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Previous work on time-optimal satellite slewing maneuvers, with one satellite axis (sensor axis)
required to obey multiple path constraints (exclusion from keep-out cones centered on high-
intensity astronomical sources) reveals complex motions with no part of the trajectory touching
the constraint boundaries (boundary points) or lying along a finite arc of the constraint boundary
(boundary arcs). This paper examines four cases in which the sensor axis is either forced to follow
a boundary arc, or has initial and final directions that lie on the constraint boundary. Numerical
solutions, generated via a Legendre pseudospectral method, show that the forced boundary arcs
are suboptimal. Precession created by the control torques, moving the sensor axis away from
the constraint boundary, results in faster slewing maneuvers. A two-stage process is proposed
for generating optimal solutions in less time, an important consideration for eventual onboard
implementation.

1. Introduction

The problem of reorienting a spacecraft in minimum time, often through large angles (so-
called slew maneuvers) and subject to various constraints, can take a number of forms. For
example, the axis normal to the solar panels may be required to lie always within some
specifiedminimum angular distance from the sun-line. In cases where the control authority is
low and the slew requires a relatively long time, certain faces of the vehicle may benefit from
being kept as far as possible from the sun-line to avoid excessive solar heating. For many
scientific missions, observational instruments must be kept beyond a specified minimum
angular distance from high-intensity light sources to prevent damage.

Before addressing the time-optimal, constrained problem, it is useful to review what is
known about the unconstrained problem. In a seminal paper, Bilimoria and Wie [1] consider
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time-optimal slews for a rigid spacecraft whose mass distribution is spherically symmetric,
and which has equal and independently limited control-torque authority for all three axes.
Despite the symmetry of the system, the intuitively obvious time-optimal solution is not a
λ-rotation about the eigenaxis (the appendix contains a discussion of λ-rotations and the
eigenaxis of a direction cosine matrix). Indeed, the fallacy here is that one easily confuses the
minimum-angle of rotation problem (i.e., the angle about the eigenaxis) with the minimum-
time problem, ignoring the constraints imposed by Euler’s equations of rigid-body motion.
Bilimoria andWie find that the time-optimal solution includes precessional motion to achieve
a lower time (approximately 10% less) than that obtained with an eigenaxis maneuver.
Further, they determine that the control history is bang-bang, with a switching structure that
changes depending upon the magnitude of the angular maneuver (referring here to the final
orientation in terms of a fictitious λ-rotation, with associated angle θ): for values of θ less
than 72 degrees, the control history is found to contain seven switches between directions of
the control torque components; larger values of θ require only five switches.

Several subsequent papers have revisited the unconstrained problem, including
such modifications as axisymmetric mass distribution and only two-axis control [2],
asymmetric mass distribution [3], small reorientation angles [4], and combined time and
fuel optimization [5]. Recently, Bai and Junkins [6] have reconsidered the original problem
(spherically symmetric mass distribution, three equal control torques) and find that at least
two locally optimum solutions exist for reorientations of less than 72deg. (one of which
requires only six switches) if the controls are independently limited. Further, they prove
that if the total control vector is constrained to have a maximum magnitude (i.e., with
the orthogonal control components not independent), then the time-optimal solution is the
eigenaxis maneuver.

Hablani [7] and Mengali and Quarta [8] consider constrained maneuvers, but focus
upon generating feasible solutions without attempting to find optimal solutions. Melton [9]
considers time-optimal, constrained slewing maneuvers for cases involving multiple path
constraints. That work uses the Swift spacecraft [10] as an example of a vehicle that must
be rapidly reoriented to align two telescopes at a desired astronomical target, namely, a
gamma-ray burst. The satellite’s burst alert telescope (wide field of view) first detects the
gamma-ray burst and the spacecraft then must reorient to allow the X-ray and UV/optical
instruments to capture the rapidly fading afterglow of the event. To prevent damage to these
instruments, the slewing motion is constrained to prevent the telescopes’ common axis from
entering established “keep-out” zones, defined as cones with central axes pointing to the Sun,
Earth, and Moon, with specified half-angles. A somewhat surprising result is that all of the
cases studied yield trajectories of the sensor axis that neither travel along the boundary of
the keep-out cone nor even touch it (so-called boundary arcs and boundary points). Figure 1
shows an example of this behavior, in which the sensor axis traverses a narrow gap (0.1 deg.)
between the Sun and Moon cones, but does not intersect either cone.

This paper presents a preliminary study of boundary arcs and boundary points in
this same problem. A full analytical solution is not possible; however, some insight to the
problem can be gained by examining instances where the sensor axis is constrained to follow
the constraint boundary, and those where the initial and final sensor axis directions lie exactly
on the boundary. The paper also addresses the practical challenge of implementing onboard
optimal control for this type of maneuver and proposes a means for reducing computation
time for the reference trajectory.
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Figure 1: Trajectory of sensor axis between Sun (yellow) and Moon (gray) cones.

2. Problem Statement

The problem is formulated as a Mayer optimal control problem, with performance index

J = tf , (2.1)

where tf is the final time to be minimized. Euler’s equations of rigid-body motion describe
the system dynamics

ω̇1 =
[M1 −ω2ω3(I3 − I2)]

I1

ω̇2 =
[M2 −ω3ω1(I1 − I3)]

I2

ω̇3 =
[M3 −ω1ω2(I2 − I1)]

I3
.

(2.2)

Note that the control torques are assumed to be independently bounded, and no assumption
is made about the type of control actuator being used. Euler’s equations must be augmented
with kinematic relationships in order to determine the orientation of the body over time.
In this work, a formulation that uses Euler parameters is employed, with the relationship
between the Euler parameters εi and the angular velocity components ωj given by

⎡
⎢⎢⎢⎢⎢⎣

ε̇1

ε̇2

ε̇3

ε̇4

⎤
⎥⎥⎥⎥⎥⎦

=
1
2

⎡
⎢⎢⎢⎢⎢⎣

ε4 −ε3 ε2 ε1

ε3 ε4 −ε1 ε2

−ε2 ε1 ε4 ε3

−ε1 −ε2 −ε3 ε4

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ω1

ω2

ω3

0

⎤
⎥⎥⎥⎥⎥⎦
. (2.3)
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The appendix discusses the relationship between the Euler parameters, λ-rotations,
and direction cosine matrices. The problem to be considered is a rest-to-rest maneuver, with
initial conditions

ω1(0) = ω2(0) = ω3(0) = 0

ε1(0) = ε2(0) = ε3(0) = 0, ε4(0) = 1,
(2.4a)

and two possible sets of final conditions

ω1
(
tf
)
= ω2

(
tf
)
= ω3

(
tf
)
= 0

ε1
(
tf
)
= ε1f , ε2

(
tf
)
= ε2f , ε3

(
tf
)
= ε3f , ε4

(
tf
)
= ε4f ,

(2.4b)

for which the final orientation at the final time is completely specified, or

ω1
(
tf
)
= ω2

(
tf
)
= ω3

(
tf
)
= 0

f1 (ε1, ε2, ε3, ε4) = 0

...

fn(ε1, ε2, ε3, ε4) = 0,

(2.4c)

for which only some aspect of the final orientation is specified (this is discussed further in
Section 2.1).

For the unconstrained optimal control problem formulated using (2.1)–(2.3), the
Hamiltonian is

H = λω1ω̇1 + λω2ω̇2 + λω3ω̇3 + λε1 ε̇1 + λε2 ε̇2 + λε3 ε̇3 + λε4 ε̇4. (2.5)

For spacecraft of the type being modeled here (Swift, or other astronomical missions), one
or more sensors are fixed to the spacecraft bus; these sensors all have the same central axis
for their fields of view and this axis is designated here with the unit vector σ̂ and referred
to as the sensor axis. This axis must be kept at least a minimum angular distance αA from
each of several high-intensity astronomical sources. Denoting the directions to these sources
as σ̂A, where the subscript A can be S (Sun), E (Earth), or M (Moon), the so-called keep-out
constraints are then written as follows:

αA ≤ cos−1(σ̂ · σ̂A). (2.6)
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Without loss of generality, σ̂ is assumed to lie along the body-fixed x-axis and its orientation
with respect to the inertial frame is then determined from (A.6), with A as the inertial frame
and B as the body-fixed frame

σ1 = 1 − 2
(
ε21 + ε23

)

σ2 = 2(ε1ε2 + ε3ε4)

σ3 = 2(ε3ε1 − ε2ε4).

(2.7)

It is further assumed that the reorientation maneuver can occur quickly enough that the
spacecraft’s orbital position remains essentially unchanged, and that therefore, the inertial
directions to the high-intensity sources also remain constant during the slew maneuver.

Analytically, the path constraint given by (2.6) can be adjoined to the Hamiltonian by
creating the following constraint function:

C = cos−1(σ̂ · σ̂A) − αA, (2.8)

then substituting for σ̂ using (2.7). The result must then be differentiated twice with respect
to time (and using (2.2) and (2.3)) in order to get a form in which the control torques
appear [11]. Finally, a new Hamiltonian H̃ is formed by adjoining C̈ to H with Lagrange
multiplier μ,

H̃ = H + μC̈, (2.9)

with the conditions

μ ≥ 0 if C̈ = 0

μ = 0 if C̈ > 0.
(2.10)

Further, the so-called tangency conditions [11] must also be applied (i.e., for any part of
the trajectory on the boundary, not only C, but also its first and second time derivatives
must be zero). The resulting form is analytically intractable for assessing whether necessary
conditions are met along a boundary arc or at a boundary point; however, by using a direct
method (Legendre pseudospectral), it is possible to obtain numerical solutions that meet the
necessary conditions of optimality. Fleming and Ross [12] show that a pseudospectral method
is effective for solving the unconstrained minimum-time reorientation problem.

2.1. Semifree Final Orientation

For some missions, the reorientation strategy may be altered if the final orientation is not
completely specified. An example would be the need to reorient the sensor axis to a desired
target direction in minimum time, with no constraints on the orientation of the other body-
fixed axes at the final time. In practice, some subsequent rotation about the sensor axis
might be required to optimize some other parameter (e.g., maximizing illumination of solar
panels, or minimizing solar heating of sensitive components), but the principal reorientation
maneuver could be achieved faster. The corresponding optimal control problem is the same
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Figure 2: Constrained rotation about the keep-out cone axis.

as before, but with the final conditions on the Euler parameter values given in (2.4c) specified
by

σ1
(
tf
)
= σ1,f = 1 − 2

[
ε21
(
tf
)
+ ε23

(
tf
)]

σ2
(
tf
)
= σ2,f = 2

[
ε1
(
tf
)
ε2
(
tf
)
+ ε3

(
tf
)
ε4
(
tf
)]

σ3
(
tf
)
= σ3,f = 2

[
ε3
(
tf
)
ε1
(
tf
) − ε2

(
tf
)
ε4
(
tf
)]
.

(2.11)

2.2. Constrained Rotation Axis

Consider now the suboptimal approach of a simple λ-rotation that carries the sensor axis σ̂
from initial to final orientation along the constraint boundary, with the other body-fixed axes
undergoing the same λ-rotation This amounts to a λ-rotation about the keep-out cone axis σ̂A

(Figure 2). Such a constrained rotation is a simple one-dimensional problem whose solution
is bang-bang, with the maximum torque being applied along the direction of λ̂. Because the
control torque components are each limited to a maximum magnitude Mmax, the maximum
torque along λ̂ has magnitude

∣∣∣ ⇀

Mλ

∣∣∣ =
∣∣∣∣∣
Mmaxλ̂

λmax

∣∣∣∣∣, (2.12)

where λmax = max(λ1, λ2, λ3). Equation (2.12) thus maximizes
⇀

Mλ while obeying the limits on
the individual control torques M1, M2, and M3. Assuming that a feasible rotation axis λ̂ can
be identified, then the rotation angle θ can be determined from (A.5), and the rotation time is
given by

tf,λ = 2

√
Iλθ

|Mλ| , (2.13)
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where Iλ is the moment of inertia about the λ̂-axis. This provides a useful benchmark to which
the optimal solution can be compared. As a practical matter, such a forced-axis rotation could
be an acceptable suboptimal solution if the optimal path required too much computing time
or resources to calculate.

3. Results

Four cases are considered: two of these (cases BA1 and BA2) constrain the sensor axis to
move along the constraint boundary; the initial and final sensor axis directions also lie on
the boundary. These cases serve as proxies for boundary arcs, at least in that they provide
some indication of the slewing time and other qualitative properties of the motion. The other
spacecraft axes are unconstrained at the final time. The other two cases (BP1 and BP2) have the
sensor axis beginning and terminating on the constraint boundary (and of course, prohibited
from entering the constraint cone); the other spacecraft axes are unconstrained at the final
time.

The numerical results are generated using a Legendre pseudospectral method,
implemented in the software package DIDO [13]. In all cases, the discrete solution for the
control history produced by the pseudospectral method has been subsequently employed
to numerically propagate the dynamics from the given initial conditions; the results give
solutions that match the discrete solutions to within an absolute error of 10−16 (corresponding
units) at each node. These cases all require significant computation time (as much as 72 hours
on a computer with an Intel Core 2 2.0GHz processor, with the number of pseudospectral
nodes in the range of 100–250.

Note that the Hamiltonian and costate values are not evaluated directly during the
pseudospectral solution process, but rather are reconstructed via the covector mapping
principle [14] after the problem solution is found. In all cases here, the Hamiltonian is found
to be reasonably constant given the relatively small number of nodes and level of accuracy
specified for the nonlinear programming aspect of the calculations.

A system of nondimensional units is employed, partly to provide somewhat more
general results, but chiefly because this system of units provides the kind of scaling needed
for the pseudospectral method to perform well. In physical units, the angular velocities,
moments of inertia, and control torques about the spacecraft’s principal axes are denoted
as ωi, Ii, and Mi, respectively; the corresponding nondimensional quantities are defined as

ξ =

√√√√ Imax

Mmax

ωi = ξωi

Ii =
Ii

Imax

Mi =
Mi

Mmax

,

(3.1)

where ξ is the time unit, and Imax and Mmax are the maximum values of the principal inertias
and control torques, respectively. In all of the cases presented, the spacecraft is assumed to
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have a spherically symmetric mass distribution (i.e., all three principal moments of inertia
are equal) and three-axis control capability, with equal and independently limited control
authority about all three axes.

3.1. Case BA1

This is a forced boundary arc trajectory of the sensor axis σ̂. The constraint cone has half-angle
of 45 deg. (corresponding approximately to the Sun keep-out cone for the Swift spacecraft)
and the sensor axis must traverse an arc of −90 deg. about the cone’s central axis. This solution
uses 151 nodes in the pseudospectral method (even a modest increase in the number of nodes
(to 171) resulted in nonconvergence with the available computing resources).

A notable feature of the motion (Figure 3) is its qualitative similarity to the
unconstrained time-optimal solution (shown in Figure 4). Referring to the angular velocity
components, it is evident that the motion includes precession, with portions of the trajectory
including fully saturated control torques. Some finite time intervals have intermediate
torques, necessitated by the boundary arc constraint. This solution yields a final time of tf =
1.9480 (nondimensional units). For comparison, if the rotation axis is constrained to lie along
the constraint cone’s axis, the final time would be tf,λ = 2.1078.

Figure 5 depicts the Hamiltonian and costate histories. It is evident that the
Hamiltonian is fairly constant, giving some confidence that the optimal solution has been
determined.

3.2. Case BA2

For this forced boundary arc, the constraint cone has half-angle αA = 23 deg. (corresponding
to the Moon cone for Swift), and the sensor axis must traverse an angle of −70 deg. about
the cone’s central axis. The final orientation of the sensor axis σ̂f is calculated via (A.1), with
⇀
a = σ̂i = [1, 0, 0],

⇀

b = σ̂f , θ = −70 deg., and λ̂ = [cos(αA), sin(αA), 0].
For this case, the solution uses 100 nodes and has a final time of tf = 1.3020. For

comparison, if the rotation axis is constrained to lie along the constraint cone’s axis, the
final time would be tf,λ = 2.0966. Figure 6 depicts the dynamic response and control
torques; Figure 7 shows the Hamiltonian and costate histories. The motion and controls are
qualitatively similar to those in case BA1. It should be noted that in both BA1 and BA2, the
path of the sensor axis is verified to lie within 10−16 radians of the constraint boundary.

3.3. Case BP1

This case is identical to case BA1, except that only the initial and final directions of the sensor
axis are constrained to lie on the constraint boundary, corresponding to two forced boundary
points. Two of the control torques (M1 and M2) exhibit bang-bang behavior whereas M3

shows some chatter (even with 250 nodes employed), as seen in Figure 8. The somewhat
larger variation in the Hamiltonian (Figure 9) occurs near the initial time; however, this
happens at a finite time t = 0.025 (corresponding to 22 pseudospectral nodes after t = 0) after
the sensor axis has moved away from the constraint boundary (Figure 10). Such behavior
is therefore not the theoretically expected discontinuity in the Hamiltonian and costates at
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Figure 3: Dynamic response and controls for the case BA1.

a point where the trajectory leaves the constraint boundary [11]; indeed, such discontinuities
may not be observable in numerical solutions where the equality condition in (2.10) is
unlikely to occur. The numerical solutions may be improved by using a Bellman chain, based
upon a sequence of embedded optimal solutions each of which can use a relatively small
number of nodes [15].

Nevertheless, the trend is clear: precession created by the control torques, works to
reduce the final time to 1.9258, approximately 1% faster than the solution in BA1.

3.4. Case BP2

This case is identical to case BA2, except that only the initial and final directions of the sensor
axis are constrained to lie on the constraint boundary. Unlike case BP1, the control torques
display more intermediate behavior (Figure 11); solution accuracy is not as good here since
convergence could not be obtained for more than 100 nodes in the 72 hours of computer
time available. This is also evident in the slight variation in the Hamiltonian (Figure 12). As
with case BP1, the only points where the sensor axis contacts the constraint boundary (see
Figure 13) are at the initial and final times. The final time achieved is tf = 1.2967.
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Figure 4: Dynamic response and controls [9] for the motion shown in Figure 1.
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Figure 5: Hamiltonian and costates for the case BA1.
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Figure 6: Dynamic response and controls for the case BA2.

4. Practical Consideration

Regardless of whether boundary points or boundary arcs exist as part of an optimal trajectory,
the numerical determination of the solution via a pseudospectral method frequently requires
considerable computation time; indeed, the actual slewing maneuver of the spacecraft can
be accomplished in seconds or minutes (depending upon the control authority) while
the pseudospectral solver requires from 20 minutes to 72 hours to compute the solution.
Experience shows that providing even a rudimentary estimate of the states and controls as
an initial guess for the pseudospectral solver can reduce the computation time significantly.
A two-stage process is proposed, wherein a random-process algorithm, such as a particle
swarm optimizer (PSO) which can rapidly explore the solution space, provides the initial
guess to the pseudospectral algorithm. The literature abounds with hybrid methods used in
related control problems. For example, Ahmed et al. [16] successfully apply just a PSO to the
problem of tuning a satellite’s attitude controller while Sentinella and Casalino [17] examine
a hybrid evolutionary algorithm that comprises differential evolution, genetic algorithms,
and a PSO applied to the problem of spacecraft trajectory optimization.
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Figure 7: Hamiltonian and costates for the case BA2.

Initial efforts that employ a two-stage process for optimal slewing maneuvers show
promising results. A PSO produces a low-quality approximation of the states, controls,
and node times for the solution, followed by the pseudospectral solver, which takes the
approximate solution as its initial starting point. An efficient method for generating the first-
stage solution is to represent each control torque component Mi as a sum of N Chebyshev
polynomials of the form [18]

Mi(t) ≈
[
N−1∑
k=0

ckTk(t)

]
− 1
2
c0, (4.1)

where Tk is the Chebyshev polynomial of degree k, and the coefficients ck are determined by
the PSO using an explicit integration of the equations of motion ((2.2), (2.3)). Implementation
of (4.1) makes use of the Clenshaw recursion relation [18] for rapid evaluation of the
Chebyshev polynomials.

As an example, the control torque for a one-dimensional slewing maneuver (with no
keep-out cones) is shown in Figure 14(a). The PSO runs for only 50 iterations (requiring 64
seconds of computation time), producing a crude approximation to the bang-bang control
solution that is known to be optimal. That approximate solution is then employed by the
DIDO pseudospectral solver to calculate the optimal solution (Figure 14(b)), requiring 12
seconds. Using this two-stage method, the total computation time (PSO plus pseudospectral
solver) requires approximately half the time needed using only the pseudospectral method
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Figure 8: Dynamic response and controls for the case BP1.

(148 seconds) with no initial guess for the solution. Future study should examine the utility
of the two-stage method for the full three-dimensional, constrained problem.

5. Conclusion

This preliminary study indicates that, although boundary arcs and boundary points may exist
in time-optimal spacecraft slewing maneuvers with path constraints, they are at best part of
a suboptimal solution. The numerical calculations (completed via a Legendre pseudospectral
method) show that even if the initial and final states are boundary points, the solution moves
away from the constraint boundary, resulting in a lower final time than if the motion is forced
to move along the boundary (a forced boundary arc). The necessary conditions lead to an
unwieldy set of relations, making it impossible to determine analytically if boundary points
or boundary arcs are excluded. Further examination of the problem using a Bellman chain
to improve the numerical accuracy may provide additional insight. A two-stage method for
generating optimal solutions in less time than that required by the pseudospectral method
alone shows some promise, but further work is needed to determine its utility for the three-
dimensional constrained problem.
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Figure 9: Hamiltonian and costates for the case BP1.
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Appendix

λ-Rotations and the Eigenaxis

Consider a dextral orthonormal basis set âj , fixed in reference frame A. A copy of this set,
denoted b̂i, is rotated in a right-handed sense, through an angle θ, about a unit vector λ̂,
which has fixed orientation with respect to A. The new orientation is denoted as reference
frame B and the rotation axis λ̂will have the same orientation with respect to B as it has toA.
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Figure 11: Dynamic response and controls for the case BP2.

This representation of the orientation of B with respect to A is called a λ-rotation [19]. For

two vectors
⇀
a and

⇀

b , fixed in frames A and B, respectively, if
⇀

b =
⇀
a initially, and B undergoes

a λ-rotation, then the subsequent relationship between
⇀
a and

⇀

b is given by

⇀

b =
⇀
a cos θ− ⇀

a × λ̂ sin θ + a · λ̂ λ̂(1 − cos θ), (A.1)

a result named after Olinde Rodrigues (Goldstein [20] claims that the relationshipwas known
before Rodrigues, and that the vector form used here was first published by Gibbs [21]). This
form is useful in describing rotations of a sensor axis about an axis fixed in both the inertial
and spacecraft frames.

If one uses a direction cosine matrix CAB to express the orientation of B with respect
to A, then the constituent basis vectors are related by

⎡
⎢⎢⎢⎣

b̂1

b̂2

b̂3

⎤
⎥⎥⎥⎦ = CAB

⎡
⎢⎢⎣
â1

â2

â3

⎤
⎥⎥⎦, (A.2)
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Figure 12: Hamiltonian and costates for the case BP2.
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Figure 13: Distance from the sensor axis to the constraint boundary (case BP2).

and the elements of CAB are given by

Cij = b̂i · âj . (A.3)

Every direction cosine matrix has one unity-valued eigenvalue with corresponding
eigenvector (in matrix form) e, that is,

CABe = e, (A.4)
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Figure 14: (a) Approximate solution for 1D slewing maneuver, generated by 50 iterations of a particle
swarm optimizer. (b) Optimal control solution for the same maneuver, generated by DIDO (running in
accurate mode). Total required cpu time for solution: 148 sec using only DIDO, with no initial guess; 76 sec
for the combined PSO-DIDO solution.

and the elements of e clearly constitute the components of the associated λ-rotation vector.
The vector e is commonly referred to as the eigenaxis for the rotation that generates B fromA.

By taking dot products of both sides of (A.1) with
⇀
a and then with

⇀

b , and using
appropriate vector identities, it can be shown that

cos θ =

⇀
a · ⇀b −

(
⇀
a · λ̂

)2

1 −
(
⇀
a · λ̂

)2
, sin θ =

−1 +
(⇀

b · ⇀a
)
cos θ +

(
⇀
a · λ̂

)2
(1 − cos θ)

⇀

b ·
(
⇀
a × λ̂

) , (A.5)

which permits the calculation of θ for given
⇀
a,

⇀

b , and λ̂. Another useful relationship gives the
direction cosine matrix CAB in terms of the Euler parameters

CAB =

⎡
⎢⎢⎣
1 − 2

(
ε22 + ε23

)
2(ε1ε2 + ε3ε4) 2(ε1ε3 − ε2ε4)

2(ε2ε1 − ε3ε4) 1 − 2
(
ε21 + ε23

)
2(ε2ε3 + ε1ε4)

2(ε3ε1 + ε2ε4) 2(ε3ε2 − ε1ε4) 1 − 2
(
ε21 + ε22

)

⎤
⎥⎥⎦. (A.6)

Nomenclature

C: Constraint function
H: Hamiltonian without the path constraint
H̃: Hamiltonian with the path constraint
Ii: Principal moment of inertia (nondimensional)
Ii: Principal moment of inertia (in physical units)
J : Performance index



18 Mathematical Problems in Engineering

Mi: Control torque (nondimensional)
Mi: Control torque (in physical units)
tf : Final time
αA: Half-angle of the keep-out cone for object A
εi: Euler parameter
λ̂: Rotation axis
λx: Costate corresponding to state x
μ: Lagrange multiplier associated with constraint function C

θ: Rotation angle about the λ̂-axis
ξ: Time unit
σ̂: Direction of the sensor axis
σ̂A: Direction of the central axis of the keep-out cone for object A
ωi: Angular velocity component (nondimensional)
ωi: Angular velocity component (in physical units).
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