
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 793490, 24 pages
doi:10.1155/2012/793490

Research Article
Multiclass Boosting with Adaptive Group-Based
kNN and Its Application in Text Categorization

Lei La, Qiao Guo, Dequan Yang, and Qimin Cao

School of Automation, Beijing Institute of Technology, Beijing 100081, China

Correspondence should be addressed to Lei La, lalei1984@yahoo.com.cn

Received 31 December 2011; Revised 30 March 2012; Accepted 26 April 2012

Academic Editor: Serge Prudhomme

Copyright q 2012 Lei La et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

AdaBoost is an excellent committee-based tool for classification. However, its effectiveness and
efficiency in multiclass categorization face the challenges from methods based on support vector
machine (SVM), neural networks (NN), naı̈ve Bayes, and k-nearest neighbor (kNN). This paper
uses a novel multi-class AdaBoost algorithm to avoid reducing the multi-class classification
problem to multiple two-class classification problems. This novel method is more effective. In
addition, it keeps the accuracy advantage of existing AdaBoost. An adaptive group-based kNN
method is proposed in this paper to build more accurate weak classifiers and in this way control
the number of basis classifiers in an acceptable range. To further enhance the performance, weak
classifiers are combined into a strong classifier through a double iterative weighted way and
construct an adaptive group-based kNN boosting algorithm (AGkNN-AdaBoost). We implement
AGkNN-AdaBoost in a Chinese text categorization system. Experimental results showed that
the classification algorithm proposed in this paper has better performance both in precision and
recall than many other text categorization methods including traditional AdaBoost. In addition,
the processing speed is significantly enhanced than original AdaBoost and many other classic
categorization algorithms.

1. Introduction

Machine learning- (ML-) based text categorization (TC) can be defined similar with other
data classification tasks as the problem of approximating an unknown category assignment
function F : D × C → {0, 1}, where D is the set of all possible documents and C is the set of
predefined categories [1]:

F(d, c) =

{
1, d ∈ D and d belong to the class c

0, otherwise.
(1.1)

2 Mathematical Problems in Engineering

Preprocessing Document
representation Classification

Input
documents

Output
categories

Figure 1: Flow chart of text categorization.

The approximating functionM : D ×C → {0, 1} is called a classifier, and the task is to
build a classifier that produces results as “close” as possible to the true category assignment
function F [2], for instance, whether an article belongs to fiction, whether a short message
belongs to advertisement, or whether the author of a script is Shakespeare and so forth.

In text categorization projects, documents usually need be preprocessed to select
suitable features. Then the document will be represented by their features. After the above
steps, classifier will determine the category of the document. The flow chart of a TC task is
shown in Figure 1.

In different tasks preprocessing contains some or all of the following aspects: trans-
form unstructured document into structured or semistructured format, word segmentation,
and text feature selection. Feature selection is the most important part of preprocessing
[3]. Features can be characters, words, phrases, concepts, and so forth [4]. Document
representation is the process of using features with different weights to show texts.
Classifier’s kernel is machine learning algorithm. It uses the document representation as its
input and then outputs the categorization results.

Imagine an international IT corporation which is interested in job seekers’ Java
programming experience and English ability. The resume screening program of this company
is actually a TC system. It can assist the managers choose appropriate employees. The system
is shown in Figure 2.

Researchers made considerable achievements in the design of categorization algo-
rithms because classifier is the key point in TC systems [5]. Several of the most important
methods include naı̈ve Bayes, support vector machine (SVM), k-nearest neighbor (kNN),
decision tree (DT), neural networks (NN), and voting-based algorithms such as AdaBoost.
Some comparative experiments revealed that SVM, kNN, and AdaBoost have the best
precision, Naı̈ve Bayes has the worst performance but very useful as baseline classifiers
because of its ease of use. Performance of DT and NN are worse than the top 3 methods
but the computational complexity is also lower [6–8].

In a word, the purpose of classifier design and research in TC is to improve the
performance and maintain the balance between performance and cost.

The rest of this paper is organized as follows. Section 2 reviews related work and
analyzes the goal of this paper. Section 3 improves classic kNN to build weak classifiers based
on it. In Section 4, a double iterative weighted cascading algorithm is proposed to construct
a strong classifier. Section 5 then modified the AdaBoost based on Sections 3 and 4 to solve
multiclass problems. The application of the novel classification algorithm is presented and
analyzed in Section 6. Finally, Section 7 summarizes the paper.

2. Related Work and Motivation

Voting-based categorization algorithms also known as classifier committees can adjust the
number and professional level of “experts” in the committees to find a balance between
performance and time-computational consumption. These algorithms give up the effort to
build single powerful classifier but try to integrate views of many weak classifiers. The

Mathematical Problems in Engineering 3

Categorization
algorithm

No

Training set

Cate rulesTest data

New data

Name Java English Employ?

Name Java English Employ?

Anna Good Native Yes
Abdul Good Fluent Yes

Jack Poor Native No
· · · · · · · · · · · ·

Tim Good Native Yes
Lucy Poor Native No

Good Fluent Yes
LiNa Middle Middle No
Wang Good Poor No
Mary Good Native Yes
· · · · · · · · · · · ·

José

If English = poor then employ? = no
If java = good then employ? = yes
If java = good and English = fluent

then employ? = yes
· · ·

Lee, middle java skill, English is poor
Employ?

Figure 2: An instance of TC system.

philosophical principle of this methodology is the truth always held in majority. Bagging and
boosting are the two kinds of most popular voting-based methods.

2.1. Boosting Algorithm

Unlike bagging method which trains the classifiers in parallel, in boosting the classifiers
are trained sequentially. Before training the next classifier, the training set is reweighed for
allocating greater weight to the documents that were misclassified by the previous classifiers
[9]. Therefore, the system can pay serious attention on controversial texts and enhance the
precision.

The original boosting algorithm uses three weak classifiers (c1, c2, c3) to form a
committee. It divides a large training set into three parts (X1, X2, X3) randomly and use X1 to
train c1 firstly. Then it uses the subset of X1 which is misclassified by c1 and the subset which
is categorized rightly by c1 together as the training set of c2. The rest can be done in the same
manner.

Scholars are committed to enhance the performance and reduce the overhead so a lot of
improved boosting algorithm such as BrownBoost, LPBoost, LogitBoost, and AdaBoost were
proposed. Majority comparative literatures proved that AdaBoost has the best performance
among them [10].

2.2. Detail of AdaBoost

Boosting and its relative algorithms get big success in several practices such as image
processing, audio classification, and optical characters recognition (OCR). At the same time,

4 Mathematical Problems in Engineering

boosting needs huge training sets, and thus sometimes the runtime consumption become
unacceptable. Moreover, the weak classifiers’ lower limit of accuracy needs to be predicted.

To control the computational cost in a reasonable range, Shapire and Singer [11]
proposed AdaBoost. It uses a dual-weighted process to choose training sets and classifiers.
The detailed steps of AdaBoost are as follows:

(1) Given training set (x1, y1), (x2, y2), . . . , (xn, yn) where xi is the training sample and
yi ∈ {1,−1} denotes xi’s category label (1 ≤ i ≤ n).

(2) Let fj(xi) denote ith feature of jth document.

(3) Define the initial distribution of documents in the training set DI(i) = 1/N.

(4) Searching weak classifier ct (t = 1, 2, . . . , T): for jth feature of every sample, a weak
classifier cj can be obtained and thus get the threshold θj and orientation Pj to
minimum the error εj as follows:

εj =
n∑
j=1

Di(xi)
∣∣cj(xi)/=yi

∣∣. (2.1)

Therefore, the weak classifier cj is

cj(x) =

{
1 Pjfj(x) < Pjθj

−1 otherwise.
(2.2)

(5) Choose cj from the whole feature space which has the minimal error εj as the weak
classifier.

(6) Recalculate the feature of samples:

Dt+1(i) =
Dt(i)e(−αiyici(xi))

Zt
, (2.3)

where Zt is a normalization factor which makes
∑n

i=1 Dt+1(i) = 1 and αi is the
weight.

(7) Repeat the steps above T times and get T optimal weak classifiers with different
weights.

(8) Combine weak classifiers according to their weight to construct a strong classifier:

Cstrong(x) = sign

(
T∑
t=1

αtct(x)

)
. (2.4)

Training set utilization can be enhanced using the algorithm above through adjusting
the weights of misclassified texts [12]. In addition, the performance of strong classifier is
improved because it is constructed in a weighted way [13]. In a word, AdaBoost has lower
training consumption and higher accuracy than original boosting algorithms.

Mathematical Problems in Engineering 5

Multi class ability (M)

P and E

P and M

E and M

P, E, and M

Red: AdaBoost, AdaBoost.MH
Green: Real AdaBoost,
Blue: AdaBoost.M1, AdaBoost.M2, AdaBoost.OC.
Yellow: AdaBoost.MR
Magenta: AdaBoost.MO
Cyan: AdaBoost.ECC
White: Maybe not exist!

High precision (P)

High efficiency (E)

Figure 3: Performances of AdaBoost family members.

Researchers proposed some variants of AdaBoost focusing on different aspects such as
precision, recall, robustness, computational overhead and multiclass categorization [14]. We
called these algorithms AdaBoost family. The three most important indicators are precision,
efficiency, and the ability of multiclass categorization. Performances of AdaBoost family
members are shown in Figure 3 [15].

2.3. Problems of AdaBoost Family and Motivation of This Article

Figure 3 reveals that few algorithms in AdaBoost family can achieve high precision and
high efficiency at the same time specifically in multiclass-oriented categorization problems.
Unfortunately, multiclass is the main problem in classification tasks. Traditional methods
which translate the multiclass problem into multiple two-class problems will reduce accuracy
and increase complexity of the system [16].

To solve problems above, we design weak classifiers with high accuracy and low
complexity to limit the number of experts and thus keep the precision while reduce
the consumption. More professional expert should play a more important rule, and
misclassified documents should attract greater attention to further improve system’s
performance. Therefore, more reasonable rules should be made to combine weak classifiers
into strong classifier efficiently. In addition, this strong classifier should be used in multiclass
classification tasks directly. Above is the motivation and purpose of this paper.

3. Weak Classifiers with AGkNN

Theoretically once weak classifiers are more accurate than guess randomly (1/2 in two-class
tasks or 1/n in multiclass tasks), AdaBoost can integrate them into a strong classifier whose
precision can infinitely be close to the true category distribution [17]. However, when the
precision of weak classifiers are lower, more weak classifiers are needed to construct a strong
classifier. Too many weak classifiers in the system sometimes increase its complexity and

6 Mathematical Problems in Engineering

computational consumption to intolerable level. Categorization systems use naı̈ve Bayes or
C4.5 as their weak classifiers may face this problem.

Some researchers tried to design weak classifiers based on more powerful algorithms
such as neural networks [18] and support vectormachine [19]. These algorithms can certainly
achieve higher accuracy but lead to some new problems because they are over complex and
thus contrary to the ideology of boosting.

3.1. k-Nearest Neighbor

Example-based classification algorithms keep a balance between performance and cost [20].
k-nearest neighbor is the most popular example-based algorithm as it has higher precision
and lower complexity.

To make the classification, kNN transforms the target documents into representational
feature vectors which have same formation with training samples. Then it calculates distance
between the target document and the selected k neighbors [21]. Finally the category of target
document is determined according to their neighbors’ class. The schematic of two-class kNN
is shown in Figure 4.

The distance between two documents is calculated by a distance function:

Sin
(
di, dj

) ∑M
k=1 Wik ×Wjk√(∑M

k=1 W
2
ik

)(∑M
k=1 W

2
jk

) . (3.1)

As shown, the above function calculates the Euclidean distance between two
documents in a linear space. Choose nearest k neighbors as the reference documents, then
the category Cj which includes most neighbors can be found as

p
(
x,Cj

)
=
∑

di∈kNN

Sim
(
x, di

)
y
(
di, Cj

)
, (3.2)

where di is the ith training document, Sim(a, b) is the similarity of document a, and document
b, y(α, β) represent the probability of document α belong to category β.

3.2. Adaptive Group-Based kNN Categorization

Two main problems in traditional kNN are experience dependent and sample category
balance. Experience dependent means k is an empirical value that need be preset [22]. Sample
category balance notes that when the numbers of samples belonging to different categories
have large gap, the classification results tend to be inaccurate. In other words, the system
expects the category distribution of the samples as even as possible.

An adaptive group-based kNN (AGkNN) algorithm is proposed in this paper to solve
problems above. The basic idea of AGkNN is to divide the training set into multiple groups.
Use kNN to categorizing target documents parallel in each subset with a random initial
value of k, and then compare classifying results. If the results of different groups are broadly
consistent with each other, keep the group size and k’s value. When the results are highly
similar to each other, emerge groups and reduce the value of k. If the results are totally

Mathematical Problems in Engineering 7

Most likely class
x2

x1

k = 5

k = 3

Figure 4: Schematic of two-class kNN.

different from each other, increase the value of k. Especially when two opposing views are
counterbalanced, the system should increase the numbers of groups to make final decision.

Define Ng(i) as the number of training groups when processing ith document. Give
every category a number as its class name. For example, define a news reports set {financial
news, sports news, entertainment news, political news, weather report} as {1, 2, 3, 4, 5}, Cj(i)
as the categorization result of ith document determined by jth group—for example C4(5)
means in the forth group’s opinion, the document which be classified is a weather report—
and C as the average value of different categories calculated by feature distance in different
groups. For instance, a document is classified as “sports news, sports news, entertainment
news, entertainment news and sports news” in 5 training groups; the average value of
categories C can be calculated as C = (2 + 2 + 3 + 3 + 2)/5 = 2.4. The number of groups
can be adaptively determined as

Ng(i + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ng + int

⎛
⎝ 1

Ng

Ng∑
j=1

(
Cj(i) − C

)2⎞⎠,
Ng∑
j=1

(
Cj(i) − C

)2
> C

Ng,
1

C
<

Ng∑
j=1

(
Cj(i) − C

)2 ≤ C

Ng − int
(
1

C

)
,

Ng∑
j=1

(
Cj(i) − C

)2 ≤ 1

C
.

(3.3)

According to (3.3), the system can determine whether and how to adjust the grouping
situation of samples by making reference to the variance of classification results given
by different groups. When the variance of result given by each group is higher than the
threshold, it means the categorization is not accurate enough because argument exists and
more groups are needed to make a final decision. On the other hand, when the variance is

8 Mathematical Problems in Engineering

very low, it means there are almost no disputes in classification and the sample groups can be
merged to saving time consumption. In this paper, we use 1/C and C as the lower bound and
higher bound because the average value of categories is empirically suitable and convenient
to be used as threshold.

The value of k can be calculated adaptively as:

k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γi,
1
Ng

Ng∑
j=1

(
Cj(i) − C

)2
< 1

γi + int

⎛
⎝ 1

n

Ng∑
j=1

(
Cj(i) − C

)2⎞⎠,
1
Ng

Ng∑
j=1

(
Cj(i) − C

)2 ≥ 1,

(3.4)

where γi is the random initial value of k. The system can test if the random initial k is
suitable. It can judge whether majority classifier reached agreement according to the variance
to inferring if the categorization result is precise enough or not, moreover, to adjust the value
of k adaptively to get a more accurate result.

The detail work steps are shown in Figure 5.
In this way, the algorithm can set value of k adaptively and take full use of training

set because the training set is grouped automatically and the value of k is initialed randomly.
Furthermore, the system can adjust the number of groups and reference neighbors adaptively
by calculate and update variance of categorization results given by different groups in real
time. There is no condition missing in the algorithm; in addition, the core of the algorithm is
still kNN algorithm whose convergence had been proofed in [23], so the AGkNN converges.
The runtime complexity of solving the variance of n elements is 3n − 1, so the computational
complexity T of one document classification in this algorithm is

T = Ng · k · (3Ng − 1
)
, (3.5)

Therefore the main problems which limit the effectiveness of original kNN for a
long time are eliminated in AGkNN. Experience-dependent problem be solved means the
algorithm can achieve higher efficiency and robustness. Overcoming the drawback of need
category balance means the system can improve its accuracy. In summary, AGkNN has better
performance and lower complexity than classic kNN. It is wonderful as the weak classifier in
AdaBoost.

3.3. Generating Weak Classifiers

Weak classifier design is critical for differentiating positive samples and negative samples
in training set. The precision of weak classifiers must be better than 50% to ensure the
convergence of strong classifier. Therefore, the threshold θ needs to be set for weak classifiers
to guarantee the system performance by combining them into a more powerful strong
classifier [24].

Mathematical Problems in Engineering 9

1 2 · · ·

· · ·

Training set

Class number assign

Randomly select k
Adjust k

Categorization

Calculate variance

Target
documents

Start

Output
category

Ng

Initialize/adjust Ng

V > C

V < C

V
≫

C
||c

ou
nt

er
ba

la
nc

e

V :C?

Figure 5: Detail work steps of AGkNN.

Define the weight of positive document x as wp, the weight of negative document y
as wn, the positive threshold as θp, and the negative threshold as θn. The threshold can be
calculated as

θp = min
(
max

(
wp(x)

) −wp(x) +wn(x)
)
,

θn = min
(
max(wn(x)) −wn(x) +wp(x)

)
,

θ =

{
θp, θp ≤ θn

θn, otherwise.

(3.6)

Accuracy of weak classifiers can be maintained above 0.5 by introducing and updating
the threshold θ. Therefore, weak classifiers based on AGkNN can be generated by following
the steps below.

(1) Calculate threshold θ.

(2) Call AGkNN for categorization.

(3) Calculate the classification error e.

(4) Randomly choose and compare e with θ, if e > θ go to step (2), else, continue.

(5) Update the threshold θ.

(6) End.

10 Mathematical Problems in Engineering

4. DIWC Algorithm: A Tool for Constructing Strong Classifier

Whether strong classifier has a good performance depends largely on how weak classifiers
are combined. To build a powerful strong classifier, basis classifiers which have higher
precision must take more responsibility in categorization process. Therefore categorization
system should distinguish between the performances of weak classifiers and give them
different weights according to their capabilities. Using these weights, boosting algorithms can
integrate weak classifiers as the strong classifier in a more efficient way and achieve excellent
performance [25].

4.1. Review Weighting Mechanism in Original AdaBoost

Original AdaBoost algorithm uses a linear weighting way to generate strong classifier. In
AdaBoost, strong classifier is defined as:

f(x) =
T∑
t=1

αtht(x),

H(x) = sign
(
f(x)

)
,

(4.1)

where ht(x) is a basis classifier, αt is a coefficient, and H(x) is the final strong classifier.
Given the training documents and category labels (x1, y1), (x2, y2), . . . , (xm, ym), xi ∈

X, and yi = ±1. The strong classifier can be constructed as [26]
Initialize weight D1(i) = 1/m, for t = 1, 2, . . . , T .

(1) Select a weak classifier with the smallest weighted error:

ht = argmin
hj∈H

εj =
m∑
i=1

Dt(i)
(
yi /=hj(xi)

)
, (4.2)

where εj is the error rate.

(2) Prerequisite: εt < 1/2, otherwise stop.

(3) Upper bounded εt by εt(H) ≤∏T
t=1Zt, where Zt is a normalization factor.

(4) Select αt to greedily minimize Zt(α) in each step.

(5) Optimizing αt = (1/2) log((1 + rt)/(1 − rt)), where rt =
∑m

i=1 Dt(i)ht(xi)yi by using
the constraint Zt = 2

√
εt(1 − εt) ≤ 1.

(5) Reweighting as

Dt+1(i) =
Dt(i) exp

(−αtyiht(xi)
)

Zt
=

exp
(
−yi
∑t

q=1 αqhq(xi)
)

m
∏t

q=1Zq

,

exp
(−αtyiht(xi)

){< 1, yi = ht(xi)
> 1, yi /=ht(xi).

(4.3)

The above-mentioned steps demonstrated that AdaBoost gives classifiers which have
better classification performance higher weights automatically, especially by step (5). In this

Mathematical Problems in Engineering 11

way, AdaBoost can be implemented simply. Its feature selection is on a large set of features.
Furthermore, it has good generalization ability.

However, this weighting algorithm does not check the precision of former classifiers
using the later training documents. In other words, the strong classifier generation is a single
iterative process. Weak classifiers probably have different performances in different training
samples. The weak classifiers which are considered should get higher weights by AdaBoost
actually have better performance in former part of the training set. However, the basis
classifiers may have good performance in later part but be ignored unreasonably. Therefore,
credibility of weights is decreasing with the test sequence. This phenomenon can be called
weight bias. Weight bias could lead to suboptimal solution problem and make the system
oversensitive to noise. Accuracy is affected by the above problems and the robustness of
system is decreased.

To overcome these drawbacks, boosting algorithm should use a double iterative
process for allocating weights to basis classifiers more reasonable.

4.2. Double Iterative Weighted Cascading Algorithm

In AdaBoost, weak classifiers with higher weights certainly can correctly process the
documents which were misclassified by lower weights classifiers. It is important but
not enough to improve categorization performance—two crucial problems are ignored as
follows.

(1) Could basis classifiers with higher weight classify samples which already are
rightly categorized by classifiers with lower weight in a high accuracy?

(2) If weak classifiers with lower weights also do not have the power to process
documents which are misclassified by high-weight classifiers?

Weights’ credibility is reduced when the answers of these two problems are not
absolutely positive. Therefore it is worth introducing the problems-aforementioned intoweak
classifiers weights allocation.

This paper proposed a double iterative weighted cascading (DIWC) algorithm to solve
the two problems above and make the utilization of basis classifiers more efficient. The
kernel ideal of DIWC is adding a weighting process by input training samples in reverse
order. Comparing with original AdaBoost algorithm, we can call this process double iterative.
Using the average weight of a basis classifier calculated in the two weighting process as the
final weight. Introducing the average weight of two iterations to replace the weight using in
traditional AdaBoost can avoid the weight bias problem because it takes the two problems
above into account. It defines “powerful” for basis classifiers by using not only the former
part but also the full training samples. The sketchy procedure chart of DIWC is shown in
Figure 6.

DIWC can achieve weighting procedure shown in Figure 6 by the following steps
below.

(1) Start: initialize documents weights wd(i) and weak classifier weights wc(j).

(2) Training the first classifier c1 with first sample documents subset s1, mark the set of
documents which is misclassified by c1 in s1 as e1.

(3) Loop: training ci with si and ei−1
(4) Calculation: calculating weights of basis classifiers according to the first round of

loops (trainings).

12 Mathematical Problems in Engineering

C1

Iterative step 1 Iterative step 2

Input

Correct result

Output

+ +

+

+

+

...

· · ·

Iterative step n

Iterative step n + 1 Iterative step 2n

T1 E1C1 T2 C2

E2

Tn En−1CnEnTn

En ′ Tn−1 E2 ′ T1 Cn

Ti

Ci

Ei

ith training subset

ith basis classifier

ith error

Figure 6: Procedure of DIWC algorithm.

(5) Reverse iterative: training c1 with si and ei.

(6) Loop: training ci with si and e′i+1.

(7) Calculation: calculating weights of basis classifiers according to the second round
of loops (trainings).

(8) Calculate final weights of basis classifiers according to step (4) and step (7)

(9) Cascade: combine basis classifiers according to their final weights and construct
strong classifier.

(10) End.

There are three methods that can be used, respectively, to calculate the final weights
with different accuracy and complexity.

The first method is quite simple: calculate the arithmetic mean of weights in two
iterative loops and use it as weak classifiers’ final weights. This method has a very low
computational cost. In this paper, it is called DIWC-1.

Note that some basis classifiers may have a very high weight both in the first and
the second rounds of loops. It means these classifiers have global high categorization ability
and should play a more important role in classification process instead of using the average
weight simply. In this case, an upper bound value is set as the final weight of significantly

Mathematical Problems in Engineering 13

powerful classifiers. On the other hand, some classifiers may have a very low weight in both
two iterative loops. The utility of these classifiers must be limited by using a lower bound
value to enhance system’s accuracy. This method spends more time on computing but has
higher precision. It is called DIWC-2.

The third method concerns the situation that some weak classifiers may have a very
high weight in one round of loops but a very low weight in another round of loops. One
more iterative process is needed to determine the final weight. Especially, if the weights’
variance of three rounds is significantly large, the system will consider the weak classifiers
as noise oversensitive and deduce its weight. This method can achieve the best precision and
robustness. However its training consumption is also highest. We call it DIWC-3 in this paper.

The computational complexity of DIWC-1, DIWC-2, and DIWC-3 can be calculated
by referring (3.5). Set m as the number of documents would be classified. The runtime
complexity T1 of DIWC-1 is quite simple as

T1 = 2m ∗Ng ∗ k ∗ (3Ng − 1
)
. (4.4)

In DIWC-2, weights of two iterative processes will be compared, an upper bound σh

will be introduced when classifiers have a very high weight both in the first and the second
rounds of loops, and a lower bound σl will be introduced when classifiers have a very low
weight both in the first and the second rounds of loops. Because not every basis classifier
needs an upper bound/lower bound and introduces bounds leading to extra computational
consumption, so the runtime complexity T2 ranges in

3m ∗Ng ∗ k ∗ (3Ng − 1
) ≤ T2 ≤ 4m ∗Ng ∗ k ∗ (3Ng − 1

)
. (4.5)

The DIWC-3 considers not only upper bound and lower bound but also the difference
between weights in the two iterative loops. When the weights determined in the two loops
have big difference, a third loop may be needed for final decision making. Similar to DIWC-2,
the range of runtime complexity T3 can be described as

3m ∗Ng ∗ k ∗ (3Ng − 1
) ≤ T2 ≤ 6m ∗Ng ∗ k ∗ (3Ng − 1

)
. (4.6)

As the analysis above, the computational complexity is proportional to k, m, and
N2

g ; when the number of classification objects increases, the time consumption will increase
linearly. Therefore the algorithms avoid index explosion problem and have an acceptable
runtime complexity. In addition, the algorithms are converged because no condition is
missing and the values of weights are infinity.

4.3. Using Training Sets More Efficiently

As per the review in Section 4.1, traditional AdaBoost gives documents which is misclassified
by former weak classifiers with higher importance to improve the system’s ability to
categorize “difficult” documents. This ideal is helpful for making AdaBoost achieves
better precision than former boosting algorithms. However, AdaBoost still leaves space for
improving the efficiency of using training documents.

Actually, all the training documents which are categorized incorrectly should be
gathered into an error set and use it to train every basis classifier. The accuracy will further

14 Mathematical Problems in Engineering

progressing by using training documents in this way. The implementation of this method is
quite convenient. Integrating this method with DIWC-1, DIWC-2, and DIWC-3 constructs the
complete double iterative weighted cascade algorithm. The pseudocode of DIWC is shown
in Algorithm 1 where ei is the error set of the ith basis classifier, ω1

i is the weight of the ith
classifier in the first iterative loop, ω2

i is the weight of the ith classifier in the second iterative
loop, ε is the lower threshold of the difference between ω1

i and ω2
i , σh is the upper threshold

of weight, WMAX is the upper bound, σl is the lower threshold of weight, WMIN is the lower
bound, δ is the upper threshold of the difference betweenω1

i andω2
i , andω′

i is the final weight
of the ith classifier.

5. Multiclass Classification

Majority members of AdaBoost family are oriented to two-class classification tasks. When
solving multiclass problem, they often transform it into multiple two-class problems. These
algorithms tend to have shortcomings in accuracy or efficiency and difficulty to achieve
perfection when faced to multiclass categorization tasks. However, multiclass is a main
problem in classification tasks. In many occasions simply using two-valued logic as yes
or no can or cannot be hard to satisfy the requirements of categorization tasks. For
instance, a news report may belong to politics, economics, sports, culture, new scientific
discovery, or entertainment. In other words, processing multiclass classification tasks with
higher performance should be the most important purpose of the boosting-based algorithm
development.

5.1. kNN in Multiclass Classification

As per the kernel algorithm of weak classifiers, k-nearest neighbor has a nature advantage to
solve multiclass problems. The mathematical expression of kNN is

p
(
di, Cj

)
=
∑

d∈kNN

Sim
(
di, dj

)
y
(
dj, Cj

)
. (5.1)

The above function reveals that kNN algorithm can easily be used in multiclass
classification problems, because unlike other categorization algorithms, kNN does not divide
the problem into two subspaces or two subparts, but it records the class label Cj directly.
Therefore, it need not to be premodified much to satisfy the multiclass categorization
problem.

Traditional text categorization research often use the Euclidean distance or the
Manhattan distance to measure the similarity between samples. However, when faced
to multiclass categorization problems, these distance definitions cannot distinguish the
importance betweenweights effectively [27]. To solve this problem, theMahalanobis distance
is used in this paper:

D(X) =
√(

X − μ
)T
S−1(X − μ

)
. (5.2)

And the distance between vector Xi and Xj is defined as

D
(
Xi,Xj

)
=
√(

Xi −Xj

)T
S−1(Xi −Xj

)
. (5.3)

Mathematical Problems in Engineering 15

Input: training set S = {s1, s2, . . . , sm} and weak
classifier C = {c1, c2, . . . , cn}

OutPut: strong classifierH
1 begin
2 test c1 with s1
3 for (i = 2; i ≤ m; i + +)
4 for (j = 2; j ≤ n; j + +)
5 test cj with s, and ej2−1
6 calculate W1

j ,
7 test c1 with sm and em
8 for (i = m − 1; i ≥ 1; i − −)
9 for (j = 2; j ≤ n; j + +)
10 test cj with si−1 and e2i
11 calculate w2

i
12 for (j = 1; j ≤ m; j + +)
13 if |w1

i −w2
i | ≤ ε&&w1

i , w
2
i ≥ σh

14 w′
i = wMAX

15 else if |w1
i −w2

i | ≤ ε&&w1
i , w

2
i ≤ σ1

16 w′
i = wMIN

17 else if ε ≤ |w1
i −w2

i | ≤ δ
18 W ′

i = (w1
i −w2

i)/2
19 else
20 int t = 0; t + +
21 while (t ≤ 1)
22 goto 2
23 |w1

i −w2
i | ≤ δ? w′

i = (w1
i −w2

i)/2 : w′
i = wMIN

24 end

Algorithm 1: Pseudocode of DIWC Double iterative weighted cascading.

In this way, the importance between weights can be distinguished effectively [28].
Because kNN can be easily used in multiclass situation, we can construct strong classifier
without big modification of the basis classifier itself.

5.2. Integrating Strong Classifiers

According to the analysis of the former subsection, weak classifiers in this paper are
easily used in multiclass classification problems. However the performance can be further
improved by changing the way of using strong classifiers.

Strong classifier tends to be used directly to solve two-class problem or independently
to divide multiclass problem into several two-class problems in the AdaBoost family. This is
probably the simplest way but certainly not the best way because the accuracy of two-class
categorization cannot be further enhanced in strong classifying step and the complexity of
multiclass categorization problem cannot be constraint efficiently.

Several strong classifiers can work together to solve the problems above. In this paper,
we proposed a strong classifiers’ cascading method to further improve the precision and limit
the consumption in multiclass classification tasks.

The method of integrating strong classifiers can be explained clearly by using
examples. For instance, we can use four strong classifiers in series sequentially to determine
which category a document belonged to. When they make the same judgment, use it as the

16 Mathematical Problems in Engineering

Reclassification

Di

C1 C2 C3 C4

c1 c1 c1 c1

c1

Di

C1 C2 C3 C4

c1 c4 c2 c4

c4

Di

C1 C2 C3 C4

c1 c3 c3 c1

c3

S1 S2

S3

S1: same result

S2: the minority is subordinate to the majority

S3: counterpart results and reclassification

Figure 7: Work logic of cascading strong classifiers.

final result. When they get different results, the principle of the minority is subordinate to the
majority could be used. Especially, when two different determinations are counterparts, a
reclassification process is needed to get the final result. The work logic of this method is
shown in Figure 7.

Using the method of integrating strong classifiers in series can improve the
classification accuracy because the Cramer-Rao bound is lower in this situation [29]. The
derivation and definition of original Cramer-Rao bounds contain too many integral functions
and thus very complex, so we use the modified Cramer-Rao bounds (MCRBs) in this paper
as below [30]:

MCRBs(τ) = EX,μ

{[
∂

∂τ
ln p
(
X | μ, τ)]2

}−1
, (5.4)

Mathematical Problems in Engineering 17

where p(X | μ, τ) is the conditional probability of X when given variables μ and τ . Reference
[31] had proved that, in text categorization, the average-result of multiple classifiers has
lower MCRBs than result by single classifier. Therefore, system’s precision can improved
by this method. However, input documents to strong classifiers in series will significantly
extend the categorization time. To save process time, strong classifiers can be combined in
parallel, but in this way, the computational consumption will be increased. To keep balance
between time and computational consumption, when implement the strong classifiers
integrating method in real systems, users should decide combine them in series or in parallel
according the size of documents collection, mutual information (MI) of different categories,
the hardware capability, and time consumption tolerance of different systems and different
projects.

6. Application and Analysis

The novel text categorization tool in this paper—adaptive group k nearest neighbor-based
AdaBoost (AGkNN-AdaBoost) algorithm—is fully proposed in the former sections. To
evaluate its performance we tested its training time by Matlab with different submodules
and parameters. We also measured the time consumption of other algorithms and made
comparison to analyze whether and why AGkNN-AdaBoost is better than many other tools,
furthermore, which parts make the contributions for its efficiency beyond some algorithms
and what mechanisms make it spend more training time than other algorithms.

A text categorization system based on AGkNN-AdaBoost is implemented, and plenty
of standard corpora texts are used to measure its precision, recall, F1. and so forth with
different submodule and different initial parameters. We compared AGkNN-AdaBoost’s
performance not only with the AdaBoost family algorithms but also with some other classic
classification algorithms such as SVM, decision tree, neural networks, and Naı̈ve Bayes. We
analyzed all data carefully and took the time consumption into account to make our final
conclusion about the novel tool’s performance.

6.1. Experiment for Time Consumption Analysis

In training step, we use documents set in which each document is a bit more or less than 2KB
and selected from standard copora to test the time needed for modeling when using AGkNN-
AdaBoost. The relationship between the number of documents and time consumption by
using different parameters and random model is shown in Figure 8.

In Figure 8, we test the modeling time with training sets containing 10 documents,
50 documents, 200 documents, 1000 documents, 5000 documents, and 20000 documents. We
select k = 3, k = 4, k = 5, and random k as the number of reference neighbors. In each
situation, we set the number of group as 4, 5, and 6 to evaluate the novel tool’s performance
with different parameters. In this test step, the stochastic strategy is used for strong classifier
generation. That means system would use DIWC-1, DIWC-2, or DIWC-3 randomly. For ease
of view, the logarithms of the documents numbers are used to draw the curve.

As shown in the chart above, the time consumption increased when the number of
neighbors or groups increased. Note that logarithmic coordinates are used in the figure, so
time consumption increased significantly with the change of Ng and k. Therefore, adjust
the number of neighbors and groups adaptively has great significance to improve system’s
efficiency in the conditions of guaranteeing the performance. In random k mode, system’s
training time is longer than k = 3 mode and shorter than k = 5 mode. Whether the efficiency

18 Mathematical Problems in Engineering

1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
k = 3

log10(number of texts)

lo
g 1

0(
tr

ai
ni

ng
 ti

m
e)

 (s
)

(a)

1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
k = 4

log10(number of texts)

lo
g 1

0(
tr

ai
ni

ng
 ti

m
e)

 (s
)

(b)

1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Ng = 4
Ng = 4

Ng = 5
Ng = 5

Ng = 6
Ng = 6

k = 5

log10(number of texts)

lo
g 1

0(
tr

ai
ni

ng
 ti

m
e)

 (s
)

(c)

1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Ng = 4
Ng = 4

Ng = 5
Ng = 5

Ng = 6
Ng = 6

Random k

log10(number of texts)

lo
g 1

0(
tr

ai
ni

ng
 ti

m
e)

 (s
)

(d)

Figure 8: Time consumption of different size.

of the system is higher than k = 4modemostly depends on the number of groups, the number
of documents, the size of each document, and document types.

To compare AGkNN-AdaBoost whose strong classifier is based on DIWC-1, DIWC-2,
and DIWC-3 with other classic categorization algorithm, we designed experimental control
groups including our novel algorithm, SVM, neural networks, and naı̈ve Bayes. Similar to
the former part, 5 thousands of documents (each text’s size is about 2KB) downloaded from
standard copara are used for the comparison. The result is shown in Figure 9.

Time consumption will change with parameters and the way which combined strong
classifiers. The training time of DIWC-1, DIWC-2, and DIWC-3 with different size of training
set is tested as shown in Figure 9. The red dashed line represents DIWC-1, blue dash-dotted
line represents DIWC-2, and brown dotted line represents DIWC-3.

Figure 9 reveals that time consumption increases fast when the training set becomes
larger. In addition, more training time is needed when using more complex way to integrate

Mathematical Problems in Engineering 19

30

40

50

60

70

80

90

100

110

1 1.5 2 2.5 3 3.5 4 4.5 5

DIWC-1
DIWC-1

DIWC-2
DIWC-2

DIWC-3
DIWC-3

T
ra

in
in

g
ti

m
e
(s
)

Number of training texts (1000)

(a)

10

15

20

25

30

35

40

45

Nave Bayes
Nave Bayes

1 1.5 2 2.5 3 3.5 4 4.5 5

T
ra

in
in

g
ti

m
e
(s
)

Number of training texts (1000)

(b)

20

30

40

50

60

70

80

90

100

110

120

Support vector machine
Support vector machine

1 1.5 2 2.5 3 3.5 4 4.5 5

T
ra

in
in

g
ti

m
e
(s
)

Number of training texts (1000)

(c)

40

60

80

100

120

140

160

180

Neural networks
Neural networks

1 1.5 2 2.5 3 3.5 4 4.5 5

T
ra

in
in

g
ti

m
e
(s
)

Number of training texts (1000)

(d)

Figure 9: Training time of different algorithms.

strong classifiers. As shown above, the system even combines strong classifiers with DIWC-3
which need less training time than classification tools based on SVM and neural networks.
However, three kinds of AGkNN-AdaBoost all need longer training time than naı̈ve Bayes.

AdaBoost is a big algorithm family. We choose most classic and most efficient
algorithms—original AdaBoost, AdaBoost.M1, AdaBoost.MR, and AdaBoost.ECC to evalu-
ate the runtime complexity level of our novel algorithms proposed in this paper. We used the
same training set as the former experiment, and the result is shown in Figure 10.

It is clearly shown in Figure 10 that AGkNN-AdaBoost has higher efficiency than
original AdaBoost and AdaBoost.M1. Moreover, AGkNN-AdaBoost using DIWC-1, DIWC-
2 and DIWC-3 as its strong classifier construction strategy makes them all spend training
time equal to or less than AdaBoost.MR and AdaBoost.ECC—the leader of the efficiency
in AdaBoost family [32]. That is because the adaptive grouping mechanism can better fit

20 Mathematical Problems in Engineering

40

60

80

100

120

140

1 1.5 2 2.5 3 3.5 4 4.5 5

DIWC-1
DIWC-1

DIWC-2
DIWC-2

DIWC-3
DIWC-3

AGkNN-AdaBoost

(a)

40

60

80

100

120

140

AdaBoost (original)

AdaBoost (original)
AdaBoost.MR
AdaBoost.MR

AdaBoost.ECC
AdaBoost.ECC
AdaBoost.M1
AdaBoost.M1

1 1.5 2 2.5 3 3.5 4 4.5 5

Classic AdaBoost family algorithms

(b)

Figure 10: Time consumption of the AdaBoost family.

different characteristics of different training sets in grouping and k selection. Comparing
adaptive value of k with experience-dependant k, the adaptive k has higher efficiency
because it can upload its value in real time according to the variation of different situation
such as document size, document type, and feature sparsity. In addition, the strategy which
strong classifiers used—solving multiclass problem directly instead of transforming it into
multiple two-class problems—further reduced the system complexity and time consumption.

It should be noted that the performance difference of efficiency between AGkNN-
AdaBoost and AdaBoost.ECC is not obvious. The main reason is that the advanced reweight
process of DIWC-3 spends a lot of time. However, AGkNN-AdaBoost still has advantages
compared with AdaBoost.ECC, because AGkNN-AdaBoost with DIWC-1 and DIWC-2 has
significantly lower runtime complexity. What’s more, the precision of AGkNN-AdaBoost will
be proved better than AdaBoost.ECC no matter DIWC-1, DIWC-2, or DIWC-3 is used.

6.2. Performance Comparison and Analysis

Experiment is made to evaluate performance of the system. Chinese news corpus support
by Sogou Labs [33] is used as the training set and test set. kernel conditional random
fields [34] (KCRFs) are used for preprocessing (word segmentation, feature extraction, and
representation) the documents. The corpus can be divided into six categories—economics,
politics, sports, weather report, entertainments, and culture. 20000 documents are randomly
selected as the training samples and 10000 documents are randomly selected as the test texts
in each category. Experimental results of system’s precision, recall, and F1-measure with
comparative data [35–37] as shown in Tables 1, 2, 3, and 4.

As shown in the above-mentioned tables, AGkNN-AdaBoost has better performance
than other text categorization algorithms. The performance of AGkNN-AdaBoost is far
beyond naı̈ve Bayes, neural networks, and decision tree. In addition, the novel classification
tool has better performance than other AdaBoost family members. Spatially strong classifiers’

Mathematical Problems in Engineering 21

Table 1: Precision comparison.

Algorithms
Text type

Economics Politics Sports Weather Entertainment Culture

AdaBoost 0.848 0.855 0.851 0.860 0.851 0.859
AdaBoost.M1 0.857 0.859 0.863 0.847 0.858 0.866
AdaBoost.MR 0.854 0.862 0.847 0.865 0.855 0.862
AdaBoost.ECC 0.848 0.854 0.841 0.843 0.840 0.856
Naı̈ve Bayes 0.769 0.794 0.783 0.806 0.811 0.772
SVM 0.867 0.862 0.870 0.877 0.865 0.871
Neural network 0.832 0.807 0.819 0.824 0.828 0.803
Decision tree 0.809 0.792 0.786 0.831 0.799 0.812
AGkNN DIWC-1 0.887 0.894 0.882 0.911 0.877 0.893
AGkNN DIWC-2 0.899 0.906 0.903 0.921 0.898 0.902
AGkNN DIWC-3 0.918 0.905 0.917 0.924 0.903 0.907

Table 2: Recall comparison.

Algorithms
Text type

Economics Politics Sports Weather Entertainment Culture

AdaBoost 0.852 0.857 0.849 0.863 0.859 0.861
AdaBoost.M1 0.852 0.864 0.863 0.877 0.862 0.865
AdaBoost.MR 0.858 0.863 0.849 0.866 0.851 0.867
AdaBoost.ECC 0.851 0.844 0.845 0.850 0.846 0.849
Naı̈ve Bayes 0.761 0.798 0.782 0.804 0.817 0.805
SVM 0.868 0.865 0.874 0.874 0.867 0.876
Neural network 0.834 0.809 0.823 0.811 0.825 0.807
Decision tree 0.815 0.798 0.784 0.819 0.799 0.813
AGkNN DIWC-1 0.897 0.888 0.890 0.913 0.885 0.905
AGkNN DIWC-2 0.909 0.914 0.914 0.922 0.891 0.908
AGkNN DIWC-3 0.921 0.917 0.919 0.923 0.911 0.916

integrates according to DIWC-3 method have the best accuracy and recall. It takes more
than six percentage increment to average F1-measure in the six categories than AdaBoost
family members. Although the support vector machine is an excellent classification tool,
AGkNN-AdaBoost is even more accurate than it. Moreover take its runtime complexity into
consideration, AGkNN-AdaBoost is much better than SVM.

Therefore, AGkNN-AdaBoost is an ideal tool for text categorization, it achieves really
high accuracy while controls the runtime complexity in a very low degree. That is because the
adaptive characteristics improve the performance, the double iterative mechanism enhances
the efficiency, and themulticlass classification ability improves precision and reduces the time
consumption at the same time.

It is interesting to note that classification in weather reports has the best precision
and recall. It is probably because weather reports are quite simple and always contain similar
features or keywords such as sunny, rainy, cloudy, temperature, and heavy fog warning. AGkNN-
AdaBoost does not perform as excellent in entertainment topic categorization as in other
categories perhaps because documents belongs to this topic containing too many new words

22 Mathematical Problems in Engineering

Table 3: F1-measure comparison.

Algorithms
Text type

Economics Politics Sports Weather Entertainment Culture

AdaBoost 0.850 0.856 0.850 0.862 0.855 0.860
AdaBoost.M1 0.855 0.862 0.863 0.876 0.860 0.866
AdaBoost.MR 0.856 0.863 0.848 0.866 0.853 0.865
AdaBoost.ECC 0.849 0.849 0.848 0.847 0.843 0.847
Naı̈ve Bayes 0.765 0.796 0.783 0.805 0.814 0.804
SVM 0.868 0.864 0.872 0.874 0.876 0.864
Neural network 0.833 0.808 0.821 0.808 0.827 0.805
Decision tree 0.812 0.795 0.785 0.825 0.799 0.813
AGkNN DIWC-1 0.896 0.888 0.896 0.912 0.881 0.899
AGkNN DIWC-2 0.895 0.910 0.909 0.922 0.906 0.903
AGkNN DIWC-3 0.907 0.911 0.918 0.924 0.920 0.912

Table 4: Average performance of algorithms.

Algorithms
Index

Precision Recall F1-measure

AdaBoost 0.854 0.857 0.856
AdaBoost.M1 0.858 0.864 0.861
AdaBoost.MR 0.857 0.862 0.860
AdaBoost.ECC 0.847 0.857 0.852
Naı̈ve Bayes 0.789 0.795 0.792
SVM 0.869 0.871 0.870
Neural network 0.819 0.818 0.819
Decision tree 0.805 0.805 0.705
AGkNN DIWC-1 0.899 0.896 0.898
AGkNN DIWC-2 0.905 0.910 0.908
AGkNN DIWC-3 0.916 0.918 0.917

and formal phrases which lead documents in this topic to have more complex features and
the feature space of them possibly are extremely sparse.

7. Conclusion

An improved boosting algorithm based on k-nearest neighbors is proposed in this paper.
It uses an adaptive group-based kNN categorization algorithm as basis classifiers and
combines them in a double iterative weighed cascading method which contains three
alternative modes. The strong classifiers are also modified for better satisfying multiclass
classification tasks. The AGkNN-AdaBoost algorithm is implemented in a text categorization
system, and several experiments are made. Experimental results shows that the algorithm
proposed in this paper has higher precision, recall, and robustness than traditional
AdaBoost. Furthermore, the time and computational consumption of AGkNN-AdaBoost
are lower than many other categorization tools which are not limited to AdaBoost family

Mathematical Problems in Engineering 23

algorithms. Therefore the algorithm proposed in former sections is quite a useful tool in text
categorization, including the Chinese TC problems.

However, support vector machine as one of the best classification algorithm and its
usage as weak classifier combined by ideas which are similar with DIWC is a virgin land
in text categorization. Moreover, there is space for improving the accuracy and efficiency
of AGkNN-AdaBoost, and the performance of AGkNN-AdaBoost in other classification tasks
such as image processing, speech categorization, andwriter identification should be evaluate.
These will be undertaken as future works on this topic.

Acknowledgments

The material presented in this paper is partly based upon work supported by the China
Association for Science and Technology. Experimental data is offered by the Sogou Labs.

References

[1] H. Al-Mubaid and S. A. Umair, “A new text categorization technique using distributional clustering
and learning logic,” IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 9, pp. 1156–1165,
2006.

[2] M. Lan, C. L. Tan, J. Su, and Y. Lu, “Supervised and traditional termweighting methods for automatic
text categorization,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 4, pp.
721–735, 2009.

[3] M. Lan, C. L. Tan, and H. B. Low, “Proposing a new term weighting scheme for text categorization,”
in Proceedings of the 21st National Conference on Artificial Intelligence, pp. 763–768, July 2006.

[4] L. Galavotti, F. Sebastiani, and M. Simi, “Experiments on the use of feature selection and negative
evidence in automated text categorization,” in Proceedings of the 4th European Conference on Research
and Advanced Technology for Digital Libraries, pp. 59–68, 2000.

[5] P. Soucy and G. W. Mineau, “Beyond tfidf weighting for text categorization in the vector space
model,” in Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI ’05), pp. 1130–
1135, August 2005.

[6] X. Quan, L. Wenyin, and B. Qiu, “Term weighting schemes for question categorization,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 5, pp. 1009–1021, 2011.

[7] Y. Liu, J. Bian, and E. Agichtein, “Predicting information seeker satisfaction in community question
answering,” in Proceedings of the 31st Annual International ACM Conference on Research and Development
in Information Retrieval (SIGIR ’08), pp. 483–490, July 2008.

[8] Y. Yang and J. O. Pedersen, “A comparative study on feature selection in text categorization,” in
Proceedings of the 14th International Conference on Machine Learning (ICML ’97), pp. 412–420, 1997.

[9] Y. Chao, W. Yuanqing, L. Jiuxue, and Z. Zhaoyang, “Theory deduction of AdaBoost classification,”
Journal of Southeast University, vol. 41, no. 4, 2011.

[10] R. Qahwaji, M. Al-Omari, T. Colak, and S. Ipson, “Using the real, gentle and modest AdaBoost
learning algorithms to investigate the computerised associations between coronal mass ejections and
filaments,” in Proceedings of the International Conference on Communications, Computers and Applications,
pp. 37–42, Bradford, UK, August 2008.

[11] R. E. Schapire and Y. Singer, “Improved boosting algorithms using confidence-rated predictions,”
Machine Learning, vol. 37, no. 3, pp. 297–336, 1999.

[12] R. E. Schapire, M. Rochery, M. Rahim, and N. Gupta, “Boosting with prior knowledge for call
classification,” IEEE Transactions on Speech and Audio Processing, vol. 13, no. 2, pp. 174–181, 2005.

[13] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A geometric framework for unsupervised
anomaly detection: detecting intrusions in unlabeled data,” in Applications of Data Mining in Computer
Security, D. Barbara and S. Jajodia, Eds., Kluwer, Norwell, Mass, USA, 2002.

[14] W. Hu, W. Hu, and S. Maybank, “AdaBoost-based algorithm for network intrusion detection,” IEEE
Transactions on Systems, Man, and Cybernetics B., vol. 38, no. 2, pp. 577–583, 2008.

[15] K. M. Ting and Z. Zheng, “Boosting cost-sensitive trees,” in Proceedings of the 1st International
Conference on Discovery Science, pp. 244–255, Springer, December 1998.

[16] F. U. Zhong-Liang, “Cost-sensitive AdaBoost algorithm for multi-class classication problems,” Journal
of Automation, vol. 37, no. 8, pp. 973–983, 2011.

24 Mathematical Problems in Engineering

[17] E. Song, D. Huang, G. Ma, and C. C. Hung, “Semi-supervised multi-class Adaboost by exploiting
unlabeled data,” Expert Systems with Applications, vol. 38, no. 6, pp. 6720–6726, 2011.

[18] I. Maglogiannis, H. Sarimveis, C. T. Kiranoudis, A. A. Chatziioannou, N. Oikonomou, and V. Aidinis,
“Radial basis function neural networks classification for the recognition of idiopathic pulmonary
fibrosis in microscopic images,” IEEE Transactions on Information Technology in Biomedicine, vol. 12,
no. 1, pp. 42–54, 2008.

[19] C. T. Lin, C. M. Yeh, S. F. Liang, J. F. Chung, and N. Kumar, “Support-vector-based fuzzy neural
network for pattern classification,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 1, pp. 31–41, 2006.

[20] J. M. Yang, P. T. Yu, and B. C. Kuo, “A nonparametric feature extraction and its application to nearest
neighbor classification for hyperspectral image data,” IEEE Transactions on Geoscience and Remote
Sensing, no. 3, pp. 1279–1293, 2010.

[21] R. H. Yuhas, A. F. H. Goetz, and J. W. Boardman, “Discrimination among semi-arid landscape
endmembers using spectral angle mapper (SAM) algorithm,” in Proceedings of the Summaries of the
4th Annual JPL Airborne Geoscience Workshop, vol. 1, pp. 147–150, AVIRIS Workshop, R. Green, Ed.,
Pasadena, Calif, USA, October 1992.

[22] Z. Chun-hong and X. Wei, “The approach to text automatic classification technology of characteristic
catabases on the SVM-KNN,” Information Science, vol. 11, 2009.

[23] D. Coomans and D. L. Massart, “Alternative k-nearest neighbour rules in supervised pattern
recognition. Part 2. Probabilistic classification on the basis of the kNN method modified for direct
density estimation,” Analytica Chimica Acta, vol. 138, pp. 153–165, 1982.

[24] N. Boonyanunta and P. Zeephongsekul, “Improving the predictive power of AdaBoost: a case study
in classifying borrowers,” in Proceeding of the 16th International Conference on Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems (IEA/AIE ’03), pp. 674–685, June 2003.

[25] H. J. Lin, Y. T. Kao, F. W. Yang, and P. S. P. Wang, “Content-based image retrieval trained by adaboost
for mobile application,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 20, no.
4, pp. 525–541, 2006.

[26] J. Mitéran, J. Matas, E. Bourennane, M. Paindavoine, and J. Dubois, “Automatic hardware
implementation tool for a discrete adaboost-based decision algorithm,” Eurasip Journal on Applied
Signal Processing, vol. 2005, no. 7, pp. 1035–1046, 2005.

[27] L. P. Dinu and A. Rusu, “Rank distance aggregation as a fixed classifier combining rule for text
categorization,” Lecture Notes in Computer Science, vol. 6008, pp. 638–647, 2010.

[28] S. M. Namburu, T. Haiying, L. Jianhui, and K. R. Pattipati, “Experiments on supervised learning
algorithms for text categorization,” in Proceedings of the 2005 IEEE Aerospace Conference, March 2005.

[29] D. Modgil and P. J. La Riviére, “Optimizing wavelength choice for quantitative optoacoustic imaging
using the Cramer-Rao lower bound,” Physics in Medicine and Biology, vol. 55, no. 23, pp. 7231–7251,
2010.

[30] A. N. D’Andrea, U. Mengali, and R. Reggiannini, “Modified Cramer-Rao bound and its application to
synchronization problems,” IEEE Transactions on Communications, vol. 42, no. 2, pp. 1391–1399, 1994.

[31] M. Sansone, R. Fusco, A. Petrillo, M. Petrillo, andM. Bracale, “An expectation-maximisation approach
for simultaneous pixel classification and tracer kinetic modelling in dynamic contrast enhanced-
magnetic resonance imaging,” Medical and Biological Engineering and Computing, vol. 49, no. 4, pp.
485–495, 2011.

[32] G. Lie, G. Ping-Shu, Z. Ming-Heng, L. Lin-Hui, and Z. Yi-Bing, “Pedestrian detection for intelligent
transportation systems combining AdaBoost algorithm and support vector machine,” Expert System
with Applications, vol. 39, no. 4, pp. 4274–4286, 2012.

[33] http://www.sogou.com/labs/resources.html .
[34] L. Fengcheng, H. Degen, and J. Peng, “Chinese word sense disambiguation with AdaBoost.MH

algorithm,” Journal of Chinese Information Processing, vol. 20, no. 3, pp. 6–13, 2005.
[35] H. Zhi-Kun, G. Wei-Hua, Y. Chun-Hua, D. Peng-cheng, and D. X. Steven, “Text classification method

for inverter based on hybrid support vector machines and wavelet analysis,” International Journal of
Control Automation and Systems, vol. 9, no. 4, pp. 797–804, 2011.

[36] W. Wang and B. Yu, “Text categorization based on combination of modified back propagation neural
network and latent semantic analysis,” Neural Computing and Applications, vol. 18, no. 8, pp. 875–881,
2009.

[37] Z. Xuan and T. Da-Gang, “Study on text classification methods,” in Proceedings of the International
Conference of China Communication, pp. 123–125, October 2010.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

