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A distribution-based identification procedure for estimation of yield coefficients in a baker’s yeast
bioprocess is proposed. This procedure transforms a system of differential equations to a system of
algebraic equations with respect to unknown parameters. The relation between the state variables
is represented by functionals using techniques from distribution theory. A hierarchical structure
of identification is used, which allows obtaining a linear algebraic system of equations in the
unknown parameters. The coefficients of this algebraic system are functionals depending on the
input and state variables evaluated through some test functions from distribution theory. First,
only some state equations are evaluated throughout test functions to obtain a set of linear equations
in parameters. The results of this first stage of identification are used to express other parameters
by linear equations. The process is repeated until all parameters are identified. The performances
of the method are analyzed by numerical simulations.

1. Introduction

A process carried out in a bioreactor can be defined as a set of m biochemical reactions
involving n components (with n ≥ m). The global dynamics can be represented by following
the dynamical state-space model [1]:

dξ

dt
= K · ϕ(ξ, t) −Dξ + F −Q, (1.1)

where ξ ∈ �n×1.
This model describes the behaviour of an entire class of biotechnological processes and

is referred to as the general dynamical state-space model of this class of bioprocesses [1, 2].
In (1.1), the term K · ϕ(ξ, t) is the rate of consumption and/or production of the components
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in the reactor, that is, the reaction kinetics and the term −Dξ + F −Q represents the exchange
with the environment, that is, the dynamics of the component transportation through the
bioreactor. The strongly nonlinear character of the model (1.1) is given by the reaction
kinetics. In many situations, the yield coefficients, the structure, and the parameters of the
reaction rates are partially known or unknown. Many of the evolved control methods for
these kind of systems—like model predictive control [3], robust or adaptive control [4, 5]—
are based on good initial estimates of the yield parameters. This paper deals with the yield
coefficients identification of baker’s yeast bioprocess.

In recent years, a progress has been made in the area of continuous-time system
identification. Even if the most physical systems are naturally continuous, a much more
attention has been paid to parameter estimation of discrete-time systems, mainly because
they are better suited for numerical implementations. Continuous-time identification makes
possible a more direct link to the physical properties and operation of the underlying systems
[6, 7] and the direct estimation of physical parameters which have a clear significance [8].
One important direction in continuous-time system identification is to transform the system
of differential equations to an algebraic system that reveals the unknown parameters. By
using some measures, the direct computation of the input-output data derivatives can be
completely avoided. For linear system identification, several methods are reported on this
direction: identification based on the Laplace transformation and then use the Laguerre filter
[9] or transforming the continuous-time system to the frequency domain [10].

A novel approach to identify the continuous-time system is the distribution-based
approach, using deterministic distributions [11] or random distributions [12]. Through
these approaches, derivatives are described in the sense of distribution theory and one
constructs the input-output algebraic relationships using differential information produced
in the distribution sense.

Identification of nonlinear continuous-time systems is far away more complicated.
The traditional procedures are based on the Volterra functional series, expressed in time
domain or frequency domain [7]. The parameter identification of deterministic nonlinear
continuous-time systems (NCTSs), modelled by polynomial-type differential equations has
been considered by numerous authors [13, 14]. They use the modulating functions as a sum
of sinusoids, whose fundamental period has a fixed length, to convert differential equations
into an algebraic form in the frequency domain. These methods can be applied only if the
NCTS is exactly integrable. This means that all the terms can be written as pure derivatives of
some computable function of the measured signals. The computational burden in applying
themethod ofmodulating functions is overtaken by using Fast Fourier Transform algorithms.

In this paper we propose an identification method for a class of NCTS considering that
the unknown parameters can appear in rational relations with measured variables. Using
techniques utilized in distribution approach the measurable functions and their derivatives
are represented by functionals on a fundamental space of testing functions. Such systems
are common in biotechnology [1, 15]. It is supposed that the system is described by state
equations and all state variables are measurable (or they can be estimated using some state
estimators [16]).

The most important approaches for the yield coefficients estimation make use of the
state transformations based on the general structure [17–19]. The main idea of this paper is
to use a hierarchical structure of identification to estimate the yield coefficients in the baker’s
yeast bioprocess. First, some state equations are utilized to obtain a set of linear equations in
some parameters. The results of this first stage of identification are used for expressing other
parameters by linear equations. This process is repeated until all parameters are identified.
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The paper is organized in the following way. The nonlinear dynamical model of
a baker’s yeast process is given in Section 2. Section 3 presents the problem statement of
continuous-time systems identification based on distribution approach and the hierarchical
structure of yield coefficients identification. Section 4 is dedicated to the analysis of properties
of the identification algorithm. Some experimental results are presented in Section 5, and
conclusions in Section 6.

2. Nonlinear Dynamical Model of Baker’s Yeast Process

The yeast growth has already been the subject of numerous studies and papers. The reaction
scheme of baker’s yeast bioprocess is [20]

S + C
μo
s−→ X +G, (2.1)

S
μr
s−→ X + E +G, (2.2)

E + C
μo
e−→ X +G. (2.3)

In the reaction schemes (2.1)–(2.3), S is the glucose, X the biomass, C the dissolved
oxygen, E the ethanol, and G the dissolved carbon dioxide. The first reaction scheme
represents the respiratory growth on glucose; the second reaction scheme represents the
fermentative growth on glucose, and finally the third reaction represents the respiratory
growth on ethanol. μo

s, μ
r
s, and μo

e are three specific growth rates that reflect the capacity
of the baker’s yeast to exploit three catabolic pathways for energy and material sources.

The dynamical model of the fed-batch bioprocess with the reaction schemes (2.1)–(2.3)
can be obtained by using the mass balance of the components, considering that the bioreactor
is well mixed, the yield coefficients, are constant and the dynamic of the gas phase can be
neglected [20]:

dX

dt
=
(
μo
s + μr

s + μo
e

)
X −DX, (2.4)

dS

dt
=
(−k1μo

s − k2μ
r
s

)
X +D(Sin − S), (2.5)

dE

dt
=
(
k3μ

r
s − k4μ

o
e

)
X −DE, (2.6)

dC

dt
=
(−k5μo

s − k6μ
o
e

)
X −DC +OTR, (2.7)

dG

dt
=
(
k7μ

o
s + k8μ

r
s + k9μ

o
e

)
X −DG + CTR, (2.8)

dV

dt
= Fin = DV. (2.9)

The dynamical model is expressed as a set of differential equations, in terms of the
concentrations of components, and with the additional (2.9), which represents the dynamics
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of the solution volume V in the bioreactor. In (2.4)–(2.9), ki, i = 1, 9 are the positive yield
coefficients, Sin is the glucose concentration on the feed, OTR is the oxygen rate, defined as
OTR = KLa (C∗ − C) (where KLa is the mass transfer coefficient and C∗ the equilibrium
concentration of the dissolved oxygen), CTR is the carbon dioxide transfer rate (defined as
CTR = KVKLaG, with KV a transfer coefficient), Fin is the input feed rate, and D = Fin/V is
the so-called dilution rate.

The model (2.4)–(2.8) can be expressed in the matrix form:

⎡

⎢
⎢
⎢⎢
⎢
⎣

Ẋ
Ṡ
Ė
Ċ
Ġ

⎤

⎥
⎥
⎥⎥
⎥
⎦

=

⎡

⎢
⎢
⎢⎢
⎢
⎣

1 1 1
−k1 −k2 0
0 k3 −k4

−k5 0 −k6
k7 k8 k9

⎤

⎥
⎥
⎥⎥
⎥
⎦

︸ ︷︷ ︸
K

⎡

⎣
μo
s

μr
s

μo
e

⎤

⎦X −D

⎡

⎢
⎢
⎢⎢
⎢
⎣

X
S
E
C
G

⎤

⎥
⎥
⎥⎥
⎥
⎦
+

⎡

⎢
⎢
⎢⎢
⎢
⎣

0
DSin

0
OTR
0

⎤

⎥
⎥
⎥⎥
⎥
⎦
−

⎡

⎢
⎢
⎢⎢
⎢
⎣

0
0
0
0

CTR

⎤

⎥
⎥
⎥⎥
⎥
⎦
.

(2.10)

The next notations will be used: the state vector is ξ = [X S E C G]T = [ξ1 ξ2 ξ3 ξ4 ξ5]
T ,

the vector of reaction rates (the reaction kinetics) is Φ(ξ) = [μo
sX μr

sX μo
eX]T ; K is the

matrix of yield coefficients, F = [0 DSin 0 OTR]T is the vector of feeding rates, and
Q = [0 0 0 0 CTR]T is the vector of rates of removal of the components in gaseous form.

The most difficult task for the construction of the dynamical model is the modelling of
the reaction kinetics. The form of kinetics is complex, nonlinear, and in many cases unknown.
The reaction rates can be expressed as

Φ(ξ, t) = H(ξ) · μ(ξ, t), (2.11)

where H(ξ) is a state-dependent diagonal matrix, whose elements correspond to the
reactions’ reactants.

The specific growth rates μ(ξ, t) are considered as a vector of time-varying parameters.
For the baker’s yeast bioprocess the form of matrix H(ξ) is very simple:

H(ξ) =

⎡

⎣
X 0 0
0 X 0
0 0 X

⎤

⎦. (2.12)

Then the model (2.10) becomes

dξ

dt
= K ·H(ξ) · μ(ξ, t) −D · ξ + F −Q. (2.13)

For the reaction rates of the baker’s yeast bioprocess there are many possible models
[21, 22], and so forth. However, the process of yeast growth on glucose with ethanol
production is generally described by the following threemetabolic reactions, widely analyzed
by Sonnleitner and Kappeli [20].
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First, the reaction rate of the respiratory growth on glucose and the associated specific
growth rate are

ϕ1(ξ) = μ1(ξ) ·X,

μ1(ξ) = min
(
μs,

μcmax

k5

)
,

(2.14)

where the kinetic terms associated with the glucose consumption μs and with the respiratory
capacity μcmax are modelled byMonod-type laws: μs = qsmaxS/(S+Ks), μcmax = qcmaxC/(C+
Kc), with qsmax and qcmax the maximal values of the specific growth rates of glucose
and oxygen, and Ks and Kc the saturation parameters for glucose and oxygen uptake,
respectively.

Second, the reaction rate of the fermentative growth on glucose and the associated
specific growth rate are

ϕ2(ξ) = μ2(ξ) ·X,

μ2(ξ) = max
(
0, μs −

μcmax

k5

)
.

(2.15)

Finally, if the oxidation capacity is sufficiently high to oxidize both ethanol and
glucose, then their consumption is possible. Then, the reaction rate of the respiratory growth
on ethanol and the associated specific growth rate are

ϕ3(ξ) = μ3(ξ) ·X,

μ3(ξ) = max
(
0,min

(
μe,

μcmax − k5μs

k6

))
,

(2.16)

where μe is the potential ethanol oxidative rate, modelled by Monod-type law: μe =
qemaxE/(E + Ke), with qemax the maximal value of the specific growth rates of ethanol, and
Ke the saturation parameter for growth on ethanol.

The above kinetic model is based on the well-known bottleneck hypothesis developed
by Sonnleitner and Kappeli [20]. This model assumes a limited capacity of yeast, leading
to the production of ethanol under conditions of oxygen limitation and/or high glucose
concentration. The glucose concentration that corresponds to the oxidative capacity is
reached when μs = μcmax/k5, and it is called critical concentration. Depending on this critical
concentration, two operating regimes can be observed. At glucose concentration lower than
its critical value, the system is in the respirative regime. The glucose consumption rate is
smaller than the maximal respiratory capacity μs ≤ μcmax/k5 and the rate of the oxidative
glucose metabolism is given by the glucose consumption rate. Ethanol can be oxidized in
parallel with glucose and the rate of oxidative ethanolmetabolism is determined by the excess
of respiratory capacity and the available ethanol. At glucose concentration higher than its
critical value, the system is in the so-called respirofermentative regime. Then the glucose
consumption rate is larger than the maximal respiratory capacity μs > μcmax/k5 and the
respiratory capacity establishes the rate of the oxidative glucose metabolism. The excess of
glucose is processed by the fermentative metabolism. Under lack of oxygen conditions, the
fermentative pathway is predominating.
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Since there are three unknown kinetics, the implementation of some state observers
(such as asymptotic observers) require the onlinemeasurements of three state variables. Also,
the online estimation algorithms for kinetic parameters (e.g., observer-based techniques)
necessitate the knowledge of minimum three states. From the technological point of view, E,
C, and G are the online available state variables, so it is important to design the estimators by
using these measurements. Unfortunately, according to the yield coefficient values, E, C, and
G are linearly dependent, with the corresponding yield matrix being ill conditioned [23]. This
would result in sensitive algorithms to numerical errors, thus having performances degraded.
To solve this problem, Pomerleau and Perrier [23] suggested a reformulation of model (2.10).
This reformulation is based on the division of the complete process model (2.10) into two
partial models, corresponding to the above-described mechanisms: the respirofermentative
partial model for the ethanol production state of the process and the respirative partial model,
corresponding to the ethanol consumption state of the process.

The fermentative partial model is stated as

⎡

⎢⎢⎢⎢⎢
⎣

ξ̇1
ξ̇2
ξ̇3
ξ̇4
ξ̇5

⎤

⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎣

1 1
−k1 −k2
0 k3

−k5 0
k7 k8

⎤

⎥⎥⎥⎥⎥
⎦

[
μ1

μ2

]
ξ1 −D

⎡

⎢⎢⎢⎢⎢
⎣

ξ1
ξ2
ξ3
ξ4
ξ5

⎤

⎥⎥⎥⎥⎥
⎦
+

⎡

⎢⎢⎢⎢⎢
⎣

0
DSin

0
OTR
0

⎤

⎥⎥⎥⎥⎥
⎦
−

⎡

⎢⎢⎢⎢⎢
⎣

0
0
0
0

CTR

⎤

⎥⎥⎥⎥⎥
⎦
. (2.17)

The respirative partial model is stated as

⎡

⎢⎢⎢⎢⎢
⎣

ξ̇1
ξ̇2
ξ̇3
ξ̇4
ξ̇5

⎤

⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎣

1 1
−k1 0
0 −k4

−k5 −k6
k7 k9

⎤

⎥⎥⎥⎥⎥
⎦

[
μ1

μ3

]
ξ1 −D

⎡

⎢⎢⎢⎢⎢
⎣

ξ1
ξ2
ξ3
ξ4
ξ5

⎤

⎥⎥⎥⎥⎥
⎦
+

⎡

⎢⎢⎢⎢⎢
⎣

0
DSin

0
OTR
0

⎤

⎥⎥⎥⎥⎥
⎦
−

⎡

⎢⎢⎢⎢⎢
⎣

0
0
0
0

CTR

⎤

⎥⎥⎥⎥⎥
⎦
. (2.18)

3. Distribution-Based Identification of Yield Coefficients

3.1. Problem Statement

In this approach the set of nonlinear differential equations describing the state evolution is
mapped into a set of linear algebraic equations with respect to the model parameters. Using
techniques utilized in distribution approach, the measurable functions and their derivatives
are represented by functionals on the fundamental space of testing functions [14]. The main
advantages of this method are that a set of algebraic equations with real coefficients results
and the formulations are free from boundary conditions. The idea of utilizing test functions in
system identificationwas proposed by Pearson and Lee [13] in terms of modulating functions
in order to ameliorate the noise handling for deterministic least-squares identification based
on time-limited data.

Let us denote by Ωn the fundamental space from the distribution theory [24] of the
real functions ω : � → �, t → ω(t)with compact support T , having continuous derivatives
at least up to the order n. Let q : � → �, t → q(t) be a function which admits a Riemann
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integral on any compact interval T from �. Using this function, a unique distribution (or
generalized function)

Fq : Ωn −→ �, ω −→ Fq(ω) ∈ � (3.1)

can be built by the relation:

Fq(ω) =
∫

�
q(t)ω(t)dt, ∀ω ∈ Ωn. (3.2)

In distribution theory, the notion of k-order derivative is introduced. If Fq ∈ Ωn, then
its k-order derivative is a new distribution F

(k)
q ∈ Ωn uniquely defined by the relations:

F
(k)
q (ω) = (−1)kFq

(
ω(k)
)
, ∀ω ∈ Ωn,

ω −→ F
(k)
q (ω) = (−1)k

∫

�
q(t)ω(k)(t)dt ∈ �,

(3.3)

where

ω(k) : � −→ �, t −→ ω(k)(t) =
dkω(t)
dtk

(3.4)

is the k-order time derivative of the test function.
When q ∈ Ck(�), then

F
(k)
q (ω) =

∫

�
q(k)(t)ω(t)dt = (−1)k

∫

�
q(t)ω(k)(t)dt (3.5)

that means the k-order derivative of a distribution generated by a function q ∈ Ck(�) equals
the distribution generated by the k-order time derivative of the function q. So, in place of the
states and their time derivatives of a system one utilize the corresponding distributions and,
in some particular cases, it is possible to obtain a system of equations linear in parameters. If
the system is compatible the model parameters are structurally identifiable.

In our study, it were utilized three types of test functions characterized by a bounded
support T = (ta tb), ta < tb, all of these accomplishing the condition:

ω(t) = 0; ∀t ∈ (−∞, ta] ∪ [tb,+∞). (3.6)

The nonzero restriction is one of the following three types.

(1) Exponential:

ω(t) = exp
( |tatb|
(t − ta)(t − tb)

)
. (3.7)
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Figure 1: Exponential type test function.
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Figure 2: First-order derivative of exponential-type test function.

(2) Sinusoidal:

ω(t) = sinp

(
(t − tb)π
tb − ta

)
. (3.8)

(3) Polynomial:

ω(t) = (t − ta)p(t − tb)p, (3.9)

where p ≥ 2 is an integer.

Figures 1 and 2 present the exponential type test function and its first-order derivative
for T = [0.1 0.9].
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3.2. The Hierarchical Structure of the Identification Algorithm

Consider all state variables accessible for measurements. This assumption can be considered
unrealistic but the unknown states can be estimated using different approaches. From the
multitude of proposed solutions one can mention methods based on balance equations,
observers (asymptotic observers, high-gain observers) [5], Kalman filters [25], neural
networks [26], and fuzzy reasoning [27].

The dynamical systems (2.17) and (2.18) contain rational dependences between
parameters and measured variables. To obtain linear equations in unknown parameters, the
identification problem is split in several simpler problems [28]. Based on the specific structure
of these systems, it is possible to group the state equations in such way to determine some
interconnected relations. They are organized in a hierarchical structure. In the first stage some
state equations are utilized to obtain a set of linear equations in some parameters. If these
parameters are identifiable then they can be used as known parameters in the following
stages. This process is repeated in the other stages until all the parameters are identified.

Because the dilution rate D can be externally modified, it will be considered the first
component of the input vector and the other component of u is the concentration Sin : u =
[u1 u2] = [D Sin].

From the third and fourth equations of the fermentative partial model (2.17) one gets
the following relations for the reaction rates:

μ1ξ1 =
1
k5

(−ξ̇4 −Dξ4 +OTR
)
,

μ2ξ1 =
1
k3

(
ξ̇3 +Dξ3

)
.

(3.10)

These relations are replaced in the other three equations to obtain linear equations
with respect to yield coefficients. So, one can split the identification problem in the following
steps.

Step 1 (identification of k3 and k5). Replacing (3.10) in the first equation of the system (2.17)
one get

(
ξ̇1 +Dξ1

)
= θ3
(
ξ̇3 +Dξ3

)
+ θ5
(−ξ̇4 −Dξ4 +OTR

)
, (3.11)

where θ3 = 1/k3 and θ5 = 1/k5.
One denotes

v(t) = ξ̇1(t) +Dξ1(t),

w1(t) = ξ̇3(t) +Dξ3(t),

w2(t) = −ξ̇4(t) −Dξ4(t) +OTR.

(3.12)
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Multiplying these functions with a test function ωi(t) and integrating over � one gets
the following distributions:

Fi
v(ωi) =

∫

�
v(t) ·ωi(t)dt

=
∫

�
ξ̇1(t) ·ωi(t)dt +

∫

�
Dξ1(t) ·ωi(t)dt =

∫

�
ξ1(t) ·ω(1)

i (t)dt +
∫

�
Dξ1(t) ·ωi(t)dt,

(3.13)

Fi
w1

(
ϕi

)
=
∫

�
w1(t) ·ωi(t)dt

=
∫

�
ξ̇3(t) ·ωi(t)dt +

∫

�
Dξ3(t) ·ωi(t)dt = −

∫

�
ξ3(t) ·ω(1)

i (t)dt +
∫

�
Dξ3(t) ·ωi(t)dt,

Fi
w2(ωi) =

∫

�
w2(t) ·ωi(t)dt =

∫

�
−ξ̇4(t) ·ωi(t)dt +

∫

�
(−Dξ4(t) +OTR) ·ωi(t)dt

=
∫

�
ξ4(t) ·ω(1)

i (t)dt +
∫

�
(−Dξ4(t) +OTR) ·ωi(t)dt.

(3.14)

As one must identify two parameters it is enough to choose a finite number N ≥ 2 of
test functions ωi, i = 1 : N and to build an algebraic system of equations,

Fw · θ = Fv, (3.15)

where, θ = [θ3 θ5]
T is the vector of unknown parameters, Fw is a N × 2 matrix of real

numbers:

Fw =
[
F1
w1(ω1), . . . , Fi

w1(ωi), . . . , FN
w1(ωN)

F1
w2(ω1), . . . , Fi

w2(ωi), . . . , FN
w2(ωN)

]T
(3.16)

and Fv denotes an N-column real vector build from distributions calculated as in (3.13):

Fv =
[
F1
v(ω1), . . . , Fi

v(ωi), . . . , FN
v (ωN)

]T
. (3.17)

If rank(Fw) = 2 then a unique solution is obtained:

θ̂ =
(
FT
w · Fw

)−1
FT
w · Fv. (3.18)

One obtains k̂3 = 1/θ̂3 and k̂5 = 1/θ̂5.
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Step 2 (identification of k1 and k2). Considering known k3 = k̂3 and k5 = k̂5 from Step 1 and
substituting (3.10) in the second equation of (2.17) one gets

(
ξ̇2 +Dξ2 −DSin

)
= θ1

(
1

k̂5

(−ξ̇4 −Dξ4 +OTR
)
)

+ θ2

(
1

k̂3

(
ξ̇3 +Dξ3

)
)

, (3.19)

where θ1 = −k1 and θ2 = −k2.

The procedure of identification from Step 1 is repeated and one obtains k̂1 = −θ̂1 and
k̂2 = −θ̂2.

Step 3 (identification of k7 and k8). Considering known k3 = k̂3 and k5 = k̂5 from Step 1 and
substituting (3.10) in the last equation of (2.17) one gets

(
ξ̇5 +Dξ5 + CTR

)
= θ7

(
1

k̂3

(
ξ̇3 +Dξ3

)
)

+ θ8

(
1

k̂5

(−ξ̇4 −Dξ4 +OTR
)
)

, (3.20)

where θ7 = k7 and θ8 = k8.

The procedure of identification from Step 1 is repeated and one obtains k̂7 = θ̂7 and
k̂8 = θ̂8.

Since the respirative partial model (2.18) has a similar structure with the fermentative
partial model (2.17), in a similar manner one obtains the parameters k4, k6, and k9.

4. Analysis of the Algorithm Properties

In the following one presents some consistency and numerical aspects related to the
presented algorithm and a short overview of the classical identification procedure widely
used for this kind of biotechnological systems.

4.1. Identifiability

Identifiability is a necessary prerequisite for model identification; it concerns uniqueness
of the model parameters determined from the input-output data, under ideal conditions of
noise-free observations and error-free model structure. A remarkable feature of distribution-
based identification procedure is that it provides a linear reparameterization of the input-
output relation of the nonlinear system. This reparametrization of the system involves a
very simple identifiability condition to be accomplished, that is, the existence of the matrix
(FT

w · Fw)
−1 or, equivalently, Fw is of full rank.

4.2. Consistency

Obviously, consistency of the estimates is directly influenced by the precision of numerical
integration used to compute the value of the distributions. There are available numerous
integration methods (often called numerical quadrature) with various degrees of precision.
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One presents shortly the techniques used in the simulations to the approximate calculation
of a definite integral If =

∫b
a f(x)dx where f(x) is a given function and [a, b] a finite interval.

Interpolatory quadrature formulas, where the nodes are constrained to be equally spaced,
are called Newton-Cotes formulas. These are especially suited for integrating a tabulated
function (such is our case). Newton-Cotes numerical integration rule If is a weighted sum
of function values: If =

∑N−1
i=0 ci · f(xi), where coefficients {ci} are derived from interpolating

polynomial fitted for points {xi, fi}. A Newton-Cotes formula of any degree n can be
constructed. One of the simplest integration methods is the trapezoidal rule. The trapezoidal
rule is based on linear interpolation of f(x) at x1 = a and x2 = b, that is, f(x) is approximated
by

p(x) = f(a) + (x − a)
f(b) − f(a)

b − a
. (4.1)

The integral of p(x) equals the of trapezoid with base (b − a) times the average height

1
2
(
f(a) + f(b)

)
(4.2)

hence

∫b

a

f(x)dx =
b − a

2
(
f(a) + f(b)

)
. (4.3)

To increase the accuracy one subdivides the interval [a, b] and assumes that fi = f(xi) is
known on a grid of equidistant points x0 = a, xi = x0 + ih, xn = b, where h = (b −a)/n is the
step length. The trapezoidal approximation for the ith subinterval is

∫xi+1

xi

f(x)dx =
h

2
(
fi + fi+1

)
+ Ri, (4.4)

where

Ri = −h
3

12
f ′′(ςi), ςi ∈ [xi, xi+1]. (4.5)

Summing the contributions for each subinterval [xi, xi + 1], i = 0 : n, gives

∫b

a

f(x)dx =
h

2
(
f0 + fn

)
+ h

i=n−1∑

i=2

fi + RT . (4.6)

The global truncation error is

RT = −h
3

12

i=n−1∑

i=0

f ′′(ςi) = −h
2

12
(b − a)f ′′(ς), ς ∈ [a, b]. (4.7)
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This shows that by choosing h small enough we can make the truncation error arbitrarily
small. In other words, we have asymptotic convergence when h → 0.

In the composite Simpson’s rule one divides the interval [a, b] into an even number
n = 2m steps of length h and uses the formula

∫b

a

f(x)dx =
h

3
(
f0 + 4S1 + 2S2 + fn

)
+ RT , (4.8)

where

S1 = f1 + f3 + · · · + fn−1, S2 = f2 + f4 + · · · + fn−2 (4.9)

are sums over odd and even indices, respectively. The remainder is

RT =
h4

180
(b − a)f IV(ς), ς ∈ [a, b]. (4.10)

This shows that one have gained two orders of accuracy compared to the trapezoidal
rule, without using more function evaluations.

Let us study properties of Newton-Cotes formulas in frequency domain (or spectral
properties). Newton-Cotes rules are symmetric (hence linear phase) digital filters with
finite impulse response. One of the most important characteristic of digital filter is
magnitude/frequency response-function which shows how much filter damps or amplifies
magnitude of particular frequency contained in input data.

So, for trapezoidal rule and Simpson’s rule one obtains

H(z) =
h

2
· 1 + z−1

1 − z−1
, H(z) =

h

3
· 1 + 4z−1 + z−2

1 − z−1
, respectively. (4.11)

These transfer functions have the amplitude-frequency Bode characteristics from
Figure 3.

As one can see classical Newton-Cotes formulas suppress high frequencies (noise)
in the input data. In that sense they can be considered low-pass filters. From Figure 3 one
observes that trapezoidal rule offers a better suppression of noise than the Simpson’s rule, so
in the algorithm implementation one used the trapezoidal rule for numerical integration.

4.3. “Classical” Identification Procedure

The “classical” identification approach of yield coefficients is a two-step procedure under the
assumption that full state measurements are available [1]. This method is based on a state
transformation that allows reformulating the dynamical model into separate submodels. The
first submodel depends only on the reaction structure and is independent of the kinetics.
It can be linearly reparametrized and used for the identification of the yield coefficients
by means of linear regressions, provided suitable identifiability conditions are satisfied. We
present briefly this method for estimating the yield coefficients and we use it for comparison
in the next section.
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Figure 3: Amplitude-frequency bode characteristics: (a) trapezoidal rule; (b) Simpson’s rule.

The general dynamical model given in (2.1) represents a particular class of nonlinear
state-space models. The nonlinearity lies in the reaction rates ϕi(ξ) that are (nonlinear)
functions of the state variables. These functions enter the model in the form Kϕi(ξ) (where
K is a constant matrix), which is a set of linear combinations of the same nonlinear functions
ϕi(ξ). This particular feature can be exploited to separate the nonlinear part from the linear
part of the model by an adequate linear state transformation. More precisely, one chooses a
nonsingular partition

(
Ka

Kb

)
= TK, (4.12)

withKa ∈ Rp×m of full row rankmatrix (i.e., p = rank(K)), Kb ∈ R(n−p)×m and T a permutation
matrix. The induced partitions of the vectors ξ and u are

(
ξa
ξb

)
= Tξ

(
ua

ub

)
= Tu. (4.13)

Model (2.1) is then partitioned into two submodels:

dξa
dt

= K · ϕ(ξa, t) −Dξa + ua,

dξb
dt

= K · ϕ(ξb, t) −Dξb + ub.

(4.14)

Then with the state transformation

ξa = ξa,

z = Cξa + ξb,
(4.15)
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one transform the initial model into

ξ̇a = Kaϕ(ξa, z − Cξa) −Dξa + ua,

ż = −Dz + Cua + ub,
(4.16)

where the (n − p) × p matrix C is the unique solution of

CKa +Kb = 0 (4.17)

that is,

C = −KbK
∗
a, (4.18)

where K∗
a is a generalized or pseudoinverse of Ka. This subsystem (4.16) can be augmented

with an equation derived from (2.7) as follows:

ż = −Dz + Cua + ub,

ξb = z − Cξa.
(4.19)

It can be considered as a linear time-varying (if d varies in the course of time) model
with state z, input (ξa, ua, ub), and output ξb. It is nonlinearly parametrized by the yield
coefficients but linearly reparametrized by the nonzero entries of C. When data of the signals
ξa, ua, ub, and ξb are available, the auxiliary model (4.19) can be used to identify the yield
coefficients independently of the knowledge of the reaction rates. The model (4.19) can be
used to perform the identification of the nonzero entries of C by a linear regression technique,
with the yield coefficients ki recovered afterwards from (4.17). The identification makes sense
only if the yield coefficients ki are structurally uniquely identifiable with the auxiliary model
(4.19).

5. Simulation Results

The efficacy of our distribution-based approach is shown by simulations, comparing it with
this “classical” approach reviewed in the previous section. Also, the influence of sampling
period, test functions type, initial conditions, and input type is analysed. To compare
statistical performances of the different approaches and simulation conditions the empirical
normalized mean square error (NMSE) was used, which is defined as

NMSE =
1
N

N∑

j=1

NMSE
(
θ̂j
)
, with NMSE

(
θ̂j
)
=

⎛

⎝
θ̂j − θ∗

j

θ∗
j

⎞

⎠

2

, (5.1)

where N is the number of estimated parameters, θ̂j is the jth element of the estimated
parameter vector, while the “∗” superscript denotes the true value of the parameter.

Themodel given by (2.17) and (2.18)was integrated using a fourth-order Runge-Kutta
routine with a sampling period of 1 minute.
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Figure 4: Time response for noise-free system.

In order to study the sensitivity of the estimation method to the sampling period Ts,
to the initial conditions, to the test functions type, to the input type, and to the noise, the
following parameters were used:

(a) sampling period: Ts ∈ {1 min, 10 min, 20 min},
(b) input signals: u ∈ {0.1 + 0.05 ∗ sin(t), 0.1 + 0.005 ∗ t, 0.15 ∗ exp(9 ∗ 10−3t)},
(c) initial conditions:

IC1: [1 0.2 0.15 0.0066 0.008]
IC2: [0.1 0.3 0 0.002 0.01 2]
IC3: [0.5 0.5 3 0.01 0.001 1],

(d) test functions:

Type1: exponential
Type2: sinusoidal
Type3: polynomial,

(e) noise: {noise-free, zero-mean white (SNR = 50 dB, 40 dB, 30 dB, 20 dB, 10 dB)}.

Some of the signals used in the identification algorithm are presented in Figures 4–6.
Figure 4 presents the noise-free system time response for the fermentative partial model
(2.17). The measured states are represented in percent with respect to their maximal values.
Three test function of sinusoidal type are presented in Figure 5. In Figure 6 some noisy
measurements are presented.

The simulation results presented in Tables 1–5 leads to the following remarks.
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Figure 5: Test functions (a) and their derivatives (b) used for identification.
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Figure 6: Noisy measurements of state variable E: SNR = 20 dB.

(1) Sensitivity to the sampling period: results given in Table 1 show that the per-
formance of the algorithm deteriorates with the increasing sampling period.

(2) Sensitivity to the inputs type: results given in Table 2 conclude that the algorithm
is not too sensitive to the type of input. However, as was expected, the best
performances are obtained for a sinusoidal input type.

(3) Sensitivity to the initial conditions and test function type: as shown in Tables 3
and 4, initial conditions and type of the test functions have very little influence on
the accuracy of the estimates.

(4) Sensitivity to the noise: Tables 5 and 6 present the simulation results for
distribution-based method and for “classical” method, respectively. The results are
still very good in the distribution-based case even for the high level of noise (SNR
= 10 dB), while the “classical” approach is less robust to increasing noise level.
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Table 1: Influence of the sampling period.

Ts k1 k2 k3 k4 k5 k6 k7 k8 k9 NMSE
1min 0.4901 0.0500 0.1000 0.7199 1.2001 0.6401 0.8101 0.1100 1.1101 1.6046e-008
10min 0.5022 0.0497 0.1000 0.7079 1.2038 0.6508 0.8357 0.1094 1.1287 2.8414e-004
20min 1.2137 0.0381 0.0994 0.0101 1.4980 1.2710 2.3205 0.0840 2.2044 0.9722
“Real” value 0.49 0.05 0.1 0.72 1.2 0.64 0.81 0.11 1.11

Table 2: Influence of the input type.

Input type k1 k2 k3 k4 k5 k6 k7 k8 k9 NMSE
0.1 + 0.05 ∗ sin(t)
(noise free) 0.4901 0.0500 0.1000 0.7199 1.2001 0.6401 0.8101 0.1100 1.1101 1.6046e-008

0.1 + 0.05 ∗ sin(t)
(SNR = 20 dB) 0.4531 0.0517 0.1000 0.6926 1.2459 0.6644 0.7969 0.1112 1.1523 0.0015

0.1 + 0.005 ∗ t
(noise free) 0.4902 0.0500 0.1000 0.7198 1.2000 0.6402 0.8096 0.1100 1.1103 6.9366e-008

0.1 + 0.005 ∗ t
(SNR = 20 dB) 0.3842 0.0531 0.1002 0.6319 1.0730 0.7183 0.6754 0.1128 1.2459 0.0150

0.15 ∗ exp(9 ∗
10−3t)
(noise free)

0.4902 0.0500 0.1000 0.7198 1.2000 0.6402 0.8097 0.1100 1.1103 6.3148e-008

0.15 ∗ exp(9 ∗
10−3t)
(SNR = 20 dB)

0.4882 0.0488 0.1004 0.6660 1.0738 0.6880 0.6900 0.1111 1.1932 0.0056

“Real” value 0.49 0.05 0.1 0.72 1.2 0.64 0.81 0.11 1.11

Table 3: Influence of the initial conditions.

Initial conditions k1 k2 k3 k4 k5 k6 k7 k8 k9 NMSE
IC1 0.4901 0.0500 0.1000 0.7199 1.2001 0.6401 0.8101 0.1100 1.1101 1.6046e-008
IC2 0.4901 0.0500 0.1000 0.7197 1.1999 0.6401 0.8098 0.1100 1.1104 3.1454e-008
IC3 0.4908 0.0500 0.1000 0.7178 1.2002 0.6419 0.8158 0.1099 1.1134 9.1629e-006
“Real” value 0.49 0.05 0.1 0.72 1.2 0.64 0.81 0.11 1.11

Table 4: Influence of the test functions type.

Test function k1 k2 k3 k4 k5 k6 k7 k8 k9 NMSE
type 1 0.4902 0.0499 0.1000 0.7198 1.1999 0.6401 0.8102 0.1100 1.1102 3.2506e-008
type 2 0.4901 0.0500 0.1000 0.7199 1.2000 0.6401 0.8102 0.1100 1.1101 1.5545e-008
type 3 0.4908 0.0500 0.1000 0.7195 1.1993 0.6405 0.8096 0.1100 1.1108 5.4343e-007
“Real” value 0.49 0.05 0.1 0.72 1.2 0.64 0.81 0.11 1.11

Table 5: Influence of the noise (distribution-based method).

SNR k1 k2 k3 k4 k5 k6 k7 k8 k9 NMSE
noise free 0.4901 0.0500 0.1000 0.7199 1.2001 0.6401 0.8101 0.1100 1.1101 1.6046e-008
50 dB 0.4824 0.0502 0.1000 0.7147 1.1965 0.6447 0.8037 0.1102 1.1182 5.4504e-005
40 dB 0.4393 0.0509 0.1002 0.6803 1.1358 0.6753 0.7568 0.1102 1.1712 0.0030
30 dB 0.4707 0.0494 0.1007 0.6861 1.0953 0.6701 0.8540 0.1065 1.1622 0.0022
20 dB 0.4531 0.0517 0.1000 0.6926 1.2459 0.6644 0.7969 0.1112 1.1523 0.0015
10 dB 0.5567 0.0529 0.0993 0.5587 1.7758 0.7834 0.9887 0.1119 1.3587 0.0502
“Real” value 0.49 0.05 0.1 0.72 1.2 0.64 0.81 0.11 1.11
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Table 6: Influence of the noise (“classical” method).

SNR k1 k2 k3 k4 k5 k6 k7 k8 k9 NMSE
noise free 0.4903 0.0500 0.1000 0.7195 1.2001 0.6404 0.8109 0.1100 1.1105 3.1151e-07
50 dB 0.4876 0.0489 0.1003 0.7037 1.1748 0.6533 0.8199 0.1072 1.1254 3.2795e-04
40 dB 0.4501 0.0574 0.0986 0.6440 1.2432 0.7024 0.8474 0.1195 1.1821 0.0072
30 dB 0.3923 0.0659 0.0966 0.0527 3.2290 1.1875 0.8393 0.1338 1.7431 0.5517
20 dB 0.0133 0.0711 0.0983 0.0683 3.2732 1.2868 0.5392 0.1303 1.8578 0.7699
10 dB 0.3115 0.0776 0.0977 0.9807 6.1195 2.0355 0.7625 0.1254 2.7235 3.5841
“Real” value 0.49 0.05 0.1 0.72 1.2 0.64 0.81 0.11 1.11

6. Conclusions

The paper presents a distribution-based identification procedure for offline estimation of
yield coefficients in a baker’s yeast bioprocess. This procedure is a functional type method,
which transforms a differential system of equations to an algebraic system in unknown
parameters. The relation between the state variables of the system is represented by
functionals using techniques from distribution theory based on test functions from a finite-
dimensional fundamental space. The identification algorithm has a hierarchical structure,
which allows obtaining a linear algebraic system of equations in the unknown parameters.
The coefficients of this algebraic system are functionals depending on the input and state
variables and are evaluated through some testing functions from distribution theory.

According to the proposed procedure, first, only some state equations are evaluated
throughout testing functions to obtain a set of linear equations in some parameters. The
results of this first stage of identification are utilized for expressing other parameters by linear
equations. This process is repeated until all parameters are identified.

The influence of the sampling period, initial conditions, test functions type, input type,
and noise on the parameters estimates was empirically analyzed.

The proposed method presents two main advantages: there is necessary no informa-
tion about the parameters of the reaction rates to identify the yield coefficients of the baker’s
yeast bioprocess and the algorithm provides very good results even the measurements are
noise-contaminated because the evaluation of states derivatives is completely avoided.

Nomenclature

C: Dissolved oxygen concentration (g/L)
C∗: Equilibrium concentration of the dissolved oxygen (g/L)
CTR: Carbon dioxide transfer rate (h−1g/L)
D: Dilution rate (h−1)
E: Ethanol concentration (g/L)
F: Vector of feeding rates
Fin: Input feed rate (Lh−1)
G: Dissolved carbon dioxide concentration (g/L)
K: Matrix of yield coefficients
ki, i = 1, 9: Yield coefficients
KLa: Mass transfer coefficient (h−1)
Ke: Saturation parameter for growth on ethanol (g/L)
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Ks, Kc: Saturation parameters for glucose/oxygen uptake, respectively (g/L)
KV : Transfer coefficient
OTR: Oxygen transfer rate (h−1g/L)
Q: Vector of rates of removal of the components in gaseous form
qcmax: Maximal oxygen specific growth rate (g O2/(g biomass · h))
qemax: Maximal ethanol specific growth rate (g ethanol/(g biomass · h))
qsmax: Maximal glucose specific growth rate (g glucose/(g biomass · h))
S: Glucose concentration (g/L)
Sin: Glucose concentration on the feed (g/L)
V : Culture volume in the reactor (L)
X: Biomass concentration (g/L)
Φ: Vector of reaction rates (reaction kinetics)
μo
s, μ

r
s, μ

o
e : Specific growth rates of baker’s yeast bioprocess (h−1)

μ: Vector of specific growth rates
μcmax: Kinetic term associated with the respiratory capacity
μe: Potential ethanol oxidative rate
μs: Kinetic term associated with the glucose consumption
ξ: State vector
Ωn: The fundamental space from the distribution theory
�: The set of real numbers
ω(t): Test function
Fq: Distribution (generalized function)
θ: The vector of unknown parameters
θi, i = 1, 9: The unknown parameters.
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[5] D. Selişteanu, E. Petre, and V. B. Răsvan, “Sliding mode and adaptive sliding-mode control of a class
of nonlinear bioprocesses,” International Journal of Adaptive Control and Signal Processing, vol. 21, no.
8-9, pp. 795–822, 2007.

[6] H. Unbehauen and G. P. Rao, Identification of Continuous Systems, vol. 10, North-Holland, Amsterdam,
The Netherlands, 1987.

[7] L. M. Li and S. A. Billings, “Continuous time non-linear system identification in the frequency
domain,” International Journal of Control, vol. 74, no. 11, pp. 1052–1061, 2001.

[8] I. D. Landau, B. D. O. Anderson, and F. De Bruyne, “Recursive identification algorithms for con-
tinuous-time nonlinear plants operating in closed loop,” Automatica, vol. 37, no. 3, pp. 469–475, 2001.



Mathematical Problems in Engineering 21

[9] B. R. J. Haverkamp, C. T. Chou, M. Verhaegen, and R. Johansson, “Identification of continuous-time
MIMO state space models from sampled data, in the presence of process and measurement noise,” in
Proceedings of the 35th IEEE Conference on Decision and Control, pp. 1539–1544, December 1996.

[10] P. Overschee and B. De Moor, Subspace System Identification for Linear Systems, Kluwer Academic,
Boston, Mass, USA, 1996.

[11] C. Marin, “System identification based on distribution theory,” in Proceedings of the IASTED In-
ternational Conference on Applied Simulation and Modelling (ASM ’02), pp. 456–462, Crete, Greece, 2002.

[12] A. Ohsumi, K. Kameyama, and K.-I. Yamaguchi, “Subspace identification for continuous-time
stochastic systems via distribution-based approach,” Automatica, vol. 38, no. 1, pp. 63–79, 2002.

[13] A. E. Pearson and F. C. Lee, “On the identification of polynomial input-output differential systems,”
IEEE Transactions on Automatic Control, vol. 30, no. 8, pp. 778–782, 1985.

[14] A. Patra and H. Unbehauen, “Identification of a class of nonlinear continuous-time systems using
Hartley modulating functions,” International Journal of Control, vol. 62, no. 6, pp. 1431–1451, 1995.
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