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We consider European options pricing with double jumps and stochastic volatility. We derived
closed-form solutions for European call options in a double exponential jump-diffusion model
with stochastic volatility(SVDEJD). We developed fast and accurate numerical solutions by using
fast Fourier transform (FFT) technique. We compared the density of our model with those of other
models, including the Black-Scholes model and the double exponential jump-diffusion model. At
last, we analyzed several effects on option prices under the proposedmodel. Simulations show that
the SVDEJD model is suitable for modelling the long-time real-market changes and stock returns
are negatively correlated with volatility. The model and the proposed option pricing method are
useful for empirical analysis of asset returns and managing the corporate credit risks.

1. Introduction

The classical Black-Scholes (BS) model [1] has long been known to result in systematically
biased option valuation. By adding jumps to the archetypal price process with Gaussian
innovations Merton [2] is able to partly explain the observed deviations from the benchmark
model which are characterized by fat tail and excess kurtosis in the returns distribution.
For an overview of “stylized facts” on asset returns see Cont [3]. Statistical properties of
implied volatilities are summarized in Cont et al. [4]. In the sequel also other authors develop
more realistic models, for example, the pure jump models of Eberlein and Keller [5], Madan
et al. [6], and Duffie et al. [7], stochastic volatility models of Steven [8], and stochastic
volatility model with normal jumps of Bates [9] and Keppo et al. [10]. The double exponential
jump-diffusion (DEJD) model, recently proposed by Kou [11], generates a highly skewed
and leptokurtic distribution and is capable of matching key features of stock and index
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returns. Moreover, the DEJD model leads to tractable pricing formulas for exotic and path
dependent options [12]. Accordingly, the DEJDmodel has gained wide acceptance. However,
the DEJD model cannot capture the volatility clustering effects, which can be captured by
stochastic volatility models [13]. Jump-diffusion models and the stochastic volatility model
complement each other: the stochastic volatility model can incorporate dependent structures
better, while the DEJD model has better analytical tractability, especially for path-dependent
options. Since allowing interest rates to be stochastic does not improve pricing performance
any further [14], the model that combines stochastic volatility and double exponential jump-
diffusion (SVDEJD)may be more reasonable.

In the BS setting, the probability measure has a well-known analytic form [15], but,
under stochastic volatility, it can only be obtained numerically. Monte Carlo simulation and
the finite difference method are usually used to value the options. But, the two techniques
require substantially more computing time and thus are difficult to be applied in real option
pricing. Recently, being fast, accurate, and easy to implement, Fourier transforms have been
widely used in valuing financial derivatives, for example, Carr and Madan [16] propose
Fourier transforms with respect to log-strike price; Duffie et al. [7] offer a comprehensive
survey that the Fourier methods are applicable to a wide range of stochastic processes;
Carr and Wu [17] apply the transforms to time-changed Lévy processes and the class of
generalized affine models. Hurd and Zhou [18] express the spread option payoff in terms
of the gamma function and FFT technique. For an overview of option pricing using Fourier
transforms, see Schmelzle [19].

The current paper extends the study of option pricing under the DEJD model in
three ways. First, we propose a model which combines the double jumps and stochastic
volatility. Second, using the martingale method, Fourier transform formula, and Feynman-
Kac theorem, we obtain a closed-form solution for European call options pricing under the
proposed model. Third, we obtain fast and accurate numerical solutions for European call
options pricing by FFT technique.

The rest of the paper is organized as follows. Section 2 develops the underlying pricing
model. Section 3 derives a closed-form solution for European call options pricing under
the proposed model. Section 4 provides approximation solutions for European call options
pricing by FFT technique. Section 5 numerically compares the density of the solutions to the
alternativemodels and analyzes several effects on potion prices. Section 6 concludes. Applied
program codes in Matlab package are presented in the appendix.

2. The Model

We consider an arbitrage-free, frictionless financial market where only riskless asset B and
risky asset S are traded continuously up to a fixed horizon date T . Let {Ω,F, {Ft}0≤t≤T , P}
be a complete probability space with a filtration satisfying the usual conditions, that is, the
filtration is continuous on the right and F0 contains all P -null sets. SupposeW(t),Wv(t) are
both standard Brownian motion, which is Ft adapted, andW(t) has correlation ρwithWv(t).

Let S(t) represent the price for a stock or a stock portfolio. Generally, instantaneous
variance of asset returns in financial markets shows randomness; thus, the continuous part
of the price process, defined as Sc(t), is

dSc(t) = rSc(t)dt + σ
√
V (t)Sc(t)dW(t), (2.1)
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where r is risk-free rate and σ is nonnegative constant, and suppose Sc(0) = s, which can
be set equal to 1 without any loss of generality. The size of the diffusion component is
determined by V (t), which represents, absent of any jump occurring, the level of (stochastic)
return variance attributable to diffusion variations. For tractability, let V (t) follow a square-
root process:

dV (t) = (θv − αvV (t))dt + σv
√
V (t)dWv(t), (2.2)

where nonnegative constants θv, θv/αv, and σv, respectively, reflect the speed of adjustment,
the long-run mean, and the variation coefficient of V (t), and suppose V (0) = V0.

It has been suggested from extensive empirical studies that markets tend to have
both overreaction and underreaction to various good or bad news. One may interpret the
jump part of the model as the market response to outside news. Good or bad news arrives
according to a Poisson process, and the asset price changes in response according to the jump
size distribution. According to Kou [11], the jumps in the log-price are modeled as a sequence
of i.i.d. nonnegative random variables that occur at times determined by an independent
Poisson process N(t) with constant intensity λ > 0 such that Y = lnU has an asymmetric
double exponential distribution with the density

fY
(
y
)
= pη1e−η1y1y≥0 + qη2eη2y1y<0, η1 > 1, η2 > 0, (2.3)

where 1 denotes the indicator function, so 1y ≥ 0 equals 1 if y ≥ 0, but 0 otherwise. p, q ≥
0, p + q = 1 are up-move jump and down-move jump, respectively. Except for W(t) which
has correlation with Wv(t), all sources of randomness, W(t),Wv(t),N(t), Yj , and N(t), are
assumed to be independent.

Because of jumps and stochastic volatility, the risk-neutral probability measure is
not unique. Following Naik and Lee [20] and Kou [11], by using the rational expectations
argument with a HARA-type utility function for the representative agent, one can choose
a particular risk-neutral measure P ∗ so that the equilibrium price of an option is given by
the expectation under this risk-neutral measure of the discounted option payoff. Throughout
this paper, we assume that there exists a martingale probability measure P ∗ being equivalent
to P . Let X(t) be the sum of all the jumps which occur up to and including time t, J(t) =
exp[X(t)] − E[exp(X(t))], we have

J(t) = exp
[
X(t) − λt

(
pη1
η1 − 1

+
qη2
η2 + 1

− 1
)]

. (2.4)

Obviously, J(t) is a P -martingale. Finally, the price process S(t) is defined as

S(t) = Sc(t)J(t). (2.5)

Remark 2.1. Themodel contains most existingmodels as special cases. For example, we obtain
(1) the BS model by setting λ = 0 and θv = αv = σv = 0; (2) the SV model by setting λ = 0;
(3) the DEJD model by setting θv = αv = σv = 0.
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Let dW(t) = ρdWv(t) +
√
1 − ρ2dZ(t), where Z(t) is standard Brownian motion that is

Ft adapted, and independent of Wv(t), N(t), and random variables Uj . From Itŏ’s formula,
we have

lnS(t) = ln J(t) + lnSc(t)

= X(t) − λt
(

pη1
η1 − 1

+
qη2
η2 + 1

− 1
)
+ rt

+

[
ρσ

∫ t

0

√
V (t)dWv(t) − 1

2
σ2ρ2

∫ t

0
V (t)dt

]

+

[√
1 − ρ2σ

∫ t

0

√
V (t)dZ(t) − 1

2
σ2

(
1 − ρ2

)∫ t

0
V (t)dt

]

= X(t) − λt
(

pη1
η1 − 1

+
qη2
η2 + 1

− 1
)
+ rt + ξt + ςt.

(2.6)

3. A Closed-Form Solution of European Option Pricing

In this section, we derive closed-form solution of a European call option pricing under the
SVDEJD model. For a European put option, we can obtain easily corresponding result by the
put-call parity [1]. For this purpose, we need the following results.

Lemma 3.1. Supposing the variance process V (t) follows (2.2) and s1, s2 are any complex, one has

E

{
exp

[
−s1

∫T

0
V (t)dt − s2V (t)

]}
= exp[A(T) − B(T)V0], (3.1)

where

A(T) =
2θv
σ2
v

ln

[
2γe(1/2)(αv−γ)T

2γe−γT +
(
αv + γ + σ2

vs2
)(
1 − e−γT)

]
,

B(T) =

(
1 − e−γT)(2s1 − αvs2) + γs2

(
1 + e−γT

)

2γe−γT +
(
αv + γ + σ2

vs2
)(
1 − e−γT) ,

γ =
√
α2v + 2σ2

vs1.

(3.2)

Proof. Let F(V, 0, T) = E{exp[−s1
∫T
0 V (t)dt − s2V (t)]}. Because of the affine structure of the

variance process (2.2), we obtain that F(V, 0, T) has a solution of the following form:

F(V, 0, T) = exp[A(T) − B(T)V0]. (3.3)
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From the Feynman-Kac formula, F(V, 0, T) is the solution of the following backward
Parabolic partial differential equation with the Cauchy problem:

∂F

∂t
+ (θv − αvV )

∂F

∂V
+
1
2
σ2
vV

∂2F

∂V 2
− s1VF = 0,

F(V, 0, 0) = exp(−s2V0).

(3.4)

Putting (3.3) in (3.4), we have

At(T) − θvB(T) = 0, A(0) = 0,

−Bt(T) + 1
2
σ2
vB

2(T) + αvB(T) − s1 = 0, B(0) = s2.
(3.5)

Solving (3.5), we can obtain the result of Lemma 3.1.

Lemma 3.2. Supposing the asset price S(T) follows (2.6) and z is any complex, one has

E
{
exp[−rT + z lnS(T)]

}
= exp

{
(z − 1)rT + λT

(
pη1
η1 − z +

qη2
η2 + z

− 1
)

− zλT
(

pη1
η1 − 1

+
qη2
η2 + 1

− 1
)
− zρσ

σv
(V (T) + θvT)

+
2θv
σ2
v

ln

[
2γe(1/2)(αv−γ)T

2γe−γT +
(
αv + γ + σ2

vs2
)(
1 − e−γT)

]

−
(
1 − e−γT)(2s1 − αvs2) + γs2

(
1 + e−γT

)

2γe−γT +
(
αv + γ + σ2

vs2
)(
1 − e−γT) V0

}
,

(3.6)

where

s1 = −(z − 1)z
1
2
σ2

(
1 − ρ2

)
− z

(
ρσ

σv
αv − 1

2
σ2ρ2

)
, s2 = −zρσ

σv
. (3.7)

Proof. Let φ(z) = E{exp [−rT + z lnS(T)]}. Because N(t) is independent of W(t),Wv(t),
and Z(t), we have

φ(T) = e(z−1)rTE
[
ez ln J(T)

]
E
[
ez(ξT+ςT )

]
= e(z−1)rTC(T)D(T). (3.8)

From (2.2) and (2.3), we have

C(T) = exp
[
λT

(
pη1
η1 − z +

qη2
η2 + z

− 1
)
− zλT

(
pη1
η1 − 1

+
qη2
η2 + 1

− 1
)]

. (3.9)
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BecauseWv(t) is a standard Brownian motion, we have

E(ςT ) = −1
2
σ2

(
1 − ρ2

)∫T

0
V (T)dt, Var(ςT ) = σ2

(
1 − ρ2

)∫T

0
V (T)dt. (3.10)

Then,

D(T) = E

{
exp

[
(z − 1)z

1
2
σ2

(
1 − ρ2

)∫T

0
V (t)dt + zξT

]}

= exp
{
−zρσ

σv
[V (T) + θvT]

}

× E
{
exp

[
(z − 1)z

1
2
σ2

(
1 − ρ2

)
+ z

(
ρσ

σv
αv − 1

2
σ2ρ2

)]∫T

0
V (t)dt − zρσ

σv
V0

}
.

(3.11)

Let s1 = −(z − 1)z(1/2)σ2(1 − ρ2) − z((ρσ/σv)αv − (1/2)σ2ρ2), and s2 = −z(ρσ/σv). From
Lemma 3.1, we have

D(T) = exp

{
−zρσ

σv
(V(T) + θvT) +

2θv
σ2
v

ln

[
2γe(1/2)(αv−γ)T

2γe−γT +
(
αv + γ + σ2

vs2
)(
1 − e−γT)

]

−
(
1 − e−γT)(2s1 − αvs2) + γs2

(
1 + e−γT

)

2γe−γT +
(
αv + γ + σ2

vs2
)(
1 − e−γT) V0

}
.

(3.12)

From (3.8), (3.9), (3.10) and (3.12), we can obtain the required Lemma 3.2.

Lemma 3.3. Suppose ϕ(u) = E[exp(iu lnS(T)] is the characteristic function of lnS(T); then

ϕ(u) =

[
2δ

2δ + (αv − δ − iuρσσv)(1 − e−δT )

]2θv/σ2
v

× exp
{
iu lnS(t) +

θv(αv − δ)T
σ2
v

− iuθvσρT

σv

+ λT
[

pη1
η1 − iu +

qη2
η2 + iu

− 1 − iu
(

pη1
η1 − 1

+
qη2
η2 + 1

− 1
)]

+iurT + εV0

}
,

(3.13)

where

δ =
√(

αv − iuρσσv
)2 + iu(1 − iu)σ2σ2

v,

ε =
iu(iu − 1)σ2(1 − e−δT)

2δ +
(
αv − δ − iuρσσv

)(
1 − e−δT) .

(3.14)
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Proof. Let φ(z) = E{exp [−rT + z lnS(T)]}. Because

ϕ(u) = E
[
exp(iu lnS(T))

]
=
E
{
exp[−rT + iu lnS(T)]

}

E
[
exp(−rT)] =

φ(iu)
φ(0)

, (3.15)

from Lemma 3.2, we can obtain the required Lemma 3.3.

Theorem 3.4. Let k denote the log of the strike price K, xT = ln(S(T)), and CT (k) the desired value
of a T -maturity call option with strike exp(k). Assume that, under P ∗, the underlying nondividend-
paying stock price S(t) and its components are given by (2.1)–(2.5), ϕ(u) is the characteristic function
of xT , q(x) is the density of xT ; then the initial call value CT (k) is written as

CT (k) =
1
2

(
S(t) − e−rTK

)

+
1
π

∫∞

0
S(t)�

[
eiukϕT (u − i)

iu

]
− e−rTK�

[
eiukϕT (u)

iu

]
du,

(3.16)

where �[·] represents real part.

Proof. From the risk-neutral theory, we have

CT (k) = E
[
e−rT(S(T) −K)+

]

= e−rT
∫+∞

0
(S(T) −K)+q(S(T))dS(T)

= e−rT
∫+∞

k

exT q(x)dx − e−rTK
∫+∞

k

q(x)dx

= SΠ1 − e−rTΠ2.

(3.17)

Introducing a change of measure from P ∗ to Q∗ by a Radon-Nikodym derivative, we get

dQ∗

dP ∗ =
exT

E[exT ]
. (3.18)

With this new measure Q∗, the Fourier transform of Π1 is defined as

EQ
∗[
eiuxT

]
=
ϕ(u − i)
ϕ(−i) . (3.19)

Because of the no-arbitrage condition, we can obtain

Π1 =
1
2
+

1
π

∫∞

0
�
[
e−iukϕT (u − i)
iuϕT (−i)

]
du. (3.20)
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From the Fourier transform formula, the probability density for our model is given by

q(x) =
1
π

∫+∞

0
e−iukϕ(u)du. (3.21)

Hence,

Π2 =
∫+∞

k

(
1
π

∫+∞

0
e−iukϕ(u)du

)
dx. (3.22)

Changing the order of integration, we have

Π2 =
1
2
+

1
π

∫∞

0
�
[
e−iukϕT(u)

iu

]
du. (3.23)

From (3.17), (3.20), and (3.23), we can obtain the required Theorem 3.4.

Remark 3.5. In (3.16), CT (k) tends to S0 not zero as k goes to −∞. Hence, CT (k) is not L1

(absolutely integrable) and a Fourier transform does not exist.

4. Fast Fourier Transform for European Option Pricing

Since the integrand in (3.16) is singular at the required evaluation point u = 0, the FFT
cannot be applied directly to evaluate the integrals wementioned above. Therefore, instead of
solving for the risk-neutral exercise probabilities of finishing in-the-Money (ITM), Carr and
Madan [16] introduce a new technique with the key idea to calculate the Fourier transform of
a modified call option price with respect to the logarithmic strike price. With this specification
and a FFT routine, a whole range of option prices can be obtained within a single Fourier
inversion. In this section, we develop the numerical solutions of the prices by using the idea
of Carr and Madan [16].

4.1. Fourier Transform of ITM and at-the-Money (ATM) Option Prices

By introducing an exponential damping factor eαk with α > 0, it is possible to make the
integrand in (3.16) be square integrable. We modified the pricing function (3.16) by

CT (k) =
exp(−αk)

π

∫∞

0
e−ivkψT (v)dv, (4.1)

where ψT (v) = e−rTϕT (v − (α + 1)i)/(α2 + α − v2 + i(2α + 1)v).
This method is viable when α is chosen in a way that the damped option price is

well behaved. Damping the option price with eαk makes it integrable for the negative axis
k < 0. On the other hand, for k > 0 the option prices increase by the exponential eαk, which
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influences the integrability for the positive axis. A sufficient condition of cT (k) to be integrable
for both sides (square integrability) is given by ψ(0) being finite, that is,

ψ(0) =
e−rTϕT (−(α + 1)i)

α2 + α
<∞. (4.2)

Thus we need ϕT (−(α + 1)i) <∞, which is equivalent to

EQ
[
S(T)1+α <∞

]
. (4.3)

Therefore, cT (k) is well behaved when the moments of order 1 + α of the underlying asset
exist and are finite. If not all moments of S(T) exist, this will impose an upper bound on α.
We find that one quarter of this upper bound serves as a good choice for α.

Using the trapezoid rule for the integral on the right-hand side of (4.1) and setting
vj = η(j − 1), an approximation for CT (k) is

CT (k) ≈
exp(−αk)

π

N∑
j=1

e−ivjkψT
(
vj
)
η. (4.4)

The FFT returnsN values of k, and we employ a regular spacing of size h so that our values
for k are

ku = −b + h(u − 1) for u = 1, . . . ,N. (4.5)

This gives us log-strike levels ranging from −b to b, where

b =
1
2
Nh. (4.6)

In order to apply FFT we define

ηh =
2π
N
. (4.7)

To obtain an accurate integration with larger values of η, we incorporate Simpson’s
rule weightings into our summation. From (4.1)–(4.7)and Simpson’s rule weightings, we
obtain ATM and ITM call value as

C(ku) =
exp(−αku)

π

N∑
j=1

e−i(2π/N)(j−1)(i−1)eibvj ψ
(
vj
)η
3

[
3 + (−1)j −ωj−1

]
, (4.8)

where ωn is the Kronecker delta function that is unity for n = 0 and zero otherwise. The
summation in (4.8) is an exact application of the FFT.
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4.2. Fourier Transform of out-of-the-Money (OTM) Option Prices

In the previous section call values are calculated by an exponential function to obtain square
integrable function whose Fourier transform is an analytic function of the characteristic
function of the log-price. But, for very short maturities, the call value approaches its non
analytic intrinsic value causing the integrand in the Fourier inversion to be high oscillate,
and therefore difficult to integrate numerically. We introduce an alternative approach that
works with time values only, which is quite similar to the previous approach. But in this
case the call price is obtained via the Fourier transform of a modified time value, where the
modification involves a hyperbolic sine function instead of an exponential function.

Let zT (k) denote the time value of an OTM option, that is, for k < xT we have the put
price for zT (k) and for k < xT we have the call price. Scaling S0 = 1 for simplicity, zT (k) is
defined by

zT (k) = e−rT
∫∞

−∞

[(
ek − exT

)
1xT<k,k<0 +

(
exT − ek

)
1xT>k,k>0

]
q(x)dx, (4.9)

where q(x) is the risk-neutral density of the log-price xT . Let ζT (u) be the Fourier transform
of zT (k):

ζT (u) =
∫∞

−∞
eiukzT (k)dk. (4.10)

By considering a damping function sinh(αk), the time value of an option follows a Fourier
inversion:

zT (k) =
1

sinh(αk)
1
π

∫∞

0
e−iukΥT (u)du, (4.11)

where ΥT (u) = (ζT (u − iα) − ζT (u + iα))/2.
The use of the FFT for calculating OTM option prices is similar to (4.8). The only

differences are that they replace the multiplication by exp(−αku) with a division by sinh(αk)
and the function call to ψ(v) is replaced by a function call to ΥT (u).

5. Simulation Studies

In this section, to compare across the BS, DEJD, and SVDEJD models, we analyze the
probability densities of these models. Then, we analyze mainly the impact of ρ and volatility
of volatility σv on option pricing under the SVDEJD model. For our FFT methods, we used
N = 4096 points in our quadrature, implying a log-strike spacing of h = π/300 = 0.01047,
which is adequate for practice. For the choice of the dampening coefficient in the transform
of the modified call price, we used a value of α = 2.55. For the modified time value, we
used α = 1.55. Other parameter values used in the computation are listed in Table 1. (We
have used analytic moments to set plausible parameter values for the model. For a formal
econometric estimator, one could use these moments to develop a generalized method of
moments estimator within the framework of Hall and Inoue [21].)



Mathematical Problems in Engineering 11

Table 1: Default parameters for simulation of option prices.

Parameter Value

Probability of upward p = 0.6
Volatility of asset price σ = 0.16
Mean of the exponential distribution of upward η1 = 40
Mean of the exponential distribution of downward η2 = 40
Intensity of the Poisson process λ = 10
Interest rate r = 0.05
Initial asset price S0 = 100
Initial variance V0 = 1
Rate of reversion av = 0.3
Long-run variance θv = 0.6
Volatility of volatility σv = 0.25
Correlation between returns and volatility ρ = −0.8

5.1. Probability Densities under Alternative Models

We compare the probability densities of the SVDEJD model, the BS model, and the DEJD
model to verify the rationality of our model. Suppose ϕ(u) is the characteristic function of xT
and q(x) the probability density of ourmodel. From FFT algorithm, q(x) can be approximated
by

q(x) ≈ 1
π

N∑
j=1

e−i(2π/N)(j−1)(k−1)ϕ(u) k = 1, . . . ,N. (5.1)

The density q has the mean and variance given by

Eq(Q) =
ϕ′(0)
i

,

Varq(Q) = −ϕ′′(0) +
(
ϕ′(0)

)2
.

(5.2)

Figure 1 shows the figures of the probability density q(x), compared with the normal
density with the same mean and variance given by (5.2). The first figure compares the overall
shapes of the densities of the SVDEJD model and the BS model, the second one details the
shapes around the peak areas, and the last one shows the right tail. From Figure 1, we can
see that the leptokurtic and skewness feature of the density of our model is quite evident.
Moreover, additional numerical plots suggest that the feature of skewness becomes more
significant if |ρ| increases, which is impossible for the DEJD model.

We also compare the short-term and long-term densities of the SVDEJD model, the BS
model, and the DEJD one. Figure 2 shows their densities under T = 3 months and T = 2
years. From Figure 2, we can see that the SVDEJD model and the DEJD model generate
virtually identical densities for short-term options, with a slight departure occurring between
the two densities in the upper tail. This means that differential pricing performance between
the SVDEJD model and the DEJD model is unlikely to occur when they are applied to price
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Figure 1: Comparison of the probability densities of the SVDEJD model and the BS model. Except for the
maturity time T = 2 years, the parameters used here are shown in Table 1.

short-term OTM puts and that only when they are applied to deep ITM puts (and deep OTM
calls) can differences be observed between these models. Yet, compared to the BS model
density, the densities of the two models are distinctly different: they all have leptokurtic and
skewness feature. Therefore, the two models can potentially correct the BS model’s tendency
to underprice deep OTM puts and overprice deep OTM calls. The long-term density curves
in Figure 2 still show significantly different pricing structures between the BS and its two
alternatives. But, more importantly, the densities of the SVDEJD model and the DEJD model
also exhibit different shapes now. The SVDEJD density has higher peak and assigns more
weight to both the entire lower tail and the far upper tail, but less weight to those payoffs
than the DEJD.

Our simulation studies have demonstrated that the SVDEJD model has better
performance than the DEJD one on pricing long-term options, while both the DEJD model
and the SVDEJD model have better performance than the BS model.
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Figure 2: Comparison of the short-term and long-term probability densities of the SVDEJD model, the BS
model, and the DEJD model. Except for the maturity time T = 3 months and T = 2 years, the parameters
used here are shown in Table 1.

Table 2: The effects of volatility of volatility, exercise priceK, maturity time T , and correlation ρ on option
values.

Strike price
ρ = −0.8 ρ = 0 ρ = 0.8

σv = 0.15 σv = 0.25 σv = 0.15 σv = 0.25 σv = 0.15 σv = 0.25

T = 3 months
90 11.5004 11.5122 11.4827 11.4829 11.4647 11.4527
95 7.5901 7.6000 7.5745 7.5741 7.5585 7.5472
100 4.4325 4.4323 4.4315 4.4307 4.4303 4.4287
105 2.5442 2.5347 2.5573 2.5567 2.5567 2.5780
110 1.1258 1.1109 1.1476 1.1476 1.1690 1.1830
115 0.5169 0.5043 0.5361 0.5364 0.5532 0.5681
T = 2 years
90 22.5229 22.5682 22.4438 22.4398 22.3592 22.2959
95 19.4525 19.4825 19.3935 19.3872 19.3293 19.2776
100 16.6650 16.6750 16.6337 16.6255 16.5979 16.5633
105 14.3313 14.3225 14.3271 14.3179 14.3189 14.3018
110 11.9850 11.9507 12.0183 12.0083 12.0476 12.0549
115 10.1354 10.0809 10.1994 10.1896 10.2594 10.2871

5.2. Effects of the Main Parameter on Option Values

In Table 2, we use the SVDEJD model to examine the effects of volatility of volatility σv, the
correlation coefficient ρ, exercise price K, and maturity time T on option values. We analyze
the prices of three-month call options and two-year call options. To examine the effect of
the negative correlation coefficient, we have calculated the model with ρ = −0.8, ρ = 0, and
ρ = 0.8. The prices for three-month call options associatedwith volatility of volatility σv = 0.15
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and σv = 0.25 are relatively close. With ρ = −0.8, the largest price difference is 0.0149; with
ρ = 0, the largest price difference is only 0.0008; with ρ = 0.8, the largest price difference
is 0.0213. However, the difference is significantly larger when longer-time horizons such as
two-year call options are valued. With ρ = −0.8, the largest price difference is an increase
on 0.0149 to 0.0545 and the effect of volatility of volatility is an increase for ITM calls and a
decrease for OTM calls. With ρ = 0, the largest price difference is increase of 0.0008 to 0.01
and the effect of volatility of volatility is a small decreas that is negligible for option values.
With ρ = 0.8, the largest price difference is an increase of 0.0213 to 0.0633 and the effect of
volatility of volatility is a decrease for ITM and ATM calls and an increase for OTM calls. The
correlation parameter ρ has several effects depending on the relation between the strike price
and the current stock price. A negative ρ tends to produce higher values for ITM calls and
lower values for OTMmoney calls.

We have also compared the model with the BS model, which can be interpreted as
a first-order approximation with no jumps, and ρ = 0. A common practice is to set the
implied volatility in the BS model so that the model matches the price for the option with
a strike price closest to the current stock price. For some comparisons not reported here, we
have set the implied volatility in the BS model so that it matches the price generated by the
stochastic volatility model for an ATM option. The BS implied volatility is very close to the
expected volatility under the risk-neutral distribution when short-term options are valued.
When longer-term options are used, there is a significant difference between the BS implied
volatility and the expected volatility. As an approximation, the BS model tends to undervalue
ITM calls and overvalue OTM calls.

6. Conclusion

The SVDEJD model incorporates several important features of stock returns. We derive a
closed-form solution for European call options in the model by using the martingale method,
Fourier inversion transform formula, and Feynman-Kac theorem. Using FFT, we obtain fast
and accurate numerical solution to European option under the model. The comparison
of densities of the alternative models shows that the SVDEJD model has better pricing
performance on long-time options. An analysis of themodel reveals that volatility of volatility
σv and the correlation coefficient ρ have significant impact on option values, especially
long-time option, stock returns are negatively correlated with volatility, and these negative
correlations are important for option valuation.

Appendix

A.1. Matlab Codes for ITM and ATM Options Pricing by FFT

function CV =inSVDexpJ(ata1, ata2, lamta, sigma, thetav, alphav,

rho, sigmav, r, p, s0, v0, strike, T)

x0 = log(s0)

alpha = 2.55

N = 4096

c = 600
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eta = c/N

b =pi/eta

u = [0:N-1]∗eta

lamda = 2∗b/N

position = (log(strike) + b)/lamda + 1

v = u - (alpha+1)∗i

k=p∗ata1/(ata1-1)+(1-p)∗ata2/(ata2+1)-1

l=p∗ata1./(ata1-i∗v)+(1-p)∗ata2./(ata2+i∗v)

m=sqrt((alphav-i∗v∗rho∗sigma∗sigmav).∧2+i∗v.∗(1-i∗v)∗(sigma ∗ sigmav)∧2)

n=2∗m+(alphav-m-i∗v∗rho∗sigma∗sigmav).∗(1-exp(-m∗T))

A=(2∗m./n).∧(2∗thetav/sigmav∧2)

B=i∗v∗x0+(thetav∗(alphav-m)∗T)/sigmav∧2-(i∗v∗rho∗sigma∗thetav∗T)/sigmav. . .

+lamta∗T∗(l-i∗v∗k-1)+i∗v∗r∗T

C=(i∗v.∗(i∗v-1)∗sigma∧2.∗(1-exp(-m∗T)))./n

charFunc=A.∗exp(C∗v0+B)

ModifiedCharFunc = charFunc∗exp(-r∗T)./(alpha∧2+alpha - u.∧2 + i∗(2∗alpha
+1)∗u)

SimpsonW = 1/3∗(3 + (−1).∧[1:N] - [1, zeros(1,N-1)])

FftFunc = exp(i∗b∗u).∗ModifiedCharFunc∗eta.∗SimpsonW

payoff = real(fft(FftFunc))

CallValueM = (exp(-log(strike)∗alpha))’∗payoff/pi

format short

CV= CallValueM(round(position)).

A.2. Matlab Codes for OTM Options Pricing by FFT

function CV=outSVDexpJ(ata1,ata2,lamta,sigma,thetav,alphav,

rho,sigmav,r,p,s0,v0,strike,T)

x0 = log(s0)

alpha = 1.55

N=4096

c = 600

eta = c/N

b =pi/eta

u = [0:N-1]∗eta

lamda = 2∗b/N

position = (log(strike) + b)/lamda + 1

w1 = u-i∗alpha
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w2 = u+i∗alpha

v1 = u-i∗alpha -i

v2 = u+i∗alpha -i

k=p∗ata1/(ata1-1)+(1-p)∗ata2/(ata2+1)-1

l1=p∗ata1./(ata1-i∗v1)+(1-p)∗ata2./(ata2+i∗v1)

m1=sqrt((alphav-i∗v1∗rho∗sigma∗sigmav).∧2+i∗v1.∗(1-i∗v1)∗(sigma∗sigmav)∧2)

n1=2∗m1+(alphav-m1-i∗v1∗rho∗sigma∗sigmav).∗(1-exp(-m1∗T))

A1=(2∗m1./n1).∧(2∗thetav/sigmav∧2)

B1=i∗v1∗x0+(thetav∗(alphav-m1)∗T)/sigmav∧2-(i∗v1∗rho∗sigma∗thetav∗T)/sigmav. . .

+lamta∗T∗(l1-i∗v1∗k-1)+i∗v1∗r∗T

C1=(i∗v1.∗(i∗v1-1)∗sigma∧2.∗(1-exp(-m1∗T)))./n1

charFunc1=A1.∗exp(C1∗v0+B1)

ModifiedCharFunc1 = exp(-r∗T)∗(1./(1+i∗w1). . .

-exp(r∗T)./(i∗w1) - charFunc1./(w1.∧2 - i∗w1))

l2=p∗ata1./(ata1-i∗v2)+(1-p)∗ata2./(ata2+i∗v2)

m2=sqrt((alphav-i∗v2∗rho∗sigma∗sigmav).∧2+i∗v2.∗(1-i∗v2)∗(sigma∗sigmav)∧2)

n2=2∗m2+(alphav-m2-i∗v2∗rho∗sigma∗sigmav).∗(1-exp(-m2∗T))

A2=(2∗m2./n2).∧(2∗thetav/sigmav∧2)

B2=i∗v2∗x0+(thetav∗(alphav-m2)∗T)/sigmav∧2-(i∗v2∗rho∗sigma∗thetav∗T)/sigmav. . .

+lamta∗T∗(l2-i∗v2∗k-1)+i∗v2∗r∗T

C2=(i∗v2.∗(i∗v2-1)∗sigma∧2.∗(1-exp(-m2∗T)))./n2

charFunc2=A2.∗exp(C2∗v0+B2)

ModifiedCharFunc2 = exp(-r∗T)∗(1./(1+i∗w2)- exp(r∗T)./(i∗w2). . .

- charFunc2./(w2.∧2 - i∗w2))

ModifiedCharFuncCombo = (ModifiedCharFunc1 - ModifiedCharFunc2)/2

SimpsonW = 1/3∗(3 + (−1).∧[1:N] - [1, zeros(1,N-1)])

FftFunc = exp(i∗b∗u).∗ModifiedCharFuncCombo∗eta.∗SimpsonW

payoff = real(fft(FftFunc))

CallValueM = payoff/pi/sinh(alpha∗log(strike))

format short

CV= CallValueM(round(position)).
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