5 mS cm−2

c2 4.4 mS cm−2

c3 1.2 × 10−2 ms−1

c4 1 Dimensionless
α 10−4 Dimensionless
λ 7.062 × 10−1 Dimensionless
δ 1 Dimensionless
μ 10−4 Dimensionless
ρ 10−1 Dimensionless

Optimization iterations

HS-DY
HS

100 101 102 103

102

m
in

ꉱ J
(I

e
)

Figure 2: Minimum values of reduced cost functional Ĵ for HS-DY and HS methods.

the Armijo line search is used. These experiment results indicate that the HS-DY method
outperforms the HS method. On the other hand, both LS-CD and LS methods successfully
located the optimal solution by taking 700 and 703 optimization iterations, as shown in
Figure 3. Again, the hybrid conjugate gradient method (LS-CDmethod) performs better than
the classical conjugate gradient method (LS method). Thus, we can conclude that the hybrid
conjugate gradient methods are not only globally convergent but also superior to the classical
conjugate gradient methods.

Figure 4 illustrates the corresponding norm of reduced gradient ‖∇Ĵ(Ike)‖ for the HS-
DY and LS-CD methods. From the figure, the gradient for the HS-DY method decreased
sharply at the 8th iteration, followed by a smooth decrease till the end of optimization
iterations. In contrast, the gradient for the LS-CD method decreased less sharply than the
HS-DY method at the 8th iteration, and it finally approaches zero with a smooth decrease.
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Optimization iterations

LS-DY
LS

100 101 102 103

102
m

in
ꉱ J
(I

e
)

Figure 3: Minimum values of reduced cost functional Ĵ for LS-CD and LS methods.

0

1

2

3

4

5

6

7

Optimization iterations

HS-DY
LS-CD

100 101 102 103

㐙∇
ꉱ J
(I

e
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Figure 4: Norm of reduced gradient ‖∇Ĵ‖ for HS-DY and LS-CD methods.

Observe that the gradients for both HS-DY and LS-CD methods are almost the same starting
from the 100th iteration to the end of optimization iterations.

Next, the uncontrolled solutions at times 0.2ms, 0.8ms, 1.5ms, and 2.0ms are
illustrated in Figure 5. Note that the uncontrolled solutions are obtained where no
extracellular current is applied to the computational domain. As shown in Figure 5, the
excitation wavefront spreads from the inside to the outside of the computational domain
during the time interval from 0ms to 2ms. These experiment results imply that the
excitation wavefront will continue to spread to the computational domain if the control (the
extracellular current) is not switched on.

Figure 6 illustrates the optimally controlled solutions at times 0.2ms, 0.8ms, 1.5ms,
and 2.0ms using the HS-DY and LS-CD methods. For the optimally controlled case, the
excitation wavefront is successfully dampened out by the optimal applied extracellular
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Figure 5: The uncontrolled solutions (V ) at (a) 0.2ms; (b) 0.8ms; (c) 1.5ms; and (d) 2.0ms.
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Figure 6: The controlled solutions (V opt) at (a) 0.2ms; (b) 0.8ms; (c) 1.5ms; and (d) 2.0ms.
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current Iopte . Also, observe that the excitation wavefront is almost completely dampened out
at time 1.5ms.

6. Conclusion

In this paper, we have presented the numerical experiment results for the optimal control
problem of monodomain model using the hybrid conjugate gradient methods, namely, the
HS-DY and LS-CD methods. Our experiment shows that both HS-DY and LS-CD methods
successfully converge to the optimal solution. By comparison to the classical conjugate
gradient methods, both HS-DY and LS-CD methods show their superiority over HS and
LS methods in terms of global convergence as well as number of optimization iterations.
We therefore conclude that the hybrid conjugate gradient methods outperform the classical
conjugate gradient methods and are suitable for solving the optimal control problem of
monodomain model owing to their low memory requirement and simple computation.
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