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We consider a class of impulsive neutral second-order stochastic functional evolution equations.
The Sadovskii fixed point theorem and the theory of strongly continuous cosine families of
operators are used to investigate the sufficient conditions for the controllability of the system
considered. An example is provided to illustrate our results.

1. Introduction

Controllability, as a fundamental concept of control theory, plays an important role both
in stochastic and deterministic control problems. The study of controllability of linear and
nonlinear systems represented by infinite-dimensional systems in Banach spaces has been
raised by many authors recently, see Chang [1], Sakthivel [2], Ren and Sakthivel [3], Ntouyas
and Regan [4], Kang et al. [5], Sakthivel and Mahmudov [6], and Shubov et al. [7]. With the
help of fixed point theorem, Luo [8, 9] and Burton [10–13] have investigated the problem of
controllability of the systems in Banach spaces.

Recently, stochastic partial differential equations (SPDEs) arise in the mathematical
modeling of various fields in physics and engineering science cited by Sobczyk [14]. Among
them, several properties of SPDEs such as existence, controllability, and stability are studied
for the first-order equations. But in many situations, it is useful to investigate the second-
order abstract differential equations directly rather than to convert them to first-order systems
introduced by Fitzgibbon [15]. The second-order stochastic differential equations are the right
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model in continuous time to account for integrated processes that can be made stationary. For
instance, it is useful for engineers to model mechanical vibrations or charge on a capacitor
or condenser subjected to white noise excitation by second-order stochastic differential
equations. A useful tool for the study of abstract second-order equations is the fixed point
theory and the theory of strongly continuous cosine families.

In the past decades, the theory of impulsive differential equations or inclusions is
emerging as an active area of investigation due to the application in area such as mechanics,
electrical engineering, medicine biology, and ecology, see Benchohra and Henderson [16],
Liu and Willms [17], Hernández et al. [18], Prato and Zabczyk [19], and Fattorini [20]. As an
adequate model, impulsive differential equations are used to study the evolution of processes
that are subject to sudden changes in their states.

The focus of this paper is the controllability of mild solutions for a class of impulsive
neutral second-order stochastic evolution equations of the form:

d
[
x′(t) −D(xt)

]
=
[
Ax(t) + Bu(t) + f(t, xt)

]
dt + g(t, xt)dw(t), t ∈ [0, T], t /= tk

Δx(tk) = Ik(x(tk)), Δx′(tk) = Ĩk(x(tk)), k = 1, . . . , n, x(0) = φ, x′(0) = y0.
(1.1)

Here, x(·) is a stochastic process taking values in a real separable Hilbert space H with
inner product (·, ·) and norm ‖ · ‖. A : D(A) ⊂ H → H is the infinitesimal generator
of a strongly continuous cosine family on H. W is a given K-valued Wiener process with a
finite trace nuclear covariance operatorQ ≥ 0 defined on a filtered complete probability space
(Ω, F, {Ft}t≥0, P) and K is another separable Hilbert space with inner product (·, ·)K and norm
‖ · ‖K. The fixed time tk, k = 1, . . . , n, satisfies 0 < t1 < · · · < tn < T , x(t+k) and x(t−k) denote the
right and left limits of x(t) at t = tk, and Δx(tk) = x(t+k) − x(t−k) represents the jump in the
state x at time tk, where Ik ∈ C(H,H) (k = 1, 1, 2, . . . , m) are bounded which determine the
size of the jump. Similarly x′(t+

k
) and x′(t−

k
) denote, respectively, the right and left limits of x′

at tk. f, B, g are appropriate mappings specified later; x0 and y0 are F0-measurable random
variables with finite second moment. The main contributions are as follows. The Sadovskii
fixed point theorem and the theory of strongly continuous cosine families of operators are
used to investigate the sufficient conditions for the controllability of the system considered.
The differences of using the fixed point theorem between our proposedmethod and others are
that Sadovskii fixed point theorem is much easier in application, and the condition is easier
to be satisfied than other fixed point theorem. To our best knowledge, there are few works
about the controllability for mild solutions to second-order semilinear impulsive stochastic
neutral functional evolution equations, motivated by the previous problems, our current
consideration is on second-order semilinear impulsive stochastic neutral functional evolution
equations. We will apply the Sadovskii fixed point theorem to investigate the controllability
of mild solution of this class of equations.

The rest of this paper is arranged as follows. In Section 2, we briefly present some basic
notations and preliminaries. Section 3 is devoted to the controllability of mild solutions for
the system (1.1) and an example is given to illustrate our results in Section 4. Conclusion is
given in Section 5.

2. Preliminaries

In this section, we briefly recall some basic definitions and results for stochastic equations
in infinite dimensions and cosine families of operators. We refer to Prato and Zabczyk [19]
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and Fattorini [20] for more details. Throughout this paper, let L(K,H) be the set of all linear
bounded operators from K into H, equipped with the usual operator norm ‖ · ‖. Let (Ω, F, P)
be a complete probability space furnished with a normal filtration{Ft}t≥0. Suppose {βk}k≥1 is
a sequence of real independent one-dimensional standard Brownian motions over (Ω, F, P).
Set

W(t) =
∞∑

k=1

√
λkβk(t)ek, t ≥ 0, (2.1)

where {ek}k≥1 is the complete orthonormal system in K and λk, k ≥ 1, a bounded sequence of
nonnegative real numbers. LetQ ∈ L(K, K) be an operator defined byQek = λkek, k = 1, 2, . . .,
with trQ =

∑∞
k=1 λk < ∞. The K-valued stochastic process W = (Wt)t≥0 is called a Q-Wiener

process. Let L0
2 = L2(Q1/2K,H) be the space of all Hilbert-Schmidt operators from Q1/2K to

H with the inner product 〈ϕ, φ〉L0
2
= tr[ϕQφ∗].

The collection of all strongly measurable, square-integrable H-valued random

variables, denoted by L2(Ω,H), is a Banach space equipped with norm ‖x‖L2 = (E‖x‖2)1/2.
An important subspace of L2(Ω,H) is given by

L2
0(Ω,H) =

{
L2(Ω,H) � x is F0 −measurable

}
. (2.2)

Let

℘ := D([0, T],H)

=
{
x : [0, T] −→ H, x|(tk ,tk+1] ∈ C((tk, tk+1],H), and there exists x

(
t+k
)
for k = 1, 2, . . . , n

}
,

℘ := D([0, T],H)

=
{
x ∈ ℘, x|(tk ,tk+1] ∈ C1((tk, tk+1],H), and there exists x′(t+k

)
for k = 1, 2, . . . , n

}
.

(2.3)

It is obvious that D([0, T],H) and D([0, T],H) are Banach spaces endowed with the norm

‖x‖℘ =

(

sup
t∈[0,T]

E‖x(t)‖2
)1/2

(2.4)

and ‖x‖℘ = ‖x‖℘ + ‖x′‖℘, respectively.
To simplify the notations, we put t0 = 0, tm+1 = T , and for u = H2, we denote by

ũk ∈ C([tk, tk+1], L2(Ω,H)), k = 0, 1, . . . , m, the function given by

ũk(t) =

{
u(t), t ∈ (tk, tk+1],
u
(
t+
k

)
, t = tk.

(2.5)

Moreover, for B ⊂ H2 we denote B̃k = {ũk : u ∈ B}, k = 1, . . . , m. To prove our results, we
need the following lemma introduced in Hernández et al. [18].
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Lemma 2.1. A set B ⊂ ℘ is relatively compact in ℘ if and only if the set B̃k is relatively compact in
C([tk, tk+1],H), for every k = 0, 1,. . . , m.

Now, we recall some facts about cosine families of operators, see Fattorini [20] and
Travis and Webb [21].

Definition 2.2. (1) The one-parameter family {C(t) : t ∈ R} ⊂ L(H,H) is said to be a strongly
continuous cosine family if the following hold:

(1) C(0) = I;

(2) C(t)x is continuous in t on R for any x ∈ H;

(3) C(t + s) + C(t − s) = 2C(t)C(s) for all t, s ∈ R.

(2) The corresponding strongly continuous sine family {S(t):t ∈ R} ⊂ L(H,H) is
defined by

S(t)x =
∫ t

0
C(s)xds, t ∈ R, x ∈ H. (2.6)

(3) The (infinitesimal) generator A : H → H of {C(t):t ∈ R} is given by

Ax =
d2

dt2
C(t)x

∣∣∣∣∣
t=0

, (2.7)

for all x ∈ D(A) = {x ∈ H : C(·)x ∈ C2(R,H)}.

It is known that the infinitesimal generator A is a closed, densely defined operator on
H, and the following properties hold, see Travis and Webb [21].

Proposition 2.3. Suppose that A is the infinitesimal generator of a cosine family of operators {C(t) :
t ∈ R}. Then, the following hold

(i) There exist a pair of constants MA ≥ 1 and α ≥ 0 such that ‖C(t)‖ ≤ MAe
α|t| and hence,

‖S(t)‖ ≤ MAe
α|t|.

(ii) A
∫ r
s S(u)xdu = [C(r) − C(s)]x, for all 0 ≤ s ≤ r < ∞.

(iii) There existN ≥ 1 such that ‖S(s) − S(r)‖ ≤ N| ∫ rs eα|s|ds|, for all 0 ≤ s ≤ r < ∞.

The uniform boundedness principle: as a direct consequence we see that both {C(t) : t ∈ [0, T]} and
{S(t) : t ∈ [0, T]} are uniformly bounded byM∗ = MAe

α|T |.

At the end of this section we recall the fixed point theorem of Sadovskii [22] which is
used to estimate the controllability of the mild solution to the system (1.1).

Lemma 2.4. Let Φ be a condensing operator on a Banach space H. IfΦ(N) ⊂ N for a convex, closed,
and bounded set N of H, then Φ has a fixed point in H.
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3. Main Results

In this section we consider the system (1.1). We first present the definition of mild solutions
for the system.

Definition 3.1. An Ft−adapted stochastic process x(t) : [0, T] → H is said to be a mild solution
of the system (1.1) if

(1) x0, y0 ∈ L2
0(Ω,H);

(2) Δx(tk) = x(t+
k
) − x(t−

k
) = Ik(x(tk)), Δx′(tk) = x′(t+

k
) − x′(t−

k
) = Ĩk(x(tk)), k = 1, . . . , n;

(3) x(t) satisfies the following integral equation:

x(t) = C(t)φ(0) + S(t)
[
y0 −D

(
0, φ

)]
+
∫ t

0
C(t − s)D(s, xs)ds

+
∫ t

0
S(t − s)Bu(s)ds +

∫ t

0
S(t − s)f(s, xs)ds

+
∫ t

0
S(t − s)g(s, xs)dW(s) +

∑

0<tk<t

C(t − tk)Ik(x(tk))

+
∑

0<tk<t

S(t − tk)Ĩk(x(tk)).

(3.1)

In this paper, we will work under the following assumptions.

(A1) The cosine family of operators {C(t) : t ∈ [0, T]} on H and the corresponding sine
family {S(t):t ∈ [0, T]} are compact for t > 0, and there exists a positive constant M
such that

‖C(t)‖ ≤ M, ‖S(t)‖ ≤ M. (3.2)

(A2) D, f, g are continuous functions, and there exist some positive constants
MD,Mf,Mg , such that D, f, g satisfy the following Lipschitz condition:

∥∥D
(
t, ϕ

) −D
(
t, φ

)∥∥ ≤ MD

∥∥ϕ − φ
∥∥,

∥∥f
(
t, ϕ

) − f
(
t, φ

)∥∥ ≤ Mf

∥∥ϕ − φ
∥∥,

∥∥g
(
t, ϕ

) − g
(
t, φ

)∥∥ ≤ Mg

∥∥ϕ − φ
∥∥,

(3.3)
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for all ϕ, φ ∈ H, k = 1, . . . , n and t ∈ [0, T], and there exist positive constants
MD, Mf, Mg that satisfy the following linear growth condition:

∥∥D
(
t, ϕ

)∥∥2 ≤ MD

(∥∥ϕ
∥∥2 + 1

)
,

∥∥f
(
t, ϕ

)∥∥2 ≤ Mf

(∥∥ϕ
∥∥2 + 1

)
,

∥∥g
(
t, ϕ

)∥∥2 ≤ Mg

(∥∥ϕ
∥∥2 + 1

)

(3.4)

for all ϕ, φ ∈ H, k = 1, . . . , n and t ∈ [0, T].

(A3) Ik, Ĩk : H → H are continuous and there exist positive constants Mk, Nk such that

∥∥Ik(x) − Ik
(
y
)∥∥ ≤ Mk

∥∥x − y
∥∥2

,
∥∥∥Ĩk(x) − Ĩk

(
y
)∥∥∥ ≤ Nk

∥∥x − y
∥∥2 (3.5)

for each x, y ∈ H, k = 1, . . . , n.

(A4) B is a continuous operator fromΩ toH and the linear operatorW : L2
0(Ω,H) → X

defined by

Wu =
∫T

0
S(T − s)Bu(s)ds (3.6)

has a bounded invertible operatorW−1 which takes values in L2
0(Ω,H)/kerW such

that ||B|| ≤ M1, ||W−1|| ≤ M2, for some positive constants M1,M2.

We formulate and prove conditions for the approximate controllability of semilinear
control differential systems

Theorem 3.2. Assume that (A1)–(A4) are satisfied and x0, y0 ∈ L2
0(Ω,H), then the system (1.1) is

controllable on [0, T] provided that

8M2

[

TM
2
D + TM

2
f + tr(Q)M

2
g + 2M2

n∑

k=1

Mk + 2M2
n∑

k=1

Nk

+ 8M2

(

TM
2
D + TM

2
f + tr(Q)M

2
g + 2M2

n∑

k=1

Mk + 2M2
n∑

k=1

Nk

)]

< 1.

(3.7)
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Proof. Define the control process with final value ξ = x(T)

uT
x(t) = W−1

{

ξ − S(T)
[
y0 −D

(
0, φ

)] − C(T)φ(0) −
∫T

0
C(T − s)D(s, xs)ds

−
∫T

0
S(T − s)f(s, xs)ds −

∫T

0
S(T − s)g(s, xs)dW(s)

−
∑

0<tk<t

C(T − tk)Ik(x(tk)) −
∑

0<tk<t

S(T − tk)Ĩk(x(tk))

}

(t).

(3.8)

Let BN = {x ∈ H2 : ‖x‖2℘ ≤ N}, for every positive integer N. It is clear that BN is a bounded
closed convex set in H2 for each N. Define an operator π : H2 → H2 by

(πx)(t) = C(t)φ(0) + S(t)
[
y0 −D

(
0, φ

)]
+
∫ t

0
C(t − s)D(s, xs)ds +

∫ t

0
S(t − s)Bu(s)ds

+
∫ t

0
S(t − s)f(s, xs)ds +

∫ t

0
S(t − s)g(s, xs)dW(s)

+
∑

0<tk<t

C(t − tk)Ik(x(tk)) +
∑

0<tk<t

S(t − tk)Ĩk(x(tk)).

(3.9)

Now let us show that π has a fixed point in H2 which is a solution of (1.1) by Lemma 2.4.
This will be done in the next lemmas.

Lemma 3.3. There exists a positive integer N such that π(BN) ⊂ BN .

Proof. This proof can be done by contradiction. In fact, if it is not true, then for each positive
number N and tN ∈ [0, T], there exists a function xN ∈ BN , but π(xN)(tN) /∈ BN . That
is, E‖π(xN)(tN)‖2 > N. By applying assumptions (A1)–(A4) one can obtain the following
estimates:

E

∥∥∥∥∥∥

∑

0<tk<tN
S
(
tN − tk

)
Ĩk
(
xN(tk)

)
∥∥∥∥∥∥

2

≤ NM2
∑

0<tk<T

E
∥∥∥Ĩk

(
xN(tk)

)
− Ĩk(0) + Ĩk(0)

∥∥∥

≤ 2NM2

(
N∑

k=1

NkE
∥∥∥xN(tk)

∥∥∥
2
+

N∑

k=1

∥∥∥Ĩk(0)
∥∥∥
2
)

,

(3.10)

E

∥∥∥∥∥∥

∑

0<tk<tN
C
(
tN − tk

)
Ik
(
xN(tk)

)
∥∥∥∥∥∥

2

≤ NM2
∑

0<tk<T

E
∥∥∥Ik

(
xN(tk)

)
− Ik(0) + Ik(0)

∥∥∥

≤ 2NM2

(
N∑

k=1

MkE
∥∥∥xN(tk)

∥∥∥
2
+

N∑

k=1

‖Ik(0)‖2
)

,

(3.11)
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E

∥∥∥∥∥

∫ tN

0
S
(
tN − s

)
g(s, xs)dW(s)

∥∥∥∥∥

2

≤ tr(Q)M2
∫ tN

0
E
∥∥g(s, xs)

∥∥2
ds

≤ tr(Q)M2M
2
g

∫ tN

0
E
(∥∥ϕ

∥∥2 + 1
)
ds,

(3.12)

E

∥∥∥∥∥

∫ tN

0
C
(
tN − s

)
D(xs)ds

∥∥∥∥∥

2

≤ TM2M
2
D

∫ tN

0
E
(∥∥ϕ

∥∥2 + 1
)
ds, (3.13)

E

∥∥∥∥∥

∫ tN

0
S
(
tN − s

)
f(s, xs)ds

∥∥∥∥∥

2

≤ TM2M
2
f

∫ tN

0
E
(∥∥ϕ

∥∥2 + 1
)
ds, (3.14)

E

∥∥∥∥∥

∫ tN

0
S
(
tN − s

)
Bu(s)ds

∥∥∥∥∥

2

≤ 8M2M
2

(

‖ξ‖2 + ∥∥ϕ(0)
∥∥2 + y2

0

+ (T + 1)M
2
D

∫ tN

0
E
(∥∥ϕ

∥∥2 + 1
)
ds

+ TM
2
f

∫ tN

0
E
(∥∥ϕ

∥∥2 + 1
)
ds

+M
2
g

∫ tN

0
E
(∥∥ϕ

∥∥2 + 1
)
ds

+ 2N
N∑

k=1

NkE
∥∥∥xN(tk)

∥∥∥
2

+ 2N
N∑

k=1

MkE
∥∥∥xN(tk)

∥∥∥
2
)

:= M2U

(3.15)

which gives

N ≤ E
∥∥∥
(
πxN

)(
tN

)∥∥∥
2 ≤ 8E

∥∥∥C
(
tN

)[
ϕ(0)

]∥∥∥
2
+ 8E

∥∥∥S
(
tN

)[
y0 −D

(
0, ϕ

)]∥∥∥
2

+ 8E

∥∥∥∥∥

∫ tN

0
C
(
tN − s

)
D
(
s, ϕ

)
ds

∥∥∥∥∥

2

+ 8E

∥∥∥∥∥

∫ tN

0
S
(
tN − s

)
f
(
s, ϕ

)
ds

∥∥∥∥∥

2

+ 8E

∥∥∥∥∥

∫ tN

0
S
(
tN − s

)
g
(
s, ϕ

)
dW(s)

∥∥∥∥∥

2

+ 8E

∥∥∥∥∥∥

∑

0<tk<tN
C
(
tN − tk

)
Ik
(
xN(tk)

)
∥∥∥∥∥∥

2

+ 8E

∥∥∥∥∥∥

∑

0<tk<tN
S
(
tN − tk

)
Ĩk
(
xN(tk)

)
∥∥∥∥∥∥

2

+ 8E

∥∥∥∥∥

∫ tN

0
S
(
tN − s

)
Bu(s)ds

∥∥∥∥∥

2
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≤ L + 8M2

[

TM
2
DN + TM

2
fN + tr(Q)M

2
gN + 2NM2

n∑

k=1

Mk + 2NM2
n∑

k=1

Nk

+ 8M2

(

TM
2
DN + TM

2
fN + tr(Q)M

2
gN + 2NM2

n∑

k=1

Mk + 2NM2
n∑

k=1

Nk

)]

,

(3.16)

where

L = 8M2

[

E‖x0‖2 + E
∥∥y0

∥∥2 + TM
2
D + TM

2
f + tr(Q)M

2
g + 2M2

n∑

k=1

Mk + 2M2
n∑

k=1

Nk

+ 8M2

(

TM
2
D + TM

2
f + tr(Q)M

2
g + 2M2

n∑

k=1

Mk + 2M2
n∑

k=1

Nk

)] (3.17)

Dividing both sides of (3.16) by N and taking limit as N → ∞, we obtain that

8M2

[

TM
2
D + TM

2
f + tr(Q)M

2
g + 2M2

n∑

k=1

Mk + 2M2
n∑

k=1

Nk

+ 8M2

(

TM
2
D + TM

2
f + tr(Q)M

2
g + 2M2

n∑

k=1

Mk + 2M2
n∑

k=1

Nk

)]

≥ 1

(3.18)

which is a contradiction by (3.7). Thus, π(BN) ⊂ BN , for some positive number N.
In what follows, we aim to show that the operator π has a fixed point on BN , which

implies that (1.1) is controllable. To this end, we decompose π as follows:

π = π1 + π2, (3.19)

where π1, π2 are defined on BN , respectively, by

(π1x)(t) = S(t)
[
y0 −D

(
0, ϕ

)]
+
∫ t

0
C(t − s)D

(
0, ϕ

)
ds +

∫ t

0
S(t − s)f(s, xs)ds

+
∑

0<tk<t

C(t − tk)Ik(x(tk)) +
∑

0<tk<t

S(t − tk)Ĩk(x(tk)),
(3.20)

(π2x)(t) = C(t)φ(0) +
∫ t

0
S(t − s)g(s, xs)dW(s) +

∫ t

0
S(t − s)Bu(s)ds. (3.21)

Lemma 3.4. The operator π1 as above is contractive.
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Proof. Let x, y ∈ BN . It follows from assumptions (A1)–(A4) and Hölder’s inequality that

E
∥∥(π1x)(t) −

(
π1y

)
(t)

∥∥2

≤ 5E
∥∥S(t)

[
D
(
0, ϕ

) −D
(
0, φ

)]∥∥2

+ 5E

∥∥∥∥∥

∫ t

0
C(t − s)

[
D
(
0, ϕ

) −D
(
0, φ

)]
ds

∥∥∥∥∥

2

+ 5E

∥∥∥∥∥

∫ t

0
S(t − s)

[
f
(
s, ϕ

) − f
(
s, φ

)]
ds

∥∥∥∥∥

2

+ 5E

∥∥∥∥∥

∑

0<tk<t

C(t − tk)
[
Ik(x(tk)) − Ik

(
y(tk)

)]
∥∥∥∥∥

2

+ 5E

∥∥∥∥∥

∑

0<tk<t

S(t − tk)
[
Ĩk(x(tk)) − Ĩk

(
y(tk)

)]
∥∥∥∥∥

2

≤ 5M2M2
D sup
s∈[0,T]

E
∥∥x(s) − y(s)

∥∥2 + 5TM2M2
D sup
s∈[0,T]

E
∥∥x(s) − y(s)

∥∥2

+ 5TM2M2
f sup
s∈[0,T]

E
∥∥x(s) − y(s)

∥∥2 + 5nM2
∑

0<tk<t

MkE
∥∥x(tk) − y(tk)

∥∥2

+ 5nM2
∑

0<tk<t

NkE
∥∥x(tk) − y(tk)

∥∥2

(3.22)

which deduces

sup
s∈[0,T]

E
∥∥(π1x)(s) −

(
π1y

)
(s)

∥∥2

≤ 5M2

[

M2
D + TM2

D + TM2
f + n

n∑

i=0

Mk + n
n∑

i=0

Nk

]

sup
s∈[0,T]

E
∥∥x(s) − y(s)

∥∥2
(3.23)

and the lemma follows.

Lemma 3.5. The operator π2 is compact.

Proof. Let N > 0 be such that π2(BN) ⊂ BN .
We first need to prove that the set of functions π2(BN) is equicontinuous on [0, T]. Let

0 < ε < t < T and δ > 0 such that ‖S(s)x − S(s′)x‖2 < ε and ‖C(s)x − C(s′)x‖2 < ε, for every
s, s′ ∈ [0, T]with |s − s′| ≤ δ. For x ∈ BN and 0 < |h| < δ with t + h ∈ [0, T] we have

E‖(π2x)(t + h) − (π2x)(t)‖2

≤ 3E
∥∥[C(t + h) − C(t)]φ(0)

∥∥2

+ 3E

∥∥∥∥∥

∫ t

0
[S(t + h − s) − S(t − s)]g(s, xs)dW(s) −

∫ t+h

t

S(t + h − s)g(s, xs)dW(s)

∥∥∥∥∥

2

+ 3E

∥∥∥∥∥

∫ t

0
[S(t + h − s) − S(t − s)]Bu(s)ds −

∫ t+h

t

S(t + h − s)Bu(s)ds

∥∥∥∥∥

2
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≤ 3εE
∥∥φ(0)

∥∥2 + 6 tr(Q)M2
∫ t+h

t

E
∥∥g

(
s, x′(s), xs

)∥∥2
ds + 6M2

∫ t+h

t

E‖Bu(s)‖2ds

+ 6M2
∫ t

0
E‖Bu(s)‖2ds + 6 tr(Q)

∫ t

0
E
∥∥[S(t + h − s) − S(t − s)]g(s, xs)

∥∥2
ds

≤ 4εE‖x0‖2 + 4εE
∥∥g(x)

∥∥2 + 4ε tr(Q)
∫ t

0
E
∥∥g(s, xs)

∥∥2
ds

+ 4 tr(Q)M2
∫ t+h

t

E
∥∥g(s, sx(s))

∥∥2
ds.

(3.24)

Noting that E‖g(s, sx(s))‖2 ≤ hN(s) ∈ L1([0, T]), we see that π2(BN) is equicontinuous on [0,
T].

We next need to prove that π2 maps BN into a precompact set in BN . That is, for every
fixed t ∈ [0, T], the set V (t) = {(π2x)(t) : x ∈ BN} is precompact in BN . It is obvious that
V (0) = {(π2x)(0)} is precompact. Let 0 < t ≤ T be fixed and 0 < ε < t. For x ∈ BN , define

(
πε
2x

)
(t) = C(t)φ(0) +

∫ t−ε

0
S(t − s)g(s, xs)dW(s) +

∫ t−ε

0
S(t − s)Bu(s)ds

= C(t)φ(0) + S(ε)
∫ t−ε

0
S(t − ε − s)g(s, xs)dW(s) + S(ε)

∫ t−ε

0
S(t − ε − s)Bu(s)ds.

(3.25)

Since C(t), S(t), t > 0, are compact, it follows that Vε(t) = {(πε
2x)(t) : x ∈ BN} is precompact

in H for every 0 < ε < t. Moreover, for each x ∈ BN , we have

E
∥∥(π2x)(t) −

(
πε
2x

)
(t)

∥∥2 ≤ 2 tr(Q)M2
∫ t

t−ε
E
∥∥g(s, xs)

∥∥2
ds + 2M2

∫ t

t−ε
E‖Bu(s)‖2ds

≤ ε2M2
[
tr(Q)E

(∥∥ϕ
∥∥2 + 1

)
+U

]
−→ 0 as ε −→ 0+

(3.26)

which means that there are precompact sets arbitrary close to the set V (t). Thus, V (t) is
precompact in BN .

Finally, from the assumptions on g, it is obvious that π2 is continuous. Thus, Arzelá-
Ascoli theorem yields that π2 is compact. Therefore, π is a condensing map on B N .

4. Applications

In this section, we now give an example to illustrate the theory obtained. Considering the
following impulsive neutral second-order stochastic differential equation:

d

[
∂x(t, z)

∂t
+ a(t)x(t, z)

]
=

∂2

∂z2
x(t, z)dt + σ(t, x(t, z))dW(t), t ∈ [0, 1]

x(t, 0) = x(t, π) = 0, t ∈ [0, 1],
∂x(0, z)

∂t
= x1(z), z ∈ [0, π]

Δx(tk)(z) = Ik(x(tk))(z), Δx′(tk)(z) = Ĩk(x(tk))(z), t = tk,

(4.1)



12 Mathematical Problems in Engineering

to rewrite (4.1) into the abstract form of (1.1), let H = L2[0, π], A : H → H be an operator
by Ax = x′′ with domain

D(A) =
{
x ∈ H : x, x′ are absolutely continuous, x′′ ∈ H, x(0) = x(π) = 0

}
. (4.2)

It is well known that A is the infinitesimal generator of a strongly continuous cosine family
{C(t) : t ∈ R} inH and is given by

C(t)x =
∞∑

n=1

cos(nt)〈x, en〉en, x ∈ H, (4.3)

where en(ξ) =
√
2/π sin(nξ) and i = 1, 2, . . . is the orthogonal set of eigenvalues of A. The

associated sine family {S(t) : t > 0} is compact and is given by

S(t)x =
∞∑

n=1

1
n
sin(nt)〈x, en〉en, x ∈ H. (4.4)

Thus, we can impose some suitable conditions on the above functions to verify the condition
in Theorem 3.2.

5. Conclusions

In this paper, we have studied the controllability of second-order impulsive evolution
equations. Through the Sadovskii fixed point theorem and the theory of strongly continuous
cosine families of operators, we have investigated the sufficient conditions for the
controllability of the system considered. At last, an example is provided to show the
usefulness and effectiveness of proposed controllability results.
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