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Appropriate wireless access point deployment (APD) is essential for ensuring seamless user
communication. Optimal APD enables good telecommunication quality, balanced capacity
loading, and optimal deployment costs. APD is a typical NP-complex problem because improving
wireless networking infrastructure has multiple objectives (MOs). This paper proposes a method
that integrates a goal-programming-driven model (PM) and a genetic algorithm (GA) to resolve
theMO-APD problem. The PM identifies the target deployment subject of four constraints: budget,
coverage, capacity, and interference. The PM also calculates dynamic capacity requirements to
replicate real wireless communication. Three experiments validate the feasibility of the PM. The
results demonstrate the utility and stability of the proposed method. Decision makers can easily
refer to the PM-identified target deployment before allocating APs.

1. Introduction

Appropriate wireless access point deployment (APD) is essential for ensuring seamless user
communication. Optimal APD enables good telecommunication quality, balanced capacity
loading, and optimal deployment costs. APD is a typical NP-complex problem [1] because
it involves multiple decision objectives, such as budget [2–4], coverage [2, 5–8], interference
[3, 4, 7], and dynamic capacity [1, 4, 6–9]. Furthermore, these objectives usually contradict
each other [7]. For example, the number of APs is usually positively related to the wireless
signal coverage rate and telecommunication reliability [1]. However, more APs increase
deployment costs. These conflicting criteria should be considered simultaneously when
solving APD problems [9, 10].
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Table 1: A comparison of the three wireless AP types.

AP Type Cost (NT$) Range (m) Speed (Mbit/s) Manufacturers

Type 1
802.11 b/g

1365 30 to 89 54 ASUS, D-Link, Lantech, SMC

Type 2
802.11 b/g

1710 33 to101 108 Corega, D-Link, PCI, SMC

Type 3
802.11 b/g/n

3138 51 to 163 300 Apple, ASUS, Buffalo, Corega, D-Link

In the last decade, many studies have attempted to solve APD optimally by
considering multiple objectives (MOs). There are four main objectives: budget, coverage
rate, capacity, and interference. Studies have attempted to identify maximal coverage. For
example, Huang et al. developed a growth-planning algorithm to establish the maximal
coverage range [11]. Zhao et al. used a point-to-point signal strength strategy to implement
indoor AP location optimization for maximal coverage [12]. For the capacity objective, the
capacity requirements of wireless networks compared to wired networks are particularly
difficult to evaluate because users are dynamic and can move from place to place. This
makes APD a dynamic and complex problem. The dynamic capacity requirement must
be addressed to resolve APD [13] because users can access particular APs to balance
loads [9, 14]. Finally, for the interference objective, too many APs of the same type and
placed too close together may cause AP malfunction because of frequency interference. To
avoid communication interference, some studies [6, 15] have suggested that APs should
be arranged on different communication channels, but this leads to other communication
channel assignment problems.

This paper applies a goal-programming-driven model (PM) to the MO-APD problem.
It uses goal programming (GP) to infer and model the PM and a genetic algorithm (GA) to
search for near optimal solutions. These methods are easily applied to MO-APD problems to
reflect real situations. The remainder of this paper is organized as follows: Section 2 defines
the problem; Section 3 details the PM; Section 4 presents a discussion on the PM solution
process using a GA; Section 5 provides the results of numerical experiments which are given
in this section; lastly, Section 6 offers a conclusion and suggestions for future research.

2. Description of the APD Problem

This research resolves the MO-APD problem according to four decision constraints: budget,
coverage, capacity requirements, and interference. The PM identifies a feasible target
deployment (T), which consists of three types of wireless APs, as shown in Table 1. This study
conducted experiments and surveys that indicate that the coverage range and communication
speed of a Type 3 AP are wider and faster, respectively, than AP Types 1 and 2. However, Type
1 AP equipment is cheaper than AP Types 2 and 3. Two APs may interfere with each other if
they are the same type and are too near. Therefore, the PMmust balance the four decision con-
straints and allocate three AP types in the target deployment of the APD problem. Table 2 lists
the variables used in the proposed models.
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Table 2: Variables used in this paper.

Variable Definition

Bij
The base station for the potential AP deployment area, where i is a row and j is a column.i =
1, 2, . . . , n; j = 1, 2, . . . , m.

xq
Represents the type q AP allocated to Bij , where q ∈ [1, 2, 3] in Table 1. If xq = 0, no AP has
been allocated to Bij .

cxq Represents the AP cost for each AP type, xq ∈ [1, 2, 3].

reqij The networking capacity requirement between Bi and Bj .

2.1. The Budget Constraint (θ(T))

Budget is the most important APD-MO constraint that directly affects the feasibility of T .
The cost function in (2.1) evaluates the total cost of T . Equation (2.2) evaluates the budget
constraint. In (2.2), bgt represents the given budget constraint for the AP allocation for T :

CST(T) =
∑

i

∑

j

CxqBi,j , ∀Xq /= 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m, (2.1)

if CST(T) < bgt, θ(T) = 1 ,

else θ(T) =
bgt

CST(T)
.

(2.2)

2.2. The Coverage Constraint (Φ(T))

Figure 1 shows that to enable seamless user communication, two APs are allocated, but
two capacity requirements (req2,1 and req2,3) have no signal coverage. The coverage function
(CVG(T)) evaluates the signal coverage area of T . Equation (2.3) evaluates the coverage
fulfillment rate:

Φ(T) =
CVG(T)

target area
. (2.3)

2.3. The Capacity Constraint (Ψ(T))

Figure 2 shows a dynamic capacity scenario. The target area allocates two Type 1 APs (AP1

and AP2), and two APs simultaneously cover the capacity requirements (req22). For time
slot 1 (T1), the capacity requirements of req12, req13, and req22 access AP1, and the capacity
requirements of req31 and req32 access AP2. Therefore, for time slot T1, AP1 and AP2 must
provide 55 and 25mbit/s capacity, respectively. In time slot T2, req22 shifts connection from
AP1 to AP2 for balance loading. Therefore, for time slot T2, AP1 and AP2 must provide 35
and 45mbit/s, respectively. Actual capacity requirements are difficult to evaluate accurately.
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Figure 1: The signal coverage illustration.
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Figure 2: The dynamic capacity requirements of two APs. The blue area represents time slot 1 (T1) and the
pink area represents time slot 2 (T2).

A Monte Carlo simulation algorithm—that simulates the capacity of T—implements the
DCPij(T) function. Equation (2.4) evaluates the capacity fulfillment rate:

if DCPij(T) > reqij , Ψ(T) = 1, i = 1, 2, . . . , n; j = 1, 2, . . . , m,

else Ψ(T) =
DCPij(T)

reqij
.

(2.4)
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Figure 3: The frequency interference illustration.

2.4. The Interference Constraint (ω(T))

Figure 3 shows that many Type 1 APs are used to maximize coverage and capacity of T
because of budget constraints. However, too many APs of the same type and allocated too
near to each other may lead to AP malfunction because of AP frequency interference. For
example, Figure 3 shows a perfect coverage design. However, it also shows an increased
interference rate. The interference function (IFT(T)) evaluates the interference area of T .
Equation (2.5) evaluates the interference fulfillment rate:

ω(T) = 1 − IFT(T)
target area

. (2.5)

3. Proposed Model to Solve MO-APD

Two main approaches can be used to formulate MO-APD. One approach is the cost-oriented
approach, which aims to minimize total cost subject to MO performance constraints. This
study formulated MO-APD using the cost-oriented approach as shown in Proposal 1 (P1).
GAL-CVG, GAL-CP, and GAL-IFT are the given constraints for coverage rate, capacity
fulfillment rate, and interference fulfillment rate, respectively.

(P1)

MinCST(T) ≤ bgt, (3.1)

subject to

Φ(T) ≥ GAL − CVG, (3.2)

Ψ(T) ≥ GAL − CP, (3.3)

ω(T) ≥ GAL − IFT. (3.4)
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Equations (3.2)–(3.4) are the coverage, capacity, and interference constraints. Equation
(3.1) is the objective function, which minimizes the total cost subject to multiple decision
constraints (3.2)–(3.4).

The second approach is performance oriented, and it maximizes the performance of
target deployment subjects to real constraints (e.g., budget). This study reformulated theMO-
APD using the performance-oriented method, shown in Proposal 2 (P2).

(P2)

MaxΦ(T) + Ψ(T) +ω(T), (3.5)

subject to (3.1)–(3.4).
Equation (3.5) is the objective function in P2, which maximizes the coverage, capacity

fulfillment, and interference fulfillment rates of T subject to budgetary (3.1) and other
decision constraints (3.2)–(3.4). GP aids MO decision-making problem modeling. It was
first introduced by Charnes and Cooper [16] and further developed by Tamiz et al. [17],
Romero [18], and Chang [19]. Various types of GP approaches exist, such as lexicographic
GP, weighted GP, MINMAX (Chebyshev) GP, and multichoice GP [19]. To enable decision
makers to easily set the constraint weighting according to their preferences, this study
used a weighted GP approach to translate (P2) into the (PM). wcvg, wcp, and wIFT are the
important weights (between 0 and 1) for the GAL-CVG, GAL-CP, and GAL-IFT constraints,
respectively.

(PM)

Min Wbgt
(
bgt+

)
+Wcvg

(
cvg−

)
+Wcp

(
cp−) +WIFT

(
IFT−), (3.6)

subject to

CST(T) − bgt+ + bgt− = bgt, (3.7)

Φ(T) − cvg+ + cvg− = GAL − CVG, (3.8)

Ψ(T) − cp+ + cp− = GAL − CP, (3.9)

ω(T) − IFT+ + IFT− = GAL − IFT, (3.10)

bgt+, bgt−, cvg+, cvg−, cp+, cp−, IFT+, IFT− ≥ 0. (3.11)

4. Process for Solving the PM Using a GA

The GA is a stochastic searching method that uses the mechanics of natural selection to
solve optimization problems. The GA was developed from the theory of natural selection
[20]. Because the GA is a good stochastic technique for solving combinatorial optimization
problems, this study uses the GA as the PM search tool, as shown in Figure 4.

An initial solution population is randomly created. The fitness of each individual in the
population then determines whether it survives. Termination criteria (such as the generation
size or the fitness value exceeding the threshold) determine the target deployment (T) to be
achieved. Finally, genetic operators such as selection, crossover, and mutation identify the
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Figure 4: GA-based PM solution process.

next generation. After meeting a number of iterations or predefined criteria, a near optimal
solution is found.

4.1. Representation Structure: Encode/Decode

A graph represents a target deployment (T) that can also be expressed as a two-dimensional
matrix. In the graph, each potential base station (Bi,j) has two states: AP (Bi,j = 1) allocated
and no AP (Bi,j = 0) allocated. A base station with an allocated AP must have an AP type
(xq = [1, 2, 3]). n ×m bit strings were used as chromosomes to represent T :

T =

⎡
⎢⎢⎢⎣

B1,1 B1,2 · · · B1,m

B2,1 B2,2 · · · B2,m
...

...
...

...
Bn,1 Bn,2 · · · Bn,m

⎤
⎥⎥⎥⎦
. (4.1)

4.2. Evaluation Function

The PM objective function (F(i))was used as a GA evaluation function in (4.2). All variables
in (4.2) are defined as in the PM:

F(i) = Wbgt
(
bgt+

)
+Wcvg

(
cvg−

)
+Wcp

(
cp−) +WIFT

(
IFT−). (4.2)

4.3. GA Manipulations

(1) Selection: roulette wheel selection ensures that highly fit chromosomes produce
more offspring. This method selects a candidate network according to its survival
probability, which is equal to its fitness relative to the whole population, as shown
in (4.3):

[
F(i)∑
F(i)

]
. (4.3)

(2) Crossover: the crossover method randomly selects two chromosomes from the
mating pool for mating. Crossover site C is randomly selected in the interval
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Figure 5: Capacity requirements for Experiment 1.

[1, n×m]. Two new chromosomes, called offspring, are then obtained by swapping
all characters between position C and n ×m.

(3) Mutation: the combined reproduction and crossover methods occasionally lose
potentially useful chromosome information. Mutation is introduced to overcome
this. It is implemented by randomly complementing a bit (0 to 1 and vice versa).
This ensures that good chromosomes are not permanently lost.

5. Experiment Validation and Analysis

To validate the efficiency and feasibility of the PM at resolving APD problems, three
experiments were designed and implemented. Experiment 1 included four subtests to
validate parameter combination types consisting of different decision variables. Experiment
2 included two subtests to confirm the ability of the PM to solve dynamic capacity problems.
Experiment 3 ensured that the PM is suitable for large-scale problems and tested the GA
parameter effects.

5.1. Experiment 1: Decision Variable Combination Validation

Four subtests consisting of different decision variables and important weights validated the
ability of the PM to solve APD problems. The target area in Figure 5 is a 90 km2 irregularly
shaped area. The capacity requirements in Figure 5 were identical for all subtests. All reqij
could move around the target area, where signal coverage was present. For comparative
purposes, the GA parameters of the four subtests—population size (600), terminated gen-
eration (500), crossover rate (0.4), and mutation rate (0.1)—were fixed. Table 3 lists the other
decision variables.

Table 4 shows the four subtests formulated as Model I and Model II according to the
PM. To avoid the randomizing effect of the GA, all subtests were run three times with the
same parameters on the same machine. The result averages are reported. Table 5 shows the
analysis of the experiment results. The E1.a and E1.b results show that the important budget
weight is less in E1.b than in E1.a. Therefore, only 15APs (on average) are deployed for E1.b,
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Table 3: Decision variables and import weights for four subtests in Experiment 1.

Decision variable E1.a E1.b E1.c E1.d
Budget 30000 (Wbgt = .25) 30000 (Wbgt = .40) 35000 (Wbgt = .25)
Coverage rate 85% (Wcvg = .25) 85% (Wcvg = .20) 85% (Wcvg = .25)
Capacity fulfillment rate 80% (Wcp = .25) 80% (Wcp = .20) 80% (Wcp = .25)
Interference fulfillment rate 80% (WIFT = 25) 80% (WIFT = .20) 80% (WIFT = 25) 90% (WIFT = 25)
Note that important weights are marked in parentheses.

Table 4: Model I and Model II for resolving the four subtests.

Model I (for subtests E1.a and E1.b) Model II (for subtests E1.c and E1.d)
Min 0.25a(0.4)bbgt+ + 0.25a(0.2)bcvg− +
0.25a(0.2)bcp− + 0.25a(0.2)bIFT− Min 0.25bgt+ + 0.250cvg− + 0.25cp− + 0.25IFT−

Subject to Subject to
CST(T) − bgt+ + bgt− = 30000 CST(T) − bgt+ + bgt− = 30000
Φ(T) − cvg+ + cvg− = 0.85 Φ(T) − cvg+ + cvg− = 0.85
Ψ(T) − cp+ + cp− = 0.8 Ψ(T) − cp+ + cp− = 0.8
ω(T) − IFT+ + IFT− = 0.8 ω(T) − IFT+ + IFT− = 0.8c(0.9)d

bgt+, bgt−, cvg+, cvg−, cp+, cp−, IFT+, IFT− ≥ 0 bgt+, bgt−, cvg+, cvg−, cp+, cp−, IFT+, IFT− ≥ 0
Note that ais for E1(a), bfor E1(b), cfor E1(c), and dfor E1(d).

Table 5: Analysis of the results of Experiment 1.

Indicator E1.a E1.b E1.c E1.d
Fitness .9534 .9420 .9568 .9567
Time (s) 160.0993 160.106 159.0593 170.4233
Cost 36954 29360 34647 34694
Coverage rate .85 .6967 .8167 .8233
Capacity fulfillment rate .8490 .6981 .8189 .8269
Interference fulfillment rate .94 .9867 .94 .99
Number of APs 22 15 21 23

as shown in Figure 6. The results also show that the decision maker must either increase the
budget or adjust the other decision objectives. For example, E1.b shows that the coverage and
capacity fulfillment rates can only reach 0.7 at the current budget. As the budget increases
from 30000 (in E1.b) to 35000 (in E1.c and E1.d), the number of APs deployed increases to
22 (on average). The coverage and capacity rates increase from 0.7 in E1.b to 0.82 in E1.c and
E1.d. E1.d deployed more APs (23) at a lower cost than E1.a (22 APs). Figure 6 shows that
the APs in E1.c and E1.d are spread evenly in the target area to avoid interference. Figure 7
shows the convergence trends for all subtests. T emerges after 100–150 iterations.

5.2. Experiment 2: Dynamic Capacity Requirement Validation

Experiment 2 consisted of two subtests to validate the ability of the PM to resolve dynamic
capacity requirements. Figure 6(a) shows that in subtest E2.a, most capacity requirements are
in the central area of the target (32 km2). Figure 6(b) shows that in subtest E2.b, the capacity
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Figure 6: AP deployment results for the four subtests in Experiment 1.

Table 6: Decision variable and important weights for Experiment 2.

Decision variable Variable value
Budget 15000 (Wbgt = .3)
Coverage rate 85% (Wcvg = .15)
Interference fulfill rate 85% (WIFT = .15)
Capacity fulfill rate 95% (Wcp = .4)
Note that the important weights are marked in parentheses.

requirements are scattered in the corners of the target area. Table 6 shows that the capacity
requirements and all default decision variables are identical for both tests. The GA param-
eters—population size (600), terminated generation (500), crossover rate (0.4), and mutation
rate (0.1)—were fixed to enable result comparison. To avoid random GA effects, all subtests
were run three times with the same parameters on the same machine. The result averages are
reported.

Table 7 shows the experiment results analysis. As expected, APD follows the capacity
requirements, as shown in Figures 8(a) and 8(b). Figures 8(a) and 8(b) also show that APs are
more central in E2.a than in E2.b to fulfill the capacity requirements. Although the capacity
requirements are the same in both experiments, E2.a requires nine APs, which is more than
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Figure 8: The capacity requirement and results of Experiment 2 for (a) subtest E2.a and (b) subtest E2.b.
The numbers represent the capacity requirements.

E2.b (seven APs). Therefore, capacity requirements are dynamic, and T requires more APs to
manage the capacity requirement increase in E2.a.

5.3. Experiment 3: The Effect of Large-Scale Problems and
GA Parameters on Validation

Two subtests of Experiment 3 were designed as large-scale problems. Table 8 lists the decision
variables and the important weights. Experiment 3 also tested GA parameter combinations,
including crossover and mutation rates.

The results analysis in Table 9 shows that the PM is more sensitive to crossover
rate. Generation—as an evaluation indicator for subtests E3.a and E3.b—shows that feasible
deployment can be reached in the following order of crossover rates: 0.6 (converged by 22
iterations), 0.4 (converged by 70 iterations), and 0.2 (converged by 95 iterations). However,
no such pattern exists for mutation rate in either test. Therefore, a crossover rate of 0.4 and
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Table 7: Analysis of the results of Experiment 2.

Indicator E2.a E2.b
Fitness 1 1
Time (s) 5.1883 4.7797
Cost 14387 14068
Coverage rate .8518 .8518
Capacity fulfillment rate 1 1
Interference fulfillment rate .9815 .9259
Number of APs 9 APs 7 APs

Table 8: Decision variables and important weights for Experiment 3.

Objective E3.a E3.b
Target area 2250 km2 90000 km2

Budget (Wbgt = .55) 1350 000 5650000
Coverage rate (Wcvg = .15) 85% 85%
Capacity and interference fulfillment rates (Wcp =WIFT = 0.15) 80% 80%
Note that the capacity requirements are shown in the Appendix and the important weights are marked in parentheses.

Table 9: Analysis of the results of Experiment 3.

Indicator Fixed mutation rate (m = 0.1) Fixed crossover rate (c = 0.4)
C = 0.2 C = 0.4 C = 0.6 m = 0.01 M = 0.2

Fitness 1 (.9869) 1 (1) 1 (1) 1 (1) 1 (1)
Generation 96 (93) 53 (86) 18 (26) 9 (94) 22 (62)

Time 489.2550
(3795.2)

526.2310
(5080.5)

552.5640
(3880.6)

496.0540
(3334.8)

541.5390
(4866.5)

Cost 1,349,670
(5,736,480)

1,326,549
(5,593,797)

1,347,933
(5,576,205)

1,348,896
(5,580,897)

1,324,479
(5,566,053)

Capacity fulfillment rate .8485
(.8641)

.8384
(.8536)

.8495
(.8486)

.8450
(.8502)

.8531
(.8560)

Coverage fulfillment rate .8500
(.8536)

.8496
(.8634)

.8484
(.8506)

.8496
(.8510)

.8496
(.8559)

Interference .8996
(.8929)

.9100
(.8914)

.8996
(.8891)

.9048
(.8987)

.9012
(.8952)

The experiment results for E3(b) are in parentheses.

a mutation rate of 0.1 are recommended for experiment implementation to avoid GA
parameter effects. The results in Table 9 show that large-scale problems (E3.b) can be resolved
within an acceptable time (4191.52 s, approximately 1 h).

6. Conclusion

Optimal wireless LAN (WLAN) design is important to ensure seamless user communication.
Appropriately locating wireless APs for WLANs is important. Optimal APD enables high
telecommunication quality, balanced capacity loading, and optimal deployment costs. This
study proposes a GP-driven model integrated with a GA to solve MO-APD subject to four
constraints: budget, capacity, interference, and coverage. The experiment results show that
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Figure 9: Capacity requirements for Experiment 3.a.

the PM resolves many APD problems and achieves dynamic capacity replication. Results
confirm the ability of the PM to solve large-scale APD problems. Future research should focus
on other applications and further verification of PM.

Appendix

Figure 9 shows the capacity requirement for the E3.a subtest.
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