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Pseudospectral methods (PMs) for solving general optimal control problems (OCPs) attract an
increasing amount of research and application in engineering. It is challenging to improve the
convergence rate, the solution accuracy, and the applicability of PMs, especially for nonsmooth
problems. Existing hp-adaptive PMs consider only one heuristic criterion, which cannot produce
satisfactory performance inmany cases. In this paper, we propose a novel methodwhich integrates
multicriterion to hp-adaptive PM, in order to further improve the performance. For this purpose,
we first devise an OCP solving framework of hp-adaptive PM. We then design a multicriterion hp-
adaptive strategy which introduces prior knowledge, intermediate error and curvature as useful
criterions for adaptive refinement. We last present an iterative procedure for solving general
nonlinear OCPs. Results from two examples show that our method significantly outperforms
competitors on the convergence rate and the solution accuracy. The method is practical and
effective for direct solving of various OCPs in a broad range of engineering.

1. Introduction

There exist a large number of optimal control problems (OCPs) in the engineering area,
such as aircraft trajectory optimization, robotic control, space rendezvous and docking, lunar
landing trajectory design, wave maker, energy production, fatigue test, and so on [1–9].
Numerical solving methods for OCPs fall into two categories which are indirect methods and
direct methods, respectively. Indirect methods require rigidly necessary conditions which
often cannot be obtained in engineering practice. In direct methods, an OCP is transcribed
into a finite-dimensional nonlinear programming problem (NLP), in which the necessary
conditions from the calculus of variations are not rigorous. Direct methods are becoming
more and more popular for solving various OCPs with the well development of computer
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technology [1]. As a major class of direct methods, pseudospectral method (PM) attracts
more and more attention from academic research and engineering application [2]. For
example, SIAM news reported that PM was successfully applied to optimal control and
motion planning of the international space station in 2007. The application helped NASA
to save about one million dollars in three hours [3].

The basic principle of PM is to approximate the state using a set of basis functions
while a set of differential algebraic constraints are enforced at a finite number of collocation
points. How to divide the element intervals and adjust the degree of basis function
polynomial are two key components. Three kinds of approach are usually employed in
order to achieve a specified error tolerance. The first one is named h-method, which uses
many low-degree approximating subintervals. The terminology “h” denotes the method
in which the degree of the elements is fixed and convergence is achieved by refining the
mesh size h. The name of second one is p-method, which utilizes a few fixed numbers of
intervals with a variable degree polynomial in each interval. The terminology “p” denotes
the method fixes the mesh and achieves convergence by increasing the polynomial degree p
of the elements. And the third approach is classified as hp-adaptive method, which allows for
a variable number of approximating intervals with a variable degree approximation within
each interval. The terminology “hp” denotes the method which allows for refinement in both
the element size h, and the polynomial degree p simultaneously. The three approaches derive
from the finite element method (FEM) in mechanics and fluid dynamics [10, 11], which are
h-FEM, p-FEM, and hp-adaptive FEM, respectively.

Gauss PM (GPM) [12], Radau PM (RPM) [13], and Lobatto PM (LPM) [14] are
three most well-developed PMs. The collocation points of them are based on accurate
quadrature rules. Their basis functions are typically Chebyshev or Lagrange polynomial.
They all belong to p-methods and they achieve convergence by increasing the degree of
basis function polynomial. p-methods have a simple structure and converge at an exponential
rate for problems which their solutions are infinitely smooth [15, 16]. However, many OCPs
in engineering have either nonsmooth solutions or nonsmooth problem formulations. The
nonsmooth feature results in low convergence in p-methods and leads to an extremely large
NLP in h-methods.

It is natural to combine the strongpoint of h-methods and p-methods to form a class
of hp-adaptive methods to improve the applicability of PM. One typical hp-adaptive method
was proposed by Darby et al. in [17], their method is based on the relative curvature. If the
ratio between the maximum curvature and the average curvature is sufficiently large, then
the error is decreased by refining the mesh; the process is called h-refinement. Otherwise,
the accuracy is improved by increasing the degree of approximating polynomial within an
element; the process is named p-refinement. Another adaptive strategy decides h-refinement
or p-refinement according to the convergence rate in each element [18]. The h-refinement
is adopted only when exponential convergence is lost in an existing element. Based on the
observation, single criterion is used by the aforementioned hp-adaptive methods. There are
various widely used criterions, heuristic mechanisms, and adaptive strategies in the FEM
area, which are of great help for us to design a more efficient hybrid adaptive algorithm.

hp-adaptive methods attract increasing amount of attentions in the research of FEM
[11, 19–25]. Babuška discussed the mathematical properties of p- and hp-adaptive methods
[10]. Galvão et al. addressed a hp-adaptive least-squares spectral element method (LS-
SEM) for solving hyperbolic partial differential equations [26]. Ben Dhia et al. proposed a
new adaptive method based on an optimal control approach for adaptive modeling of an
atomic-to-continuum coupling method constructed from the Arlequin framework [27]. In
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[28], Oden and Prudhomme expanded the adaptive control of modeling error to include
ideas of statistical calibration, validation, and uncertainty quantification. Dorao and Jakobsen
gave a use case of applying hp-adaptive LS-SEM for the population balance equation [29].
An hp-adaptive spectral solver for reactor modeling was given in [30]. Lu investigated the
adaptive mixed FEMs for parabolic optimal control problems and introduced an adaptive
algorithm based on posteriori error estimates to guide the mesh refinement [31]. Mitchell and
McClain summarized several hp-adaptive strategies in FEM [11]. These strategies include
prior knowledge of solution regularity, regularity estimation, type parameter, Texas three
steps strategy, prediction error, nonlinear programming, and so on. Texas three steps include
initialization, adaptive h-refinement, and adaptive p-refinement [32]. The adaptive strategy
uses intermediate error as a criterion, which reduces the number of iterations efficiently. An
adaptive strategy based on the local regularity of the solution was proposed in [33], which
includes a method for estimating the local regularity. The successful applications of various
hp-adaptive strategies in the FEM research give us a good deal of enlightenment. The heuristic
criterions and the adaptive strategies are valuable for developing an integratedmulticriterion
hp-adaptive PM for direct OCPs solving.

In this paper, we intend to integrate multicriterion to hp-adaptive PM, for the purpose
of further enhancing the performance of computation and approximation. We first devise
an OCP solving framework of hp-adaptive PM. We investigate the approximation method of
PM and the assessment of approximation error. In the framework, we focus on the algorithm
of adaptive strategy and refinement here, which is called hp-adaptive algorithm. We then
design a multicriterion hp-adaptive strategy which introduces prior knowledge, intermediate
error, and curvature as useful criterions. These heuristic criterions support both adaptive
strategy and adaptive refinement. The criterions of intermediate error and curvature are
complementary for adaptive strategy in various OCPs solving. After that strategy design,
we present an iterative algorithmic procedure. Our method converges by increasing the
polynomial degree in the smooth segments of a solution; meanwhile it adaptively refines
the mesh for the nonsmooth segments in an efficient way. Our evaluation results show that
the proposed method significantly outperforms hp-adaptive PM based on curvature and
effectively improves the convergence rate of computation and the accuracy of solution.

The remainder of this paper is organized as follows. Section 2 definesmultiple-interval
nonlinear continuous OCP in Bolza form. Section 3 describes the OCP solving framework
of hp-adaptive PM. Section 4 designs a novel multicriterion hp-adaptive strategy. Section 5
details our integrated multicriterion hp-adaptive PM. Section 6 provides two examples for
illustrating our method. Finally, Section 7 concludes the paper.

2. Multiple-Interval Nonlinear Continuous Optimal Control Problem

Consider the following multiple-interval nonlinear continuous optimal control problem in
Bolza form. Minimize the cost function

J = φ
(
x(t0), t0, x

(
tf
)
, tf
)
+
∫ tf

t0

g(x(t),u(t), t)dt (2.1)

subject to the dynamic constraints

dx
dt

= f(x(t),u(t), t), (2.2)
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the inequality path constraints

C(x(t),u(t), t) ≤ 0, (2.3)

and the boundary conditions

ψ
(
x(t0), t0, x

(
tf
)
, tf
)
= 0, (2.4)

where x(t) ∈ R
m is the state, u(t) ∈ R

n is the control, C(x(t),u(t), t) ∈ R
p is the control and

state constraints, t is time, t0 is the start time, and tf is the terminal time.
Next, consider dividing the nonlinear continuous optimal control problem defined

above into K element intervals. Let t0 < t1 < t2 < · · · < tK, where tK = tf is the terminal time.
An elements k is defined to begin at the mesh point tk−1 and end at the mesh point tk. The
time domain in each element k, t ∈ [tk−1, tk] is transformed to τ ∈ [−1, 1] by the formula

τ =
2t − (tk−1 + tk)

tk − tk−1 , (tk−1 < tk) (2.5)

τ0 ≡ −1, and τf ≡ 1. Furthermore, the inverse transformation is given as

t =
[(tk − tk−1)τ + (tk−1 + tk)]

2
. (2.6)

The nonlinear continuous-time optimal control problem on element [t0, tf], which is
defined by (2.1)–(2.4), can be expressed as a K element intervals problem. First, the cost
function of (2.1) can be written as

J = φ
(
x(1)(τ0), t0, x(K)(τf

)
, tK
)
+

K∑

k=1

[
tk − tk−1

2

∫ τf

τ0

g
(
x(k)(τ),u(k)(τ), τ ; t0, tK

)
dτ

]

. (2.7)

Next, the dynamics constraints, the boundary conditions, and the inequality path constraints
are given, respectively, as

dx(k)(τ)
dτ

=
tk − tk−1

2
f
(
x(k)(τ),u(k)(τ), τ ; t0, tK

)
, (k = 1, 2, . . . , K) (2.8)

ψ
(
x(1)(τ0), t0, x(K)(τf

)
, tK
)
= 0, (2.9)

tk − tk−1
2

C
(
x(k)(τ),u(k)(τ), τ ; t0, tK

)
≤ 0, (k = 1, 2, . . . , K) (2.10)

and continuity constraints at element interfaces

x(k)
(
τf
)
= x(k+1)(τ0), (k = 1, 2, . . . , K − 1). (2.11)
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Figure 1: Flow chart of hp-adaptive pseudospectral method.

3. Framework of Direct Optimal Control Problems Solving Using
hp-Adaptive Pseudospectral Method

3.1. Flow Chart of hp-Adaptive Pseudospectral Method

Pseudospectral method transcribes a continuous OCP into a nonlinear programming
problem (NLP). The flow chart of hp-adaptive PM is described in Figure 1. The major steps
include pseudospectral transcription, solving NLP, error estimate, and adaptive strategy and
refinement. In this paper, we choose Sparse Nonlinear OPTimizer (SNOPT) as theNLP solver.
Here we focus on the algorithm of adaptive strategy and refinement, which is called hp-
adaptive algorithm.

hp-adaptive algorithm refines mesh and basis function adaptively, which is the key
component of hp-adaptive PM. hp-adaptive algorithm involves hp-adaptive strategy, adaptive
h-refinement, and adaptive p-refinement. During an iterative procedure, the algorithm
assesses the approximation error of solution and analyses the curvature of state curve; and
then hp-adaptive strategy decides which refinement (h-refinement or p-refinement) is more
suitable. Adaptive h-refinement improves the accuracy of solution by refining the distribution
of meshes and collocation points. And the goal of adaptive p-refinement is to achieve
an exponential convergence rate by adjusting the degree of basis functions adaptively. In
general, hp-adaptive algorithm integrates the strongpoint of both h-methods and p-methods
to optimize the mesh and the polynomial degree of each element, which can simultaneously
improve accuracy and computational efficiency.

3.2. Transcribe OCP Using Pseudospectral Method

In this paper, we choose the RPM [12, 34] as the foundation for transcribing a OCP into
a NLP. For an element interval [tk−1, tk], t0 ≡ tk−1, tf ≡ tk, our method approximates the
states and controls via the local interpolating polynomials with variable low degree. The
state variables and the control variables in each element can be approximated by variable
low-order Lagrange interpolating polynomials, which are expressed as

x(τ) ≈ X(τ) =
N∑

i=0

X(τi)Li(τ), (3.1)

u(τ) ≈ U(τ) =
N∑

i=0

U(τi)Li(τ), (3.2)
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where (τ1, . . . τN)are collocation points, plus the start point τ0 ≡ −1, N is the number of
collocation points. Li(τ), (i = 0, 1, . . . ,N), is a basis of Lagrange polynomial with a variable
degree. Then differential constraint of (2.8) can be transcribed into the algebraically form

N∑

i=0

L̇i(τi)xi −
tf − t0

2
f
(
Xi,Ui, τ ; t0, tf

)
= 0, (3.3)

where Xi = X(τi), Ui = U(τi), (i = 1, . . . ,N). The initial state X0 ≡ X(τ0), and terminal state
Xf ≡ X(τf) satisfies Gauss quadrature formula

Xf ≡ X0 +
tf − t0

2

N∑

i=1

ωif
(
Xi,Ui, τi; t0, tf

)
= 0. (3.4)

Differentiating X(τ) in (3.1) with respect to τ , we get

dX(τ)
dτ

≡ Ẋ(τ) =
N∑

i=0

X(τi)L̇i(τ) =
N∑

i=0

X(τi)
dLi(τ)
dτ

. (3.5)

The continuous objective function of (2.7) can be approximated via LGR quadrature

J ≡ φ(X0, t0,Xf , tf
)
+
tf − t0

2

N∑

i=0

ωig
(
Xi,Ui, τ ; t0, tf

)
, (3.6)

whereωi is the weight coefficients of Gauss quadrature. And the boundary conditions of (2.9)
is

ψ
(
X0, t0,Xf , tf

)
= 0. (3.7)

Combining the state and control variances, the trajectory is constrained by

C
(
Xi,Ui, τi; t0, tf

) ≤ 0. (3.8)

Through the above process, a continuous Bolza OCP is transcribed into a limited dimensional
NLP.

3.3. Assessment of Approximation Error

In the iterative procedure, assessment of approximation error is not only a stopping criterion,
but also useful information for adaptive refinement. If local solution on a mesh element
has not satisfy the specified accuracy, then the distribution of collocation points needs to
be modified, either by increasing the polynomial degree on the element, or by redividing the
element.
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The state and control variables are approximated by basis function polynomials. For
the kth element interval [tk−1, tk] in mesh, (k = 1, 2, . . . , K), we firstly transform the interval
of variable t into the interval of τ ∈ [τ0, τf]. Then the approximation polynomials of terminal
state are given as

X̂k0 = Xk−10 +
N∑

i=0

f(Xi,Ui, τi; tk−1, tk)

= Xk−10 +
∫ τf

τ0

Ẋ(τ)dτ −
∫ τf

τ0

Ẋ(τ)dτ +
N∑

i=0

f(Xi,Ui, τi; tk−1, tk)

= Xk0 −
[∫ τf

τ0

(
N∑

i=0

X(τi)L̇i(τ)

)

dτ −
N∑

i=0

f(Xi,Ui, τi; tk−1, tk)

]

,

(3.9)

where N is the number of collocation points in the kth element, (i = 0, 1, . . . ,N). Hence the
local error of the element is given as

Xk0 − X̂k0 =
∫ τf

τ0

(
N∑

i=0

X(τi)L̇i(τ)

)

dτ −
N∑

i=0

f(Xi,Ui, τi; tk−1, tk). (3.10)

Furthermore, we can define the absolute error of the kth element interval as

εk =
1
hk

∣∣∣∣∣

∫ τf

τ0

(
N∑

i=0

X(τi)L̇i(τ)

)

dτ −
N∑

i=0

f(Xi,Ui, τi; tk−1, tk)

∣∣∣∣∣
, (3.11)

where hk = tk − tk−1 is the length of the kth element interval. And the maximum relative error
over all state variable components j of the differential equations is given by

η(k) = max
j

εk
ωj
, (3.12)

where

ωj =
1
N

N∑

i=0

∣∣xj,i
∣∣. (3.13)

ωj is the even value of the jth state variable on allN collocation points. η(k) is the maximum
relative error of all state variables on the kth element interval.

Let η̃ be a specified accuracy tolerance for the discretized differential algebraic
constraints. If the maximum violation of the differential algebraic equations in the kth
element η(k) is less than η̃, then the approximation of the kth element is considered to satisfy
the accuracy tolerance.
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4. Multicriterion hp-Adaptive Strategy Design

The local approximation error estimator indicates the element which should be refined, but
it does not indicate whether the element is better to refine by an h-refinement or by a p-
refinement. It is no longer sufficient to guide the adaptive refinement. A method for making
that determination is called hp-adaptive strategy. We learn the lesson of adaptive strategy in
FEM. Based on the observation, we propose three classes of useful criterion for hp-adaptive
strategy: prior knowledge, intermediate error, and curvature.

First, the priori knowledge of solution regularity is useful for hp-adaptive strategy. As
one criterion, it guides a p-refinement on the smooth segments and an h-refinement near
singularities or flections of state curve. For example, the linear elliptic partial differential
equations with smooth coefficients only have point singularities near corners of the boundary
and where boundary conditions change.

The priori knowledge-based criterion requires an estimator, which evaluates the
regularity value of intermediate approximate solution. Here we define the regularity value as
r. A method for estimating the local regularity of a solution on a given mesh was proposed
in [33], it indicated that

r ≈ 1 + α, (4.1)

where α is the parameter of a priori estimate for the error. α can be obtained from the previous
computation of the error estimator.

At the initial step of hp-adaptive strategy, the regularity value rk of approximate
solution on the kth element is readily available by initialization. Let p0

k
and pk, respectively,

denote the initial degree and current degree of basis polynomial in the k element. If pk+2 ≤ rk,
then p-refinement is performed, otherwise h-refinement is adopted. Furthermore, let p0k =
r0
k
− 2 be an optimal choice for initial p-refinement.

Second, intermediate error can be adopted as a criterion for hp-adaptive strategy.
Define an intermediate error

ηI = γη̃, (4.2)

where γ is a parameter generally ranging from 5 to 20, η̃ is a specified error tolerance, for
example let η̃ = 0.01 (1% error). An appropriate value of γ should make tradeoff between the
criterion of intermediate error and the criterion of curvature. From a lot of experimentations,
we find that an adopted γ between 5 and 20 effects good complement of the multicriterions.

For the element k in mesh, if the estimated error η(k) > ηI , it needs detailed h-
refinement. The criterion based on intermediate error should lead to distribute the error more
even on every subinterval. It has been shown that the error is equidistributed over all the
subintervals for an optimal mesh using h-refinement [11]. Hence, an optimal h-adaptivemesh
distribution should simultaneously reduce the global error and distribute the local error of
each element equably.
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Initial h-refinement: meshes division based on the
priori knowledge of singularities of state curve

Adaptive h-refinement Adaptive p-refinement

Initial p-refinement: for each mesh interval k

Solve the NLP and assess the approximation error

No

No

Yes
Yes

Set p0
k
= r0

k
− 2

η(k) > ηI rk ≥ rmax

Figure 2: Flow chart of multicriterion hp-adaptive strategy.

Third, curvature is another criterion for hp-adaptive strategy. The curvature of state
curve describes the regularity of intermediate solution. The curvature of the jth component
of the state in element k is given by

κ(k)(τ) =

∣∣∣Ẍ(k)
j (τ)

∣∣∣
∣∣∣∣
[
1 + Ẋ(k)

j (τ)2
]3/2∣∣∣∣

, (4.3)

where X
(k)
j (τ) is the jth component of the state approximation in the kth element [17].

Assume κ(k)max and κ(k) be the maximum and mean value of κ(k)(τ). Furthermore, the ratio
of the maximum curvature to the mean curvature is defined

rk =
κ
(k)
max

κ(k)
. (4.4)

For the element k in mesh, if rk < rmax (where rmax > 0 is a user-defined parameter),
then p-refinement is adopted and a larger degree polynomial is used to obtain a better
approximation. If rk ≥ rmax, then h-refinement is adopted in this element.

Furthermore, we design an hp-adaptive strategy via combining prior knowledge,
intermediate error and curvature as heuristic criterions. The flowchart of the integrated
multicriterion hp-adaptive strategy is described in Figure 2. The priori knowledge of
singularities or flections is adopted as heuristic criterion for initial h-refinement. The
assessment of solution regularity is used to determine the initial degree of p-refinement. In
the iterative procedure, the criterions of intermediate error and curvature are complementary
for adaptive strategy in various OCPs solving.
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5. Integrated Multicriterion hp-Adaptive Algorithm Procedure

In this section, we depict an integrated multicriterion hp-adaptive algorithm for a nonlinear
continuous OCP with K intervals. The algorithm mainly includes six procedures.

Step 1 (initialization). Firstly, the error tolerance η̃ is specified, for example η̃ = 0.01 (1%
error). Then the intermediate error ηI is specified, for example, ηI = 0.1. And rmax is specified,
for example rmax = 8.

Consider the initial h-refinement for each state equation, if the equation is a piecewise
function, the initial h-refinement is located at the switch points of piecewise function; if
there is a priori knowledge of singularities or flections of state curve, it guides the meshes
division also. If there is no information about switch points or singularities, a coarse initial
h-refinement is made with uniform mesh element size h0. The discrete approximation in
each element is defined by the set of Legendre-Gauss-Radau points. And for the initial p-
refinement, the polynomial-order of kth element is determined via the assessment of local
solution regularity, it is given as p0

k
= r0

k
− 2.

Step 2 (solve the NLP using the current mesh). The problem is transcribed into the NLP
on the current mesh, and then solving the NLP using sequential quadratic programming
(SQP). A posteriori error estimator is used to estimate the approximation errors for the
intermediate solution on each element, which is described in Section 3.3. The accuracy of the
approximation in each element is assessed by calculating the differential-algebraic constraints
on the collocation points.

Begin: For k = 1, 2, . . . , K.

Step 3. If η(k) ≤ η̃, then continue (proceed to next k + 1 element). η(k) is the approximation
error of the kth element in mesh.

Step 4 (adaptive h-refinement). If either η(k) > ηI , or rk ≥ rmax, then h-refine the kth element.
h-refinement keeps p = p0 fixed and adaptively constructs elements with varying size. It
maintains refinement until the solution achieves the intermediate error ηI and curvature ratio
rk < rmax. The new number of element intervals is computed by formula

nk =

⌈

log10

(
η(k)

η̃

)

+ ch × loge

(
η(k)

ηI

)⌉

=

⌈

log10

(
η(k)

η̃

)

+ ch × loge10 × log10

(
η(k)

ηI

)⌉

=

⎡

⎢⎢⎢
log10

(
η(k)

η̃

)

+ log10

(
η(k)

ηI

)ch×loge10
⎤

⎥⎥⎥

=

⎡

⎢⎢⎢
log10

⎛

⎝
(
η(k)

η̃

)

×
(
η(k)

ηI

)ch×loge10
⎞

⎠

⎤

⎥⎥⎥
,

(5.1)
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where η(k)/η̃ is the ratio between current estimative maximum error and the specified
error tolerance, η(k)/ηI is the ratio between current estimative maximum error and the
intermediate error, and �•� is the operator that rounds to the next integer. ch is an integer
constant as a parameter for adjusting iterative speed, for example, ch = 2. If there is some
prior knowledge about state curve, ch can be adjusted for flections.

Formula (5.1) determines a dissatisfactory element interval should be subdivided into
how many subelements by h-refinement. The formula is based on two ratios. The first part
depicts the approximation degree from the current error to the specified error tolerance; and
the second part indicates the approximation degree from the current error to the intermediate
error. They are calculated by the log operation, because h-refinement is hoped to attain an
exponential convergence for the nonsmooth segment of function. The choices of logarithm
are based on the quantity relation of the ratios. ch controls the growth in the number of
element intervals. If ch is sufficiently large, the algorithm will use less iteration to converge
to an acceptable solution, but the number of collocation points may increase quickly between
iterations. If ch is small, the mesh will increase slowly, but the algorithm may require many
iterations. An appropriate value of ch should make tradeoff between h-refinement and p-
refinement.

The locations of the new required-elements are determined using the integral of a
curvature density function in a manner similar to that given in [35]. Specifically, let ρ(τ)
be the density function given by

ρ(τ) = cκ(τ)1/3, (5.2)

where c is a constant to satisfy

∫+1

−1
ρ(ζ)dζ = 1. (5.3)

The density function expressed by (5.2) is a probability density function (pdf)with fractional
power-laws. Here we adopt 1/3 power in the function. In fact, from the point of view of
power-laws in stochastic processes and/or fractal time series, 1/3 power is a typical heavy-
tailed case. By heavy-tailed we mean that the density ρ(τ) decays slowly. And heavy-tailed
pdfs imply that τ is in wild randomness due to infinite or very large variance [36].

Let F(τ) be the cumulative distribution function given by

F(τ) =
∫ τ

−1
ρ(ζ)dζ. (5.4)

The nk new mesh points are chosen by

F(τ) =
i − 1
nk

, 1 ≤ i ≤ nk + 1. (5.5)

Finally, it is noted that if nk = 1, then no subintervals are created. Therefore, the minimum
value for nk is 2.
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Step 5 (adaptive p-refinement). p-refinement keeps mesh and the size of elements fixed. It
adjusts the degree of polynomials on each element until the final error is satisfied. The degree
of polynomial p̂k on the kth element is determined by

p̂k = pk +

⌈

log10

(
η(k)

η̃

)

+ loge

(
η(k)

ηI

)⌉

= pk +

⌈

log10

(
η(k)

η̃

)

+ loge10 × log10

(
η(k)

ηI

)⌉

= pk +

⎡

⎢
⎢
⎢
log10

(
η(k)

η̃

)

+ log10

(
η(k)

ηI

)loge10
⎤

⎥
⎥
⎥

= pk +

⎡

⎢⎢⎢
log10

⎛

⎝
(
η(k)

η̃

)

×
(
η(k)

ηI

)loge10
⎞

⎠

⎤

⎥⎥⎥
,

(5.6)

where pk is the initial degree of polynomial on this element. The growth in the polynomial
degree is related to the log of the error ratio; because of a smooth function always exhibits
exponential convergence in pseudospectral method.

End: For k = 1, 2, . . . , K.

Step 6 (return to Step 2). Our hp-adaptive algorithm integrates prior knowledge, intermediate
error, and curvature for adaptive strategy and refinement, which is fit for smooth or
nonsmooth problem. The illustration and comparison of our algorithm will be given by the
examples in next section.

Remark 5.1. The accuracy and efficiency of the PMs for solving numerical optimal control
problems have motivated the forefront of research. For continuous and smooth problems,
pseudospectral knots and Gaussian quadrature rules are used to generate a natural spectral
mesh that is dense near the points of interest. For nonsmooth problems, how to locate
switches, kinks, corners, and other discontinuities is a challenge for solving practical OCPs.
In our hp-adaptive algorithm procedure, adaptive h-refinement is devised to locate the knots
where the solution is subject to sudden changes, as in points of discontinuity. In fact, from the
point of view of stochastic processes, the curve of solution is higher order discontinuities in
the control time history. According to its statistic properties, it is fractal time series. In general,
fractal time series have a heavy-tailed probability distribution function, a slowly decayed
autocorrelation function (ACF), and a power spectrum function (PSD) of 1/f type [37]. In
our approach, we design the density function expressed by (5.2). We adopt the 1/3 power, the
density decays slowly, accordingly, heavy-tailed density. In our research of the practical OCP
in engineering, such as aerospace engineering or mechanical engineering, the nonsmoothness
and discontinuities are attributed to the differential dynamic and the constraint of system.
The output or response of a differential system can be considered as a fractal time series
[37, 38]. The density functions for mesh refinement in numerical optimal control are an
instance of power-law-type pdf. The key problem of h-refinement is to find an appropriate
density function. We mean that an appropriate choice of density function may help increase
the accuracy of the solution and improve numerical robustness. Hence the theory of fractal
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time series and power-laws would guide the choice. Li gives a tutorial review about fractal
time series [37]. The locally weak stationarity of modified multifractional Gaussian noise
is discussed in [39], which presents a set of stationary ranges. One-dimensional random
function with long memory is introduced to model the sea level fluctuation [40]. Topics
in power-laws are paid attention too, see for example, the contribution of approximating
ideal filters by systems of fractional order in [41], the work of addressing power laws in
cyber-physical networking systems in [36], the contribution of simplicial approach to fractal
structures by Cattani et al. in [42], and the work of Li et al. in [38].

6. Numerical Examples

In this section, we present two numerical examples to illustrate the convergence rate and
the applicability of the proposed method. The first example is a hypersensitive OCP, which
solution has dramatic change on the “take-off” and “landing” segments. And the second
example is a reusable launch vehicle re-entry trajectory optimization. The experimentations
compare three algorithms: GPM [12], hp-adaptive PM based on curvature [17], and our
integrated multicriterion hp-adaptive PM. For conciseness, the three algorithms are denoted
by p, hp(1), hp(2), respectively. All CPU time recorded in table is whole time of iteration,
which includes the time required to solve the NLP and the time required to refine the meshes.
The program of these algorithms is expanded from open-source software GPOPS [43]. The
transcribed NLP is solved by SNOPT [44, 45], using a 2.4-GHz Core 2 Duo, 2G DDR RAM
personal computer with MATLAB R2009b. For all examples, the following values are chosen
for the parameters described in Section 4: rmax = 8 and γ = 10. In hp(1) and hp(2), themaximum
number of collocation points on each mesh is 20, and the upper bound of iteration times is
20.

Example 6.1. Consider the following hypersensitive OCP adapted from [46]. It is a
Hamiltonian boundary value OCP in long time interval. Minimize the cost function

J =
1
2

∫ tf

0

(
x2 + u2

)
dt, (6.1)

subject to the dynamic constraint

ẋ = −x3 + u, (6.2)

and the boundary conditions

x(0) = 1.5, x
(
tf
)
= 1, (6.3)

where tf is fixed. This problem has a “take-off”, “cruise”, and “landing” structure where all
of the interesting behaviors occur in the “take-off” and “landing” segments. In this example,
tf = 1000.

The specification of initial grid is listed in Table 1. The efficiency and accuracy of
various methods are listed in Table 2. Figure 3 shows the state and control curve of solution
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Figure 3: State and control curve on the final mesh of Example 6.1 for hp(2)-3 and η̃ = 1e − 3.

Table 1: Initial grid used in Example 6.1.

Strategy Number of collocation points Number of intervals
p 60 1
hp(1)-5, hp(2)-5 10 5
hp(1)-3, hp(2)-3 10 3

on the final mesh for hp(2)-3 method, at the accuracy tolerance grade η̃ = 1e − 3. The rings
denote the location of collocation points. From analysis of these records, some results are
illustrated.

First, hp-adaptive methods hp(1) and hp(2) outperform p-method in computational
efficiency and approximation error. The results are better at all three accuracy tolerance
grades. p-method even cannot achieve 1e − 3 accuracy tolerance forever. Because p-method
does not refinemesh, which results in the transcribedNLP is dense for this kind of nonsmooth
problem. It incurs dramatic increase of computation time but low accuracy of approximation.

Second, the proposed hp(2) method is better than hp(1) method in computational
efficiency. At all three accuracy tolerance grades, the count of collocation points for hp(2)-3,
hp(2)-5 is less than the count of hp(1)-3, hp(1)-5, respectively. The use of prior knowledge can
get an accurate initial mesh. The criterion of intermediate error optimizes the distribution of
collocation points.

Third, the count of collocation points for hp-3 is less than the count of hp-5, but hp-3
method needs more iterations. From the comparison of experimental records, hp(2)-3 is the
best method for solving this problem, which attains the fastest computational efficiency and
the least approximation error.

Fourth, as shown in Figure 3, the state and control curves rapid change on the “take-
off” and “landing” segments, where the relatively dense collocation points are distributed via
the hp-adaptive algorithm. Meanwhile, the distribution of collocation points on the smooth
segments is sparse. Compared with p-method and hp(1) method, our hp(2) method improves
computational efficiency and reduces approximation error for this kind of nonsmooth OCP
solving.

Example 6.2. Reusable launch vehicle re-entry trajectory optimization is an OCP of
maximizing the cross range during the atmospheric entry [1]. Minimize the cost function

J = −φ(tf
)
, (6.4)
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Table 2: Summary of results for Example 6.1 using various collocation strategies and accuracy tolerances.

η̃ Strategy Approximate error Collocation points Elements Mesh iterations CPU time (s)
p 9.23e − 2 203 1 50 197.36

hp(1)-5 6.51e − 2 366 72 8 66.90
1e − 2 hp(2)-5 2.92e − 2 269 52 8 25.49

hp(1)-3 5.03e − 2 337 102 10 49.67
hp(2)-3 1.89e − 2 244 68 9 21.08
p — — — — —

hp(1)-5 8.63e − 3 478 93 8 91.85
1e − 3 hp(2)-5 4.10e − 3 347 66 7 42.93

hp(1)-3 6.45e − 3 436 125 11 82.72
hp(2)-3 2.17e − 3 329 87 9 39.80
p — — — — —

hp(1)-5 7.14e − 4 614 119 9 117.22
1e − 4 hp(2)-5 6.59e − 4 426 75 8 66.08

hp(1)-3 6.97e − 4 565 152 11 107.79
hp(2)-3 3.86e − 4 407 108 10 56.16

subject to the differential dynamic constraint

ṙ = v sin γ, v̇ =
D

m
− g sin γ,

θ̇ =
v cos γ sinψ

r
, γ̇ = L

cosσ
mv

−
(
g

v
− v

r

)
cos γ,

φ̇ =
v cos γ cosψ

r
, ψ̇ =

L sinσ
mv cos γ

+
v cos γ sinψ tanφ

r
,

(6.5)

and the boundary conditions

r(0) = 79248 + Rem, r
(
tf
)
= 24384 + Rem,

θ(0) = 0 deg, θ
(
tf
)
= Free,

φ(0) = 0 deg, φ
(
tf
)
= Free,

v(0) = 7803m/s, v
(
tf
)
= 762m/s,

γ(0) = −1 deg, γ
(
tf
)
= −5 deg,

ψ(0) = 90 deg, ψ
(
tf
)
= Free,

(6.6)

where r is the geocentric radius, θ is the longitude, φ is the latitude, v is the speed, γ is the
flight path angle, ψ is the azimuth angle, and σ is the bank angle. The radius of the earth
Re = 6371203.92m.

The specification of initial grid is listed in Table 3. The efficiency and accuracy of
various methods are listed in Table 4. Figure 4 shows the state and control curve of solution
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Table 3: Initial grid used in Example 6.2.

Strategy Number of collocation points Number of intervals
p 50 1
hp(1)-6, hp(2)-6 10 6
hp(1)-4, hp(2)-4 10 4

Table 4: Summary of results for Example 6.2 using various collocation strategies and accuracy tolerances.

η̃ Strategy Approximate error Collocation points Elements Mesh iterations CPU time (s)
p 7.61e − 3 58 1 4 70.88

hp(1)-6 5.12e − 3 90 18 2 19.55
1e − 3 hp(2)-6 3.55e − 3 70 12 3 18.05

hp(1)-4 6.81e − 3 113 32 4 32.55
hp(2)-4 4.19e − 3 83 18 4 19.66
p 9.17e − 4 75 1 12 88.94

hp(1)-6 4.08e − 4 151 29 6 33.76
1e − 4 hp(2)-6 3.23e − 4 122 21 4 24.89

hp(1)-4 7.99e − 4 202 56 6 63.71
hp(2)-4 5.83e − 4 153 34 4 40.24
p 9.74e − 5 90 1 16 99.50

hp(1)-6 8.02e − 5 214 40 6 63.64
1e − 5 hp(2)-6 7.50e − 5 183 32 5 53.44

hp(1)-4 8.93e − 5 293 70 5 89.46
hp(2)-4 7.69e − 5 251 51 5 84.88

on the final mesh for hp(2)-6 method, at the accuracy tolerance grade η̃ = 1e− 4. The state and
control curves are relatively smooth for this example. From analysis of these records, some
results are illustrated.

First, hp-adaptive methods hp(1) and hp(2) are similar or better than p-method in this
example. p-method can achieve 1e − 5 accuracy tolerance and has the fewest number of
collocation points, but it needs much iteration. The computational time of p-method is longer
than hp-adaptive methods. The low computational efficiency of p-method is due to the fact
that the transcribed NLP is dense.

Second, our hp(2) method outperforms hp(1) method in computational efficiency. The
count of collocation points for hp(2) is less than the count of hp(1) at three accuracy tolerance
grades. The comparison illustrates that the distribution of collocation points via hp(2) is better
than the distribution via hp(1).

Third, the count of collocation points for hp-6 is less than the count of hp-4. Based on
the comparison of experimental records, hp(2)-6 is the best method for solving this problem,
which has the fastest computational efficiency and the least approximation error. In general,
our method is feasible and improves computational efficiency for this kind of smooth OCP
solving.

Remark 6.3. The results of examples highlight several points of p-methods and hp-adaptive
methods. p-methods are fit for solving problems which their solutions are smooth. hp-
adaptive methods perform similarly or better to p-methods for smooth problems. For
nonsmooth problems, p-methods cannot accurately capture the discontinuities and rapid
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Figure 4: State and control curve on the final mesh of Example 6.2 for hp(2)-6 and η̃ = 1e − 4.
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changes in the trajectory. They only achieve low-accuracy even with much iteration. When
a high-accuracy tolerance is required to satisfy, hp-adaptive methods are the likeliest
candidates. They transcribe the OCPs into the NLPs with computational sparsity, which leads
to the reduction of execution time. Compared with hp-adaptive PM based on curvature,
our method is more efficient in the convergence rate; meanwhile the solutions achieve a
comparable or better accuracy. The prior knowledge and the criterion of intermediate error
leverage the enhancement of performance. The prior knowledge guides an accurate initial
mesh, and the criterion of intermediate error optimizes the distribution of collocation points.

7. Conclusions

PMs become increasingly popular for direct OCPs solving in the engineering area. It is
challenging to improve the convergence rate, the solution accuracy, and the applicability
of algorithms, especially for nonsmooth problems. In this paper, we proposed a novel
method which integrates multicriterion to hp-adaptive PM, in order to further improve
the performance of computation and approximation. For this purpose, we first devised an
OCP solving framework of hp-adaptive PM. We then designed a multicriterion hp-adaptive
strategy which introduces prior knowledge, intermediate error, and curvature as useful
criterions for adaptive refinement. The criterions of intermediate error and curvature were
complementary for adaptive strategy in various OCPs solving. We last proposed an iterative
procedure for solving general nonlinear OCPs. Our method converged by increasing the
polynomial degree in the smooth segments of a solution; meanwhile it adaptively refined the
mesh for the nonsmooth segments in an efficient way. Results from examples showed that
our method significantly outperforms hp-adaptive PM based on curvature and effectively
improves the convergence rate of computation and the accuracy of solution. Meanwhile, it
enhances the applicability of hp-adaptive PMs for solving various OCPs.

For the future work, we will evaluate the performance of the proposed method using
more OCPs in the engineering area. We will also try to exploit other valuable criterions for
hp-adaptive method, which may further improve the convergence rate and the applicability
of PMs. In addition, the choices of initial grid of PMs and the values of parameters (γ ,
rmax, and ch) will be further researched for various problems. Different problem types will
need dissimilar parameters for fast solving. Another topic is applying fractal time series and
power-laws to guide the choice of density function for various problems. This point itself is
an issue worth discussing in our future work.

Appendix

Basis of the Pseudospectral Method

Much of the details of pseudospectral methods (PMs) are extensively described elsewhere
[2, 15, 16, 34]; here, we briefly summarize the basis of the PM. The basic principle of a PM is
to solve the continuous optimal control problem (OCP) by discretizing it to the NLP problem.
The whole process mainly includes three steps. First, the horizon of a continuous OCP is
mapped to a finite spectral interval [−1, 1]. Second, a PM is applied to discretize the problem.
The discretized problem generates a sequence of approximate problems parameterized by
the size of the grid. In the third step, each discretized problem in this sequence is solved
by a globally convergent sequential quadratic programming (SQP) technique. In the PMs,
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the functions are approximated by Lagrange interpolating polynomials of orderN in which
interpolation occurs at Gaussian quadrature points. There are three different families of Gauss
quadrature points known as Legendre-Gauss, Legendre-Gauss-Radau, and Legendre-Gauss-
Lobatto. Gauss PM (GPM) [12], Radau PM (RPM) [13], and Lobatto PM (LPM) [14] are
the three most well-developed PMs. The collocation points of them are based on accurate
quadrature rules. Their basis functions are typically Chebyshev or Lagrange polynomial.

Here we describe the procedure of GPM as an illustrative method. The GPM
approximates the state using a basis of global interpolating Lagrange polynomials. These
global polynomials are based on a set of discrete Legendre-Gauss (LG) points across the
interval.

The standard interval considered here is denoted as τ ∈ [−1, 1]. By using a linear
transformation, the actual time t can be expressed as a function of τ via

t =

[(
tf − t0

)
τ +
(
tf + t0

)]

2
, τ =

2t
(
tf − t0

) −
(
tf + t0

)

(
tf − t0

) , (A.1)

where t0 and tf stand for the initial and final time, respectively.
The state is approximated using a basis ofN + 1 Lagrange interpolating polynomials,

Li(τ) (i = 0, . . . ,N), as follows:

x(τ) ≈ X(τ) =
N∑

i=0

X(τi)Li(τ), (A.2)

where

Li(τ) =
N∏

j=0,j /= i

τ − τj
τi − τj , (A.3)

where τi, (i = 0, . . . ,N) are the LG points belonging to the set.
An approximation to the control, U(τ), is formed with a basis of N Lagrange

interpolating polynomials, L̃i(τ) (i = 1, . . . ,N), as follows:

u(τ) ≈ U(τ) =
N∑

i=1

U(τi)L̃i(τ). (A.4)

The differential dynamic constraints should be posed to ensure that the entire discrete
state satisfies the dynamic equations. The left-hand side of the dynamic equations is
approximated by differentiating the state approximation of (A.1) at the LG points as follows:

ẋ(τk) ≈ Ẋ(τk) =
N∑

i=0

X(τi)L̇i(τk) =
N∑

i=0

DkiX(τi), (k = 1, . . . ,N). (A.5)



20 Mathematical Problems in Engineering

The differentiation matrix,D ∈ R
N×(N+1), can be determined offline from dynamic equations:

Dki = L̇i(τk) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 + τk)ṖN(τk) + PN(τk)
(τk − τi)

[
(1 + τi)ṖN(τi) + PN(τi)

] , i /= k

(1 + τi)P̈N(τi) + 2ṖN(τi)
2
[
(1 + τi)ṖN(τi) + PN(τi)

] , i = k.

(A.6)

The N collocation equations require (A.5) to be equal to the right-hand side of the
dynamic equations at the collocation points:

N∑

i=0

DkiX(τi) −
tf − t0

2
f
(
X(τk), U(τk), τk; t0, tf

)
= 0, (k = 1, . . . ,N). (A.7)

As it is shown shortly, collocating strictly on the interior of the interval leads to a
unique mathematical equivalence used to approximate the costate.

Combining the state and control variances, the constraints are discretized as follows:

C
(
Xk,Uk, τk; t0, tf

) ≤ 0. (A.8)

Lastly, the integral term in the cost functional can be approximated with a Gauss
quadrature as follows:

J = Φ
(
X0, t0, Xf , tf

)
+
tf − t0

2

N∑

k=1

ωkg
(
Xk,Uk, τk; t0, tf

)
, (A.9)

where ωk is the weight coefficient of Gauss quadrature.
Through the above process, a continuous OCP is transcribed into a limited

dimensional NLP. The formulation is as follows:

min F(y)

s.t. gj(y) ≤ 0, j = 1, 2, . . . , p

hk(y) = 0, k = 1, 2, . . . , q.

(A.10)

The transcribed NLP can be solved by well-developed algorithms, such as SQP,
interior point method, particle swarm optimization and so on.
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[10] I. Babuška and M. Suri, “The p and h-p versions of the finite element method, basic principles and
properties,” SIAM Review, vol. 36, no. 4, pp. 578–632, 1994.

[11] W. F. Mitchell and M. A. McClain, “A survey of hp-adaptive strategies for elliptic partial differential
equations,” in Recent Advances in Computational and Applied Mathematics, pp. 227–258, Springer,
Amsterdam, The Netherlands, 2011.

[12] D. A. Benson, G. T. Huntington, T. P. Thorvaldsen, and A. V. Rao, “Direct trajectory optimization and
costate estimation via an orthogonal collocation method,” Journal of Guidance, Control, and Dynamics,
vol. 29, no. 6, pp. 1435–1440, 2006.

[13] D. Garg, M. A. Patterson, C. L. Darby et al., “Direct trajectory optimization and costate estimation of
finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method,”
Computational Optimization and Applications, vol. 49, no. 2, pp. 335–358, 2011.

[14] G. Elnagar, M. A. Kazemi, and M. Razzaghi, “The pseudospectral Legendre method for discretizing
optimal control problems,” IEEE Transactions on Automatic Control, vol. 40, no. 10, pp. 1793–1796, 1995.

[15] B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge Monographs on Applied and
Computational Mathematics, Cambridge University Press, New York, NY, USA, 1998.

[16] Q. Gong, F. Fahroo, and I. M. Ross, “Spectral algorithm for pseudospectral methods in optimal
control,” Journal of Guidance, Control, and Dynamics, vol. 31, no. 3, pp. 460–471, 2008.

[17] C. L. Darby, W. W. Hager, and A. V. Rao, “Direct trajectory optimization using a variable low-order
adaptive pseudospectral method,” Journal of Spacecraft and Rockets, vol. 48, no. 3, pp. 433–445, 2011.

[18] C. L. Darby, W.W. Hager, and A. V. Rao, “An hp-adaptive pseudospectral method for solving optimal
control problems,” Optimal Control Applications & Methods, vol. 32, no. 4, pp. 476–502, 2011.

[19] A. K. Patra, A. Laszloffy, and J. Long, “Data structures and load balancing for parallel adaptive hp
finite-element methods,” Computers andMathematics with Applications, vol. 46, no. 1, pp. 105–123, 2003.

[20] L. Demkowicz, W. Rachowicz, and Ph. Devloo, “A fully automatic hp-adaptivity,” Journal of Scientific
Computing, vol. 17, no. 1–4, pp. 117–142, 2002.

[21] L. Demkowicz, “Computing with hp-adaptive finite elements,” inOne and Two Dimensional Elliptic and
Maxwell Problems, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2007.
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