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A new finite element variational multiscale (VMS) method based on two local Gauss integrations
is proposed and analyzed for the stationary conduction-convection problems. The valuable feature
of our method is that the action of stabilization operators can be performed locally at the element
level with minimal additional cost. The theory analysis shows that our method is stable and has a
good precision. Finally, the numerical test agrees completely with the theoretical expectations and
the “ exact solution,” which show that our method is highly efficient for the stationary conduction-
convection problems.

1. Introduction

The conduction-convection problems constitute an important system of equations in atmo-
spheric dynamics and dissipative nonlinear system of equations. Many authors have worked
on these problems [1–8]. The governing equations couple viscous incompressible flow and
heat transfer process [9], where the incompressible fluid is the Boussinesq approximation to
the nonstationary Navier-Stokes equations. Christon et al. [10] summarized some relevant
results for the fluid dynamics of thermally driven cavity. A multigrid (MG) technique was
applied for the conduction-convection problems [11, 12]. Luo et al. [13] combined proper
orthogonal decomposition (POD)with the Petrov-Galerkin least squaresmixed finite element
(PLSMFE)method for the problems. In [14], a Newton iterative mixed finite element method
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for the stationary conduction-convection problems was shown by Si et al. In [15], Si and He
gave a defect-correction mixed finite element method for the stationary conduction-convec-
tion problems. In [3], an analysis of conduction natural convection conjugate heat transfer in
the gap between concentric cylinders under solar irradiation was carried out. In [16], Boland
and Layton gave an error analysis for finite element methods for steady natural convection
problems. Variational multiscale (VMS) method which defines the large scales in a different
way, namely, by a projection into appropriate subspaces, see Guermond [17], Hughes et al.
[18–20] and Layton [21], and other literatures on VMS methods [22–24]. The new finite
element VMS strategy requires edge-based data structure and a subdivision of grids into
patches. It does not require a specification of mesh-dependent parameters and edge-based
data structure, and it is completely local at the element level. Consequently, the new VMS
method under consideration can be integrated in existing codes with very little additional
coding effort.

For the conduction-convection problems, we establish such system thatΩ be a bounded
domain in Rd (d = 2 or 3), with Lipschitz-continuous boundary ∂Ω. In this paper, we con-
sider the stationary conduction-convection problem as follows:

−2ν∇ ·D(u) + (u · ∇u) +∇p = λjT, x ∈ Ω,
∇ · u = 0, x ∈ Ω,

−ΔT + λu · ∇T = 0, x ∈ Ω,
u = 0, T = T0, x ∈ ∂Ω,

(1.1)

whereD(u) = (∇u+∇uT )/2 is the velocity deformation tensor, (u, p, T) ∈ X×M×W, Ω ⊂ Rd

is a bounded convex domain. u = (u1(x), u2(x))
T represents the velocity vector, p(x) the

pressure, T(x) the temperature, λ > 0 the Grashoff number, j = (0, 1)T the two-dimensional
vector and ν > 0 the viscosity.

The study is organized as follows. In the next section, the finite element VMS method
is given. In Section 3, we give the stability. The error analysis is given in Section 4. In Section 5,
we show some numerical test. The last but not least is the conclusion given in Section 6.

2. Finite Element VMS Method

Here, we introduce some notations

X = H1
0(Ω)d, M = L2

0(Ω) =
{
ϕ ∈ L2(Ω);

∫
Ω
ϕdx = 0

}
, W = H1(Ω). (2.1)

For h > 0, finite-dimension subspace (Xh,Mh,Wh) ⊂ (X,M,W) is introduced which is asso-
ciated with Ωe, a triangulation of Ω into triangles or quadrilaterals, assumed to be regular in
the usual sense. In this study, the finite-element subspaces of personal preference are defined
by setting the continuous piecewise (bi)linear velocity and pressure subspace, let τh be the
regular triangulations or quadrilaterals of the domain Ω and define the mesh parameter h =
maxΩe∈τh{diam(Ωe)},

Xh =
{
v ∈ X : v|Ωe

∈ Rl(Ωe)d ∀Ωe ∈ τh
}
,

Mh =
{
q ∈M : q

∣∣
Ωe

∈ Rl(Ωe) ∀Ωe ∈ τh
}
,

Wh =
{
φ ∈M : φ

∣∣
Ωe

∈ Rl(Ωe) ∀Ωe ∈ τh
}
,

(2.2)
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where W0h = Wh ∩ H1
0 , l ≥ 1 is integers. Rl(Ωe) = Pl(Ωe) if Ωe is triangular and Rl(Ωe) =

Ql(Ωe) if Ωe is quadrilateral. Here (Xh,Mh) does not satisfy the discrete Ladyzhenskaya-
Babuška-Brezzi (LBB) condition

sup
vh∈Xh

d
(
vh, ph

)
‖∇vh‖0

≥ β∥∥ph∥∥0, ∀ph ∈Mh. (2.3)

Now, in order to stabilize the convective term appropriately for the higher Reynolds number
and avoid the extra storage, we supply finite element VMSmethod that the local stabilization
form of the difference between a consistent and an underintegrated mass matrices based on
two local Gauss integrations at element level as the stabilize term

G
(
ph, qh

)
= εd

(
ak
(
ph, qh

) − a1(ph, qh)). (2.4)

Here,

ak
(
ph, qh

)
= pTGMkqG, a1

(
ph, qh

)
= pTGM1qG,

pTG =
[
p1, p2 . . . , pN

]T
, qG =

[
q1, q2, . . . , qN

]
,

Mij =
(
φi, φj

)
, ph =

N∑
i=1

piφi, pi = ph(xi), ∀ph ∈Mh, i = 1, 2, . . . ,N,

Mk =
(
Mk

ij

)
N×N

, M1 =
(
M1

ij

)
N×N

,

(2.5)

the stabilization parameter εd (εd = o(h)) in this scheme acts only on the small scales, φi is the
basis function of the velocity on the domainΩ such that its value is one at node xi and zero at
other nodes, andN is the dimension ofMh. The symmetric and positive matricesMk

ij , k ≥ 2
andM1

ij are the stiffness matrices computed by using k-order and 1-order Gauss integrations
at element level, respectively. pi and qi, i = 1, 2, . . . ,N are the values of ph and qh at the node
xi. In detail, the stabilized term can be rewritten as

G
(
ph, qh

)
= εd

∑
Ωe∈τh

{∫
Ωe,k

phqhdx −
∫
Ωe,1

phqhdx

}
, ∀ph, qh ∈Mh,

G
(
p, q
)
=
(
p −
∐

h
p, q −

∐
h
q
)
.

(2.6)

L2-projection operator
∐

h : L2(Ω) → R0 with the following properties [25]:

(
p, qh

)
=
(∐

h
p, qh

)
, ∀p ∈M, qh ∈ R0;

∥∥∥∐
h
p
∥∥∥
0
≤ c∥∥p∥∥0, ∀p ∈M;

∥∥∥p −∐
h
p
∥∥∥
0
≤ ch∥∥p∥∥1, ∀p ∈ H1(Ω) ∩M.

(2.7)
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Lemma 2.1 (see [26]). Let (Xh,Mh) be defined as above, then there exists a positive constant β
independent of h, such that

∣∣B((u, p); (v, q))∣∣ ≤ c(‖u‖1 + ∥∥p∥∥0)(‖v‖1 +
∥∥q∥∥0)(u, p), (

v, q
) ∈ (X,M),

β
(‖uh‖1 + ∥∥vph∥∥0) ≤ sup

(vh, qh)∈(Xh,Mh)

∣∣B((uh, ph); (vh, qh))∣∣
‖v‖1 +

∥∥q∥∥0 , ∀(uh, ph) ∈ (Xh,Mh),

∣∣G(p, q)∣∣ ≤ C∥∥(I − IIh)p∥∥0
∥∥(I − IIh)q∥∥0, ∀p, q ∈M.

(2.8)

Using the above notations, the VMS variational formulation of problems (1.1) reads as
follows.

Find (A1) (uh, ph, Th) ∈ Xh ×Mh ×Wh such that

a(uh, vh) − d
(
ph, vh

)
+ d
(
qh, uh

)
+ b(uh, uh, vh)+G

(
ph, qh

)
=λ
(
jTh, vh

)
, ∀vh ∈ Xh, ϕh ∈Mh;

a
(
Th, ψh

)
+ λb

(
uh, Th, ψh

)
= 0, ∀ψh ∈W0h.

(2.9)

Given (A2) (un−1h
, Tn−1

h
), find (un

h
, pn

h
, Tn

h
) ∈ Xh ×Mh ×Wh such that

a
(
unh, vh

) − d(pnh, vh) + d(qh, unh) + b
(
unh, u

n−1
h , vh

)
+ b
(
un−1h , unh, vh

)
+G
(
pnh, qh

)

= b
(
un−1h , un−1h , vh

)
+ λ
(
jTnh , vh

)
, ∀vh ∈ Xh, ϕh ∈Mh;

a
(
Tnh , ψh

)
+ λb

(
un−1h , Tnh , ψh

)
= 0, ∀ψh ∈W0h,

(2.10)

where a(u, v) = ν(∇u,∇v), a(T, ψ) = (∇T,∇ψ)d(q, v) = (q,divv), and

b(u, v,w) = ((u · ∇v), w) +
1
2
((divu)v,w) =

1
2
((u · ∇)v,w) − 1

2
((u · ∇)w,v),

b
(
u, T, ψ

)
= ((u · ∇T), w) +

1
2
(
(divu)T, ψ

)
=

1
2
(
(u · ∇)T, ψ

) − 1
2
(
(u · ∇)ψ, T

)
.

(2.11)

(B1) There exists a constant C which only depends on Ω, such that

(i) ‖u‖0 ≤ C‖∇u‖0, ‖u‖0, 4 ≤ C‖∇u‖0, for all u ∈ H1
0(Ω)d (or H1

0(Ω)),

(ii) ‖u‖0, 4 ≤ C‖u‖1, for all u ∈ H1(Ω)d

(iii) ‖u‖0, 4 ≤ 21/2‖∇u‖1/20 ‖u‖1/20 , for all u ∈ H1
0(Ω)d (or H1

0(Ω))

(B2) Assuming ∂Ω ∈ Ck,α (k ≥ 0, α > 0), then, for T0 ∈ Ck,α(∂Ω), there exists an exten-
sion T0 in C

k,α
0 (Rd), such that

‖T0‖k,q ≤ ε, k ≥ 0, 1 ≤ q ≤ ∞, (2.12)

where ε is an arbitrary positive constant.
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(B3) b(·, ·, ·) and b(·, ·, ·) have the following properties.

(i) For all u ∈ X, v,w ∈ X, T · ϕ ∈ H1
0(Ω), there holds that

b(u, v,w) = −b(u,w, v), b
(
u, T, ψ

)
= −b(u, ψ, T). (2.13)

(ii) For all u ∈ X, v ∈ H1(Ω)d, T ∈ H1(Ω), for all w ∈ X (or ϕ ∈ H1
0(Ω)), there

holds that

|b(u, v,w)| ≤N‖∇u‖0‖∇v‖0‖∇w‖0,∣∣∣b(u, T, ϕ)
∣∣∣ ≤N‖∇u‖0‖∇T‖0

∥∥∇ϕ∥∥0,
(2.14)

where N = supu,v,w|b(u, v,w)|/‖∇u‖0‖∇v‖0‖∇w‖0, N = supu,v,w|b(u, T, ϕ)|/‖∇u‖0‖∇T‖0
‖∇ϕ‖0.

3. Stability Analysis

Lemma 3.1. The trilinear form b satisfies the following estimate:

|b(uh, vh,w)| + |b(vh, uh,w)| + |b(w,uh, vh)| ≤ C
∣∣logh∣∣1/2‖∇uh‖0‖∇vh‖0‖w‖0. (3.1)

Theorem 3.2. Suppose that (B1)–(B3) are valid and ε is a positive constant number, such that

64C2Nλε

3ν2
< 1,

16C2λ2Nε

3ν
< 1, ‖∇T0‖0 ≤

ε

4
, ‖T0‖0 ≤

Cε

4
. (3.2)

Then (umh , T
m
h ) defined by (A2) satisfies

∥∥∇umh
∥∥
0 ≤

8C2λε

3ν
,
∥∥∇Tmh

∥∥
0 ≤ ε. (3.3)

Proof. We prove this theorem by the inductive method. For m = 1, (3.3) holds obviously.
Assuming that (3.3) holds form = n−1, we want to prove that it holds form = n. We estimate
‖Δun

h
‖ firstly. Letting vh = un

h
, qh = 0 in the first equation of (2.10) and using (2.13), we get

a
(
unh, u

n
h

)
+ b
(
unh, u

n−1
h , unh

)
= b
(
un−1h , un−1h , unh

)
+ λ
(
jTnh , u

n
h

)
. (3.4)

Setting Tn−1
h

= kn−1
h

+ T0 and using (2.14), we have

ν
∥∥∇un

h

∥∥
0 ≤N

∥∥∇un
h

∥∥
0

∥∥∇un−1
h

∥∥
0 +N

∥∥∇un−1
h

∥∥2
0 + C

2λ
∥∥∇kn−1

h

∥∥
0 + Cλ‖∇T0‖0. (3.5)
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Letting Tnh = knh + T0, ψ = knh in the second equation of (2.10), we can obtain

a
(
knh, k

n
h

)
= −λb(unh, T0, knh) − a(T0, knh). (3.6)

Using (2.12), (2.14), and (3.2), we get

∥∥∥∇kn−1h

∥∥∥
0
≤ λN

∥∥∥∇un−1h

∥∥∥
0
‖∇T0‖0 + ‖∇T0‖0

≤ λNε

4

∥∥∥∇un−1h

∥∥∥
0
+ ‖∇T0‖0 ≤

3ε
8

≤ 3ε
4
,

(
ν −N

∥∥∥∇un−1h

∥∥∥
0

)∥∥∇unh
∥∥
0 ≤N

∥∥∥∇un−1h

∥∥∥2
0
+ C2λε

≤ C2λε +
64C4N

9ν2
λ2ε2 ≤ 4C2λε

3
.

(3.7)

Using (3.2), we have ν −N‖∇un−1h ‖0 ≥ 7ν/8. Then,

∥∥∇unh
∥∥
0 ≤

8C2λε

3ν
. (3.8)

Combining (2.12), (2.14), (3.2), and (3.6), we arrive at

∥∥∇knh
∥∥
0 ≤ λN

∥∥∇unh
∥∥
0‖∇T0‖0 + ‖∇T0‖0 ≤

3ε
4
, (3.9)

∥∥∇Tnh
∥∥
0 ≤
∥∥∇knh

∥∥
0 + ‖∇T0‖0 ≤ ε. (3.10)

Therefore, we finish the proof.

4. Error Analysis

In this section, we establish the H1-bound of the error unh − u, Tnh − T and L2-bounds of the
error pn

h
− p. Setting (en, μn, ηn) = (un

h
− uh, pnh − ph, Tnh − Th). Firstly, we give some Lemmas.

Lemma 4.1. In [4], If B1-B3 hold, (u, p, T) ∈ Hm+1(Ω)×Hm(Ω)×Hm+1(Ω) and (uh, ph, Th) ∈ Xh×
Mh ×Wh are the solution of problem (A1) and (A2), respectively, then there holds that

‖∇(u − uh)‖0 +
∥∥p − ph∥∥0 + ‖∇(T − Th)‖0 ≤ Chm

(‖u‖m+1 +
∥∥p∥∥m + ‖T‖m+1

)
. (4.1)

Lemma 4.2. Under the assumptions of Theorem 3.2, (A2) has a unique solution (uh, ph, Th) ∈ Xh ×
Mh ×Wh, such that T |∂Ω = T0 and

‖∇uh‖0 ≤
8C2λε

3ν
, ‖∇Th‖0 ≤ ε. (4.2)

The detail proof we can see [4, 13, 14].
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Theorem 4.3. Under the assumption of Theorem 3.2, there holds

‖∇en‖0 ≤
C2λε

2n−33ν
,

∥∥∇ηn∥∥0 ≤ ε

2n+1
,

∥∥μn∥∥0 ≤ β−1
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

νε

2
+
4C2λε

3
, n = 1

(ν + 2Nε)
C2λε

2n−33ν
+N

(
C2λε

2n−43ν

)2

+
C2λε

2n
, n ≥ 2.

(4.3)

Proof. Subtracting (2.10) from (2.9), we get the following error equations, namely (en, μn, ηn)
satisfies

a(en, vh) − d
(
μn, vh

)
+ d
(
qh, e

n) + b(en, un−1h , vh
)
+ b
(
un−1h , en, vh

)
+G
(
μn, qh

)

= b
(
en−1, en−1, vh

)
+ λ
(
jηn, vh

)
,

(4.4)

a
(
ηn, ψh

)
+ λb

(
en, Tnh , ψh

)
+ λb

(
un−1h , ηn, qh

)
= 0. (4.5)

Here, let ψh = ηn, in (4.5), then we have

a
(
ηn, ηn

)
+ λb

(
en, Tnh , η

n) = 0. (4.6)

By using (2.14), we get

∥∥∇ηn∥∥0 ≤ λNε‖∇en‖0. (4.7)

In (4.4), we take vh = en ∈ Xh, qh = μn, then

a(en, en) + b
(
en, un−1h , en

)
+ b
(
un−1h , en, en

)
+G
(
μn, μn

)
= b
(
en−1, en−1, en

)
+ λ
(
jηn, en

)
.

(4.8)

Using (2.13) and (2.14), we have

ν‖∇en‖0 +G
(
μn, μn

) ≤N‖∇en‖0
∥∥∥∇un−1h

∥∥∥
0
+N

∥∥∥∇en−1
∥∥∥2
0
+ C2λ

∥∥∇ηn∥∥0, (4.9)

then, we obtain

(
ν −N

∥∥∥∇un−1h

∥∥∥
0

)
‖∇en‖0 ≤N

∥∥∥∇en−1
∥∥∥2
0
+ C2λ

∥∥∇ηn∥∥0. (4.10)
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By using ν −N‖∇un−1h ‖0 ≥ 7ν/8. Equations (3.3) and (4.2), we get

7
8
ν‖∇en‖0 ≤N

∥∥∥∇en−1
∥∥∥2
0
+ C2λ

∥∥∇ηn∥∥0
≤
(
N
∥∥∥∇un−1h

∥∥∥
0
+N‖∇uh‖0 + C2λ2Nε

)∥∥∥∇en−1
∥∥∥
0

≤
(

16NC2λε

3ν
+ C2λ2Nε

)∥∥∥∇en−1
∥∥∥
0
=

7ν
16

∥∥∥∇en−1
∥∥∥
0
,

‖∇en‖0 ≤
1
2

∥∥∥∇en−1∥∥∥
0
.

(4.11)

From the inductive method, we know, for n = 1, subtracting (2.10) from (2.9), we can get

a
(
e1, vh

)
− d
(
μ1, vh

)
+ d
(
qh, e

1
)
+ b(uh, uh, vh) +G

(
μ1, qh

)
= λ
(
jTn, vh

)
. (4.12)

Letting vh = e1, qh = μ1 in (4.12) and using (2.14), we have
∥∥∥∇e1

∥∥∥
0
+G
(
μ1, μ1

)
≤ ν−1N‖∇uh‖20 + ν−1C2λ‖∇Th‖0

≤ 64C4λ2Nε2

9ν3
+
C2λε

ν
≤ 4C2λε

3ν
,

(4.13)

then
∥∥∥∇e1∥∥∥

0
≤ 4C2λε

3ν
. (4.14)

By (4.7), we have

∥∥∥∇η1∥∥∥
0
≤ λNε‖∇en‖0 ≤ λN

4C2λε2

3ν
≤ ε

4
. (4.15)

Letting qh = 0 in (4.12), (2.14), and (3.9), using Lemma 2.1, we get

β
∥∥∥μ1
∥∥∥
0
≤ ν
∥∥∥∇e1

∥∥∥
0
+N‖∇uh‖20 + Cλ‖Th‖0 ≤

νε

2
+
4C2λε

3ν
. (4.16)

Assuming that (4.3) is true for n = k − 1, using (4.7) and (4.11), we know that both of them
are valid for n = k. Using (4.7) holds for n = k, we let qh = 0 in (4.4) and using Lemma 2.1,
(4.5), and (3.3), we have

β
∥∥μn∥∥0 ≤ (ν + 2Nε)‖∇en‖0 +N

∥∥∥∇en−1
∥∥∥2
0
+ C2λ

∥∥∥∇ηn−1
∥∥∥
0

≤ (ν + 2Nε)
C2λε

2n−33ν
+N

(
C2λε

2n−43ν

)2

+
C2λε

2n
.

(4.17)
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Theorem 4.4. Under the assumptions of Theorem 4.3, then there holds that

lim
n→∞

(∥∥unh − un−1h

∥∥
0 +
∥∥∇(unh − un−1h

)∥∥
0

)
= 0,

‖∇en‖0 +
∥∥μn∥∥0 +

∥∥∇ηn∥∥0 ≤ F
∣∣logh∣∣1/2∥∥∇(unh − un−1h

)∥∥
0

∥∥unh − un−1h

∥∥
0 +

Hε

2n+1
,

(4.18)

where F andH are two positive constants.

Proof. By using (B1) and triangle inequality, we have

∥∥∥unh − un−1h

∥∥∥
0
+
∥∥∥∇(unh − un−1h )

∥∥∥
0
≤ (C + 1)

(
‖∇en‖0 +

∥∥∥∇en−1
∥∥∥
0

)
. (4.19)

Using Theorem 4.3, letting n → ∞, we obtain (4.18). Taking vh = en, qh = μn in (4.4) and
using (2.14), we get

a(en, en) + b
(
en, un−1h , en

)
+G
(
μn, μn

)
= −b

(
unh − un−1h , unh − un−1h , en

)
+ λ
(
jηn, en

)
. (4.20)

By (2.14) and Lemma 3.1, we deduce

(
ν −N

∥∥∥un−1h

∥∥∥
0

)
‖∇en‖0+G

(
μn, μn

) ≤ F∣∣logh∣∣1/2∥∥∥∇(unh − un−1h

)∥∥∥
0

∥∥∥unh − un−1h

∥∥∥
0
+F2λ

∥∥∇ηn∥∥0.
(4.21)

Combining (3.3) and (4.7), we obtain

(
ν − 8Nε

3ν

)
‖∇en‖0 ≤ F

∣∣logh∣∣1/2∥∥∥∇(unh − un−1h

)∥∥∥
0

∥∥∥unh − un−1h

∥∥∥
0
+ F2λ2Nε

∥∥∥∇en−1
∥∥∥
0
.

(4.22)

Using (3.2), we get

‖∇en‖0 ≤ F
∣∣logh∣∣1/2∥∥∥∇(unh − un−1h )

∥∥∥
0

∥∥∥unh − un−1h

∥∥∥
0
+
Hε

2n+1
. (4.23)

Combining (3.2), (4.7), and (4.17), we get

∥∥∇ηn∥∥0 ≤ F
∣∣logh∣∣1/2∥∥∥∇(unh − un−1h )

∥∥∥
0

∥∥∥unh − un−1h

∥∥∥
0
+
Hε

2n+1
,

∥∥∇μn∥∥0 ≤ F
∣∣logh∣∣1/2∥∥∥∇(unh − un−1h )

∥∥∥
0

∥∥∥unh − un−1h

∥∥∥
0
+
Hε

2n+1
.

(4.24)

Here, we complete the proof.



10 Mathematical Problems in Engineering

Theorem 4.5. Under the assumptions of Theorem 4.3, the following inequality:

∥∥∇(u − unh)
∥∥
0 +
∥∥p − pnh

∥∥
0 +
∥∥∇(T − Tnh )

∥∥
0 ≤ F1h

m(‖u‖m+1 +
∥∥p∥∥m + ‖T‖m+1

)

+ F
∣∣logh∣∣1/2∥∥∥∇(unh − un−1h

)∥∥∥
0

∥∥∥unh − un−1h

∥∥∥
0
+
Hε

2n+1
,

(4.25)

holds, where F1 and H are the positive constants.

Proof. By Lemma 4.1, Theorem 4.4, and the triangle inequality, this theorem is obviously true.

5. Numerical Test

This section presents the numerical results that complement the theoretical analysis.

5.1. Convergence Analysis

In our experiment, Ω = [0, 1] × [0, 1] is the unit square in R2. Let T0 = 0 on left and lower
boundary of the cavity, ∂T/∂n = 0 on upper boundary of the cavity, and T0 = 4y(1 − y) on
right boundary of the cavity (see Figure 1). Physics model of the cavity flows: t = 0, that
is, n = 0 initial values on boundary. In general, we cannot know the exact solution of the
stationary conduction-convection equations. In order to get the exact solution, we design the
procedure as follows. Firstly, solving the stationary conduction-convection equations by
using the P2-P1-P2 finite element pair, which holds stability, on the finer mesh, we take the
solution as the exact solution. Secondly, the absolute error is obtained by comparing the exact
solution and the finite element solutions with VMS methods. Finally, we can easily obtain
errors and convergence rates.

5.2. Driven Cavity

In this experiment, Ω = [0, 1] × [0, 1] is the unit square in R2. Let T0 = 0 on left and lower
boundary of the cavity, ∂T/∂n = 0 on upper boundary of the cavity, and T0 = 4y(1 − y) on
right boundary of the cavity (see Figure 1). Physics model of the cavity flows: t = 0, that is,
n = 0 initial values on boundary. Solving the stationary conduction-convection equations by
using the P2-P1-P2 finite element pair, which holds stability results, on the finer mesh, we take
the solution as the exact solution. From Figures 1 and 2, we know that the solution of finite
element VMS using P1-P1-P1 element agree completely with the “exact solution.” In Figure 3,
we choose Re = 2000, divide the cavity intoM ×N = 100 × 100, from left to right shows the
numerical streamline, the numerical isobar, and the numerical isotherms. In Figure 4, we
choose Re = 3000, divide the cavity into M × N = 100 × 100, from left to right shows the
numerical streamline, the numerical isobar, and the numerical isotherms.

Remark 5.1. Our VMS finite element method based on two local Gauss integrations and εd =
0.1h is suitable for the Sobolev space. Throughout the paper, our analysis and numerical tests
are all carried out for the P1-P1-P1 element (see Tables 1 and 2).



Mathematical Problems in Engineering 11

0
0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

1

T = 0

u1 = u2 = 0

u1 = u2 = 0

u1 = u2 = 0

T = 0
u1 = u2 = 0 T = 4y(1 − y)

∂T/∂n = 0

(a)

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1
0

1

2

3

4

5

x
of

 c
om

po
ne

nt
s 

ve
lo

ci
ty

Vertical midlines for Re = 2000

P2-P1-P2

P1-P1-P1

(b)

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

Horizontal midlines for Re = 2000

y
of

 c
om

po
ne

nt
s 

ve
lo

ci
ty

−5

−4

−3

−2

−1

P2-P1-P2

P1-P1-P1

(c)

Figure 1: From (a) to (c): physics model of the cavity flows, vertical midlines for Re = 2000, h = 1/100,
horizontal midlines for Re = 2000, h = 1/100.

6. Conclusion

In this paper, we studied a finite element VMS algorithm based on two local Gauss integra-
tions to solve the stationary conduction-convection problem. From Figures 1 and 2, we see
that the solution of VMS using P1-P1-P1 and εd = 0.1h agrees completely with the “exact
solution,” which shows that our method is highly efficient for the stationary conduction-
convection problems. Numerical tests tell us that VMS finite element method based on two
local Gauss integrations is very effective.
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Figure 2: From (a) to (b): vertical midlines for Re = 3000, h = 1/100, horizontal midlines for Re = 3000, h =
1/100.
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Figure 3: For Re = 2000, h = 1/100, from (a) to (c): velocity streamlines, the pressure level lines, numerical
isotherms.
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Figure 4: For Re = 3000, h = 1/100, from (a) to (c): velocity streamlines, the pressure level lines, numerical
isotherms.
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Table 1: VMS: P1-P1-P1 element.

1/h ‖u − uh‖0 ‖u − uh‖1 ‖T − Th‖0 ‖T − Th‖1 ‖p − ph‖0
10 0.000194122 0.00493006 0.00740049 0.277241 0.00506075
20 4.91998e − 005 0.00252269 0.00208824 0.153561 0.00308312
40 1.21288e − 005 0.00126459 0.0005746 0.0838877 0.00180539
60 5.35135e − 006 0.000842093 0.000266991 0.0583954 0.00131444
80 2.98429e − 006 0.000630808 0.000154418 0.0457979 0.00105007

Table 2: VMS: P1-P1-P1 element.

1/h uL2 rate uH1 rate TL2 rate TH1 rate pL2 rate
10 / / / / /
20 1.9802 0.9666 1.8253 0.8523 0.7150
40 2.0202 0.9963 1.8617 0.8723 0.7721
60 2.0180 1.0028 1.8903 0.8934 0.7827
80 2.0300 1.0042 1.9033 0.8447 0.7806

Acknowledgments

The project is supported by NSF of China (10971164) and the Research Foundation of Xian-
yang Normal University (06xsyk265).

References

[1] K. Chida, “Surface temperature of a flat plate of finite thickness under conjugate laminar forced
convection heat transfer condition,” International Journal of Heat and Mass Transfer, vol. 43, no. 4, pp.
639–642, 1999.

[2] J. A. M. Garcı́a, J. M. G. Cabeza, and A. C. Rodrı́guez, “Two-dimensional non-linear inverse heat con-
duction problem based on the singular value decomposition,” International Journal of Thermal Sciences,
vol. 48, no. 6, pp. 1081–1093, 2009.

[3] D. C. Kim and Y. D. Choi, “Analysis of conduction—natural convection conjugate heat transfer in the
gap between concentric cylinders under solar irradiation,” International Journal of Thermal Sciences,
vol. 48, no. 6, pp. 1247–1258, 2009.

[4] Z. D. Luo, The Bases and Applications of Mixed Finite Element Methods, Science Press, Beijing, China,
2006.

[5] Z. D. Luo and X. M. Lu, “A least-squares Galerkin/Petrov mixed finite element method for stationary
conduction-convection problems,” Mathematica Numerica Sinica, vol. 25, no. 2, pp. 231–244, 2003.

[6] C. P. Naveira, M. Lachi, R. M. Cotta, and J. Padet, “Hybrid formulation and solution for transient con-
jugated conduction-external convection,” International Journal of Heat and Mass Transfer, vol. 52, no.
1-2, pp. 112–123, 2009.

[7] Q. W. Wang, M. Yang, and W. Q. Tao, “Natural convection in a square enclosure with an internal iso-
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