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Universidad Técnica Federico Santa Marı́a, Avenida España 1680, 2340000 Valparaı́so, Chile
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An alternative meshless finite-point method (FPM) technique for the numerical solution of the
Regularized long wave (RLW) equation is presented. In this context, we derive the discretized
system by combining finite difference (FD) techniques for the time derivative and FPM for the
spatial derivatives. The accuracy of this alternative approach is tested with L2, L∞ error norms and
the conservation properties of mass, energy, and momentum under the RLW equation.

1. Introduction

The numerical analysis of nonlinear dispersive waves has significant importance in physical

phenomena, such as shallow water waves [1], ion acoustic solitary waves [2], motion for

mixtures of liquid and gas bubbles [3], and so on. Importantly, the regularized long wave

(RLW) equation is an alternative description to the well-known Korteweg-de Vries (KdV)
equation [4]. Like the KdV equation, the RLW equation also describes a large number of

physical phenomena; see [5, 6]. The first formulation of the RLW equation was presented by

Peregrine [7] to describe the behavior of an undular bore with a numerical solution based

on a finite difference (FD) method with first-order accuracy in terms of time. In the recent

years, several numerical methods for the solution of the RLW equation have been developed,

including FD methods [8–11], Fourier pseudospectral (PS) methods [12], finite element

methods (FEMs) based on Galerkin and collocation techniques [13–19]. Furthermore,

focusing on a meshless context, Shokri and Dehghan [20] presented an approach for solving

the RLW equation with radial basis functions (RBFs) by using FD to yield the time derivative
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as well as a predictor-corrector procedure to solve the nonlinear system. In addition, Islam

et al. [21] also applied RBF and FD to the time derivative, but they addressed nonlinear

behavior with the θ-weighted scheme. These recent works and references mentioned therein

present helpful reviews on the RLW equation and related aspects.

Meshless methods are a family of numerical techniques that do not require a mesh. In
these methods, the body or domain is discretized by a collection of points. It is divided into

local interpolation subdomains, which are also called clouds; they consist of one central point,

or star node, and several neighboring points. Generally, these methods are computationally

efficient and easy to implement, and they have been successfully used in several application.

The general characteristics, classifications, advantages, and disadvantages of these methods

can be found in [22–26]. Meshless finite point method (FPM) approximation around each

point is obtained using weighted least square techniques. The discrete system of equation is

constructed based on a point collocation procedure. This method was proposed in [27, 28]
to solve convective transport and fluid flow problems. Its application has been extended

to advection-diffusion transport [29], incompressible flow problems [30], elasticity [31, 32],
solid dynamics [33], solidification modeling [34], nonlinear material behavior problems

[35, 36], adaptive refinement [37, 38], and large deflection analysis of flexible plates [39].
The lack of dependence on a mesh or integration procedure is an important feature, making

the FPM a truly meshless method. This work is structured as follows. In Section 2, the FPM

is introduced. The meshless FPM implementation of the RLW equation is developed in

Section 3. In Section 4, the accuracy of this approach is tested with respect to L2, L∞ error

norms and the conservation properties of mass, energy and momentum [40]. The numerical

simulation includes the propagation of a solitary wave, the interaction of two positive solitary

waves, the interaction of a positive and a negative solitary wave, the evaluation ofMaxwellian
pulse into stable solitary waves, and the development of an undular bore. Finally, conclusions

to the current investigation are shown in Section 5.

2. The Finite Point Method

Although the FPM introduced by Oñate et al. was originally formulated for the numerical

solution of convective transport and fluid flow problems, it can be easily adapted to the RLW

equation. In this section, we review the basic formulation of the FPM and provide a brief

overview of its main features. In order to obtain the final system of discrete equations, the

FPM approximates the local solution of a partial differential equation in each point of the

discretized domain by means of a weighted least squares technique and a point collocation

procedure. Due to the local character of the approximation procedure used by this method, it

is necessary to define a subdomain Ωk for each node xk. This Ωk contain neighboring nodes

selected by a suitable criterion [31, 41, 42]. This collection of nodes is called a cloud, and its

referential central point is the star node. For example, a relevant aspect in the definition of

clouds is that their superposition must produce the whole domain, Ω:

Ω ⊆
Np⋃
k=1

Ωk, (2.1)

where Np is the total number of nodes. Note that the definition of clouds is the basic, initial

step in implementing the FPM approximation using fixed weighted least squares. With the
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discretized domain defined, let us define a function u(x), which is locally approximated by

û(x) only valid in the subdomain Ωk associated with the star node xk as a linear combination

of known functions p(x):

u(x) ∼= û(x) = p(x)αk ∀x ∈ Ωk, (2.2)

where p(x) is the vector that represents the basis ofm linearly independent functions and αk

is a vector of constant parameters only valid in Ωk. The elements of the interpolation base

may belong to any function family. In this paper the m first monomial polynomials are used;

that is, p(x) = [1 x x2 · · · xm−1]. Since (2.2) is valid for all Nc points of the kth subdomain,

the approximations û(X) conform to a Vandermonde system given by the following relation:

u
(
Xk

) ∼= û
(
Xk

)
= P

(
Xk

)
· αk, (2.3)

where

Xk = [xk,1 · · · xk,Nc]
T , u

(
Xk

)
= [u(xk,1) · · · u(xk,Nc)]

T ,

û
(
Xk

)
= [û(xk,1) · · · û(xk,Nc)]

T , αk = [αk,1 · · · αk,Nc]
T ,

P
(
Xk

)
=

⎡
⎢⎢⎢⎣

p(xk,1)

...

p(xk,Nc)

⎤
⎥⎥⎥⎦.

(2.4)

In general, the number of points Nc that conform to the cloud is greater than the

number of functions m that define the basis; hence, the matrix P(Xk) is usually rectangular.

This means that the property of interpolation is lost, and the problemmust be addressed with

numerical approximation. The coefficients of the vector αk must be determined in such a

way that the weighted sums of the squared differences between the exact values u(x) and the

approximated values û(x) of each point are minimized according to the following expression:

min

⎧⎨
⎩

Nc∑
j=1

w
(
xk,j

) · (u(xk,j) − û(xk,j)
)2⎫⎬⎭, (2.5)

where w(x) is a fixed weighting function defined in Ωk. See [27, 28]. The minimization

process described by (2.5) leads to the following expression for vector αk:

αk = A−1
(
Xk

)
B
(
Xk

)
λ
(
Xk

)
, (2.6)

where λ(Xk) is a vector that represents the unknown parameters sought on the cloud Ωk

defined as follows:

λ
(
Xk

)
= [λ(xk,1) · · · λ(xk,Nc)]

T . (2.7)
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Additionally, matrices A(Xk), B(Xk), and W(Xk) are given as follows:

A
(
Xk

)
= P

(
Xk

)
W
(
Xk

)
PT

(
Xk

)
, B

(
Xk

)
= PT

(
Xk

)
W
(
Xk

)
, (2.8)

and W(Xk) is an Nc ×Nc diagonal matrix defined by

W
(
Xk

)
=
[
diag(w(xk,1) · · ·w(xk,Nc))

]
, (2.9)

where the weighting functions w(x) are derived in order to have unit values near the star
node and zero values outside the Ωk subdomains. Under the FPM, the common selection for

the fixed weighting function is given as follows:

w(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
(
−(hj/ζ

)2) − exp
(
−(r/ζ)2

)
1 − exp

(
−(r/ξ)2

) , ifhj ≤ r,

0, ifhj > r,

(2.10)

where hj is the distance between the star node xk and the point x, r = q · hmax (max. of hj)
is a reference distance, and ζ = β · r. A detailed description of the effects of the constant

parameters q and β on numerical approximation as well as guidelines for setting their values

is presented in [43]. Other considerations in selecting the function w(x) can be found in

[27, 28, 44, 45]. Finally, replacing (2.6) in (2.2), the next relation is obtained:

û(x) = NT (x)λ
(
Xk

)
, (2.11)

where N(x) is a matrix called shape function defined by

N(x) = pT (x)C
(
Xk

)
, (2.12)

withC(Xk) = A−1(Xk)B(Xk). We remark that p(x) denote [1 x x2··· xm−1]. Note that according

to the least square nature of the approximation, u(x) ∼= û(x)/=λ(x); that is, the local values

of the approximating function do not fit the nodal unknown values. Indeed, û(x) is the true

approximation, which we be will used to satisfy the differential equation and the boundary

conditions; in this context, λ(x) are simply the unknown parameters we aim to determine.

According to the concepts described above and (2.11), it is possible to obtain the following

expressions:

ûx(x) = NT
x(x)λ

(
Xk

)
ûxx(x) = NT

xx(x)λ
(
Xk

)
, (2.13)

where (·)x and (·)xx denote the first and the second space derivatives, respectively. Note that

these derivatives are computed by taking the derivative of the basis functions p(x) in (2.2).
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3. The RLW Equation and the FPM Numerical Implementation

In this section, we present RLW model, which is approximated by the FPM explained above.

First, the partial differential equation (PDE) is presented by defining the appropriate initial

and boundary conditions, and the relevant parameters needed to understand the behavior

of the PDE are briefly discussed. Finally, we derive the discretized system by combining FD

techniques for the time derivative and FPM for the spatial derivatives.

Let us consider the following form of the RLW equation:

ut(x, t) + ux(x, t) + ε · u(x, t)ux(x, t) − μ · uxxt(x, t) = 0, x ∈ R, t > 0, (3.1)

with the physical conditions u → 0 as |x| → ∞. To the numerical implementation, we

consider a ≤ x ≤ b and the following boundary conditions:

u(a, t) = 0 u(b, t) = 0. (3.2)

The initial condition for the problem (3.1) is given as follows:

u(x, 0) = u0(x), a ≤ x ≤ b. (3.3)

Parameters ε and μ in (3.1) are positive constants and are related by the Stokes number S
defined as follows:

S =
ε

μ
. (3.4)

Usually, this number is set to 1 in order to balance the nonlinear effects of the advective and

dispersive terms present in this problem.

In order to obtain the numerical approximation of (3.1), the time derivative of the RLW

equation is calculated by applying a FD formula and the θ-weighted (0 ≤ θ ≤ 1) scheme to the

space derivative at two successive time levels n and n + 1, where n is an integer that denotes

the time step. The approximation is then given as follows:

ûn+1 − ûn

δt
+ θ

(
(ûx)

n+1 + ε · ûn+1(ûx)
n+1

)
+ (1 − θ)

(
(ûx)

n + ε · ûn(ûx)
n)

− μ

δt

(
(ûxx)

n+1 − (ûxx)
n
)
= 0,

(3.5)

where ûn = û(x, tn), tn = tn−1+δt, and δt is the size of the time step.With the idea to adequately

address the nonlinear term in (3.5), a linearized scheme given by the following expression is

used [21, 46]:

ûn+1(ûx)
n+1 ≈ ûn+1(ûx)

n + ûn(ûx)
n+1 − ûn(ûx)

n; (3.6)
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therefore, from (3.5) and (3.6), the following expression is obtained:

ûn+1 + δt · θ
(
(ûx)

n+1 + ε ·
[
ûn+1(ûx)

n + ûn(ûx)
n+1

])
− μ · (ûxx)

n+1

= ûn + δt · (ε · (2θ − 1)ûn(ûx)
n − (1 − θ)(ûx)

n) − μ · (ûxx)
n.

(3.7)

With the purpose to obtain the local approximation ûn+1, this work presents an alternative

method based on the FPM, which was introduced in Section 2. Using (2.11) and (2.13),
assume that θ = 1/2 and replace into (3.7). Then the following discrete relation is obtained

for the time level n + 1:

Gk · λ
(
Xk

)
= fk, (3.8)

wherematrixGk and the known quantity fk (based on the time level n) are defined as follows:

Gk = NT +
δt

2
·Nx

T +
δt

2
ε ·NT · ûn

x +
δt

2
ε · ûn ·NT

x − μ ·NT
xx,

fk = ûn − δt

2
· ûn

x − μ · ûxx;

(3.9)

here, the subscript k denotes the evaluation in the star node xk.

Note that for simplicity, the terms NT (x), NT
x(x), and NT

xx(x) have been replaced by

NT , NT
x , and NT

xx, respectively. We remark that this shape functions are computed only at the

beginning of calculation.

Otherwise, in the case of boundary points (see (3.2)), the matrix Gk and quantity fk
adopt the following forms, respectively:

Ga,b = NT fa,b = 0. (3.10)

Finally, using (3.8) and (3.10) and taking into account the point collocation procedure for

each of the Np nodes that comprise the domain Ω, the following system of discrete equation

is solved:

G · λ = f, (3.11)

where G is defined as a stiffness matrix, λ represents the vector collecting of the point para-

meters λn+1, and f is a vector of known values brought from the time level n.

4. Test Problems

In this section, the results of the numerical solution of the RLW equation based on the FPM

approach are presented. The numerical simulation includes the propagation of a solitary

wave, the interaction of two positive solitary waves, the interaction of a positive and a

negative solitary wave, the evaluation of Maxwellian pulse into stable solitary waves, and
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Table 1: FPM parameters for the numerical simulation.

Total discretization points Np 300

Cloud size Nc 5

Interpolation base function m 4

Weighting function parameters q and β 1 : 1 and 0 : 25

the development of an undular bore. According to [40], the RLW equation must comply with

three conservation laws related to mass, momentum, and energy, which are given as follows:

∫∞

−∞
udx ≈ C1 =

∫b

a

udx, (4.1)

∫∞

−∞

(
u2 + μ(uxx)2

)
dx ≈ C2 =

∫b

a

(
u2 + μ(uxx)2

)
dx, (4.2)

∫∞

−∞

(
u3 + 3u2

)
dx ≈ C3 =

∫b

a

(
u3 + 3u2

)
dx. (4.3)

In the following test problems, the numerical solutions must control these conservation

laws during propagation. Therefore, these quantities are used to measure the accuracy of

the proposed method. All of the following test problems were developed using the FPM

parameters shown in Table 1. It is worth mentioning that the following experiments have

been extracted from previous works; see [10, 11, 19–21] for further details on the suitability

of our proposal.

4.1. Propagation of a Single Solitary Wave

Solitary waves are wave packets or pulses that propagate nonlinearly in dispersive media.

Due to the dynamic balance between the nonlinear and dispersive effects, these waves retain

a stable waveform known as a soliton. This is a very special type of solitary wave, which

also keeps its waveform after collision with other solitons [21]. In the case of solitons, the

following explicit solution to (3.1) is given by [7]

u(x, t) = 3c sech2[k(x − x0 − vt)], (4.4)

which represents a single solitary wave of amplitude 3c centered at x0 with velocity v = 1+εc
and width k = (1/2)

√
εc/μv. The initial condition of (3.1) is given as follows:

u(x, 0) = 3c sech2[k(x − x0)]. (4.5)

The RLW parameters used in the numerical simulation are c = 0.01, 0.055, 0.1, x0 = 0,

ε = μ = 1(S = 1) and δt = 0.1. As expected, the solitary wave moves to the right across
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Figure 1: (a) Perspective and (b) superior view of the propagation of a single solitary wave for c = 0.1.

Table 2: Error norms and conservation quantities for the propagation of a single solitary wave for c = 0.01.

t L2 L∞ C1 C2 C3

0 0.000039 0.000041 1.205460 0.024167 0.072938

5 0.000060 0.000030 1.205479 0.024167 0.072938

10 0.000077 0.000030 1.205406 0.024167 0.072938

15 0.000083 0.000030 1.205303 0.024167 0.072938

20 0.000089 0.000043 1.205127 0.024167 0.072938

the space interval −40 ≤ x ≤ 60 in the time interval 0 ≤ t ≤ 20. As in previous work, such as

[20, 21], the boundary conditions are extracted from the exact solution (4.4), and the initial

condition is given by (4.5). The FPM parameters are shown in Table 1. Moreover, based on

the conservation laws Equations (3.9) and (3.10) and the explicit solution (4.4), the following

error norms are calculated for this test problem:

L2 =

√√√√√h
Np∑
j=1

∣∣u(xj) − û(xj)
∣∣2,

L∞ = max
j

∣∣u(xj

) − û
(
xj

)∣∣,
(4.6)

where h is the minimum distance between any two points in the domain a ≤ x ≤ b. The error
norms L2, L∞ and conservation quantities C1, C2, and C3 are shown in Tables 2, 3, and 4. A

perspective and superior view of the propagation of a single solitary wave when c = 0.1 is

shown in Figure 1. Moreover, Figure 2 presents the evolution of the L2 and L∞ error norms at

different values of c.
The results obtained in this case show that the conservation quantities are controlled in

different time steps, and moreover, the error norms L2 and L∞ are of the order of 10−4, which

demonstrate the remarkable accuracy of the proposed method and, therefore, the suitability

of FPM for this kind of physical problem.
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Figure 2: (a) L2 and (b) L∞ error norms for the propagation of a single solitary wave.

Table 3: Error norms and conservation quantities for the propagation of a single solitary wave for c = 0.055.

t L2 L∞ C1 C2 C3

0 0.000028 0.000012 2.890605 0.321290 0.995896

5 0.000045 0.000019 2.890605 0.321290 0.995896

10 0.000076 0.000028 2.890605 0.321290 0.995896

15 0.000106 0.000037 2.890605 0.321290 0.995896

20 0.000133 0.000047 2.890605 0.321290 0.995896

Table 4: Error norms and conservation quantities for the propagation of a single solitary wave for c = 0.1.

t L2 L∞ C1 C2 C3

0 0.000123 0.000058 3.979950 0.810520 2.579202

5 0.000249 0.000111 3.979950 0.810520 2.579202

10 0.000428 0.000172 3.979950 0.810521 2.579202

15 0.000580 0.000230 3.979950 0.810521 2.579202

20 0.000702 0.000268 3.979950 0.810521 2.579202

4.2. Interaction of Two Positive Solitary Waves

In this case, the numerical example consists on the interaction of two positive solitary waves

defined by the following initial condition:

u(x, 0) =
2∑

j=1

3cj sech
2(kj(x − xj

))
, (4.7)
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Table 5: Conservation quantities for the interaction of two positive solitary waves.

t C1 C2 C3

0 37.916479 120.674902 745.391797

5 37.916674 120.676914 745.396694

10 37.916670 120.607313 744.749676

15 37.916673 120.409138 743.040480

20 37.916671 120.663186 745.265479

25 37.916672 120.678190 745.412442

30 37.916662 120.678701 745.417152

Table 6: Conservation quantities for the interaction of a positive and negative solitary wave.

t C1 C2 C3

0 −6.06072 383.42957 −354.233156
2 −6.06072 383.48023 −353.305989
5 −6.06072 406.31404 −379.084777
10 −6.06072 383.69552 −354.093811
15 −6.06072 383.64904 −353.883879
20 −6.07021 383.63883 −353.856241

with cj = 4k2
j /(1 − 4k2

j ) and the boundary conditions:

u(a, t) = u(b, t) = 0. (4.8)

The RLW parameters used in the numerical simulation are k1 = 0.4, k2 = 0.3, x1 = 15, x2 = 35,

ε = μ = 1(S = 1), and δt = 0.01. This waves move across the space interval 0 ≤ x ≤ 120 and the

time interval 0 ≤ t ≤ 30. Likewise, the FPM parameters used in this simulation are shown in

Table 1. The results of the FPM approximation at different times are shown in Figures 3 and

4, where it is possible to observe that the higher amplitude solitary wave passes through the

smaller wave with no change in its waveform. Once again, our results are in agreement with

our expectations for all discrete time measured. As in the case of a solitary wave, the three

quantities C1, C2, and C3 are conserved see Table 5.

4.3. Interaction of a Positive and Negative Solitary Wave

This example focuses on the interaction of a positive and negative solitary wave, starting

with the initial condition given by (4.7) and the boundary conditions defined in (4.8). The
RLW parameters used in the numerical simulation are k1 = 0.4, k2 = 0.6, x1 = 23, x2 = 38,

ε = μ = 1(S = 1), and δt = 0.1. The waves interact across the space interval −10 ≤ x ≤ 80 and

the time interval 0 ≤ t ≤ 20. As in the other cases, the FPM parameters are shown in Table 1.

The results of the FPM approximation at different times are shown in Figures 5 and 6, where it

is possible to observe that the collision produces additional solitary waves. Finally, note that

the three conservation quantities for various times steps are controlled, as shown in Table 6.
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Figure 3: (a) Perspective and (b) superior view of the interaction of two positive solitary waves.
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Figure 4: Detailed view of the interaction of two positive solitary waves at various times.

4.4. Evolution of Maxwellian Pulse into Stable Waves

This problem deals with the evolution of the Maxwellian pulse into stable solitary waves at

various values of the parameter μ. The initial condition is given as follows:

u(x, 0) = exp
[
−(x − 7)2

]
. (4.9)

The boundary conditions are defined as in (4.8). For this test, the RLW parameters for the

numerical simulation are ε = 1, μ = 0.1, 0.001, and 0.01, and δt = 0.01. This pulse is studied
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Figure 5: (a) Perspective and (b) superior view of the interaction of a positive and negative solitary wave.
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Figure 6: Detailed view of the interaction of a positive and negative solitary wave at various times.

across the space interval 0 ≤ x ≤ 30 and time interval 0 ≤ t ≤ 10 for the three cases of μ.
The FPM parameters are shown in Table 1. The results of the FPM approximation at different
values of the parameter μ are shown in Figures 7, 8, and 9, where it is possible to observe that

the Maxwellian pulse develops into various solitary waves. As in the other experiments, the

three conservation quantities for various times steps and values of parameter μ as given in

Tables 7, 8, and 9 are controlled throughout the simulation.
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Table 7: Conservation quantities for the evolution of the Maxwellian pulse into stable waves for μ = 0.1.

t C1 C2 C3

0 1.772454 1.378633 4.783269

1 1.772454 1.378617 4.783257

2 1.772454 1.378531 4.783179

3 1.772454 1.378455 4.783110

4 1.772454 1.378412 4.783069

5 1.772454 1.378389 4.783043

6 1.772454 1.378375 4.783026

7 1.772454 1.378367 4.783015

8 1.772454 1.378361 4.783006

9 1.772454 1.378357 4.783000

10 1.772454 1.378354 4.782995

Table 8: Conservation quantities for the evolution of the Maxwellian pulse into stable waves for μ = 0.01.

t C1 C2 C3

0 1.772454 1.265846 4.783269

1 1.772454 1.266067 4.784169

2 1.772454 1.267009 4.788193

3 1.772454 1.267889 4.792014

4 1.772454 1.268268 4.793725

5 1.772454 1.268398 4.794333

6 1.772454 1.268444 4.794551

7 1.772454 1.268463 4.794639

8 1.772454 1.268473 4.794680

9 1.772454 1.268479 4.794702

10 1.772454 1.268483 4.794716

Table 9: Conservation quantities for the evolution of the Maxwellian pulse into stable waves for μ = 0.001.

t C1 C2 C3

0 1.772454 1.254567 4.783269

1 1.772454 1.254850 4.785121

2 1.772454 1.265146 4.859827

3 1.772454 1.274927 4.929081

4 1.772454 1.278024 4.950083

5 1.772454 1.278888 4.954447

6 1.772454 1.279216 4.955791

7 1.772454 1.279563 4.958827

8 1.772454 1.279775 4.960823

9 1.772454 1.279696 4.959418

10 1.772454 1.279591 4.957822
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Figure 7: (a) Perspective, (b) superior, and (c) final detailed view of the evolution of the Maxwellian pulse
into stable waves for μ = 0.1.

4.5. Development of an Undular Bore

This numerical example allows us to study the development of an undular bore from the

following initial condition:

u(x, 0) = 0.5u0

[
1 − tanh

(
x − xc

d

)]
, (4.10)

which represents the elevation of a water surface above equilibrium. The parameter u0 is the

change in water level at x = xc, and d is the slope between still and deep water. Beside these

conditions, the boundary conditions are defined by (4.8). The RLW parameters used for the

numerical simulation are ε = 3/2, μ = 1/6, and δt = 0.1. The undular bore is studied in the

space interval −36 ≤ x ≤ 300 and time interval 0 ≤ t ≤ 250. In addition, u0 = 0.1, xc = 0,

and d = 1, 2, 5. The FPM parameters are shown in Table 1. An initial detailed view at different
values of slope d is presented in Figure 10. The results of the FPM approximation at different
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Table 10: Conservation quantities for the development of an undular bore for d = 1.

t C1 C2 C3

0 6.070750 0.602547 1.866131

50 11.438580 1.152584 3.571518

100 16.805366 1.701540 5.273289

150 22.184395 2.252770 6.982176

200 27.558493 2.802943 8.687707

250 32.933255 3.353220 10.393560

Table 11: Conservation quantities for the development of an undular bore for d = 2.

t C1 C2 C3

0 6.070750 0.597374 1.850512

50 11.435277 1.146559 3.553294

100 16.809517 1.696678 5.258797

150 22.185217 2.247110 6.965201

200 27.560092 2.797381 8.671063

250 32.935036 3.347666 10.376953

Table 12: Conservation quantities for the development of an undular bore for d = 5.

t C1 C2 C3

0 6.070750 0.582211 1.803261

50 11.435000 1.131142 3.505463

100 16.810000 1.681269 5.211217

150 22.185001 2.231499 6.917114

200 27.560001 2.781775 8.623046

250 32.935000 3.332064 10.328972

values of d are shown in Figures 11, 12, and 13, and the conservation quantities for various

times steps are given in Tables 10, 11, and 12. In this particular problem, quantities C1, C2,

and C3 are not conserved but increase linearly according to the values of M1, M2, and M3,

respectively [47]:

M1 =
d

dt
C1 =

d

dt

∫∞

−∞
udx = u0 +

1

2
u2
0,

M2 =
d

dt
C2 =

d

dt

∫∞

−∞

(
u2 + μ(ux)2

)
dx = u2

0 +
2

3
u3
0,

M3 =
d

dt
C3 =

d

dt

∫∞

−∞

(
u3 + 3u2

)
dx = 3u2

0 + 3u3
0 +

3

4
u4
0.

(4.11)



16 Mathematical Problems in Engineering

0
2

4
6

8
10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0
5

10
15

20
25

30

Tim
e

x-ax
is

u
(x
,t
)

(a)

0

1

2

3

4

5

6

7

8

9

10

T
im

e

0 5 10 15 20 25 30

x-axis

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30

x-axis

u
(x
,t
)

(c)

Figure 8: (a) Perspective, (b) superior, and (c) final detailed view of the evolution of the Maxwellian pulse
into stable waves for μ = 0.01.

Given the fixed value of u0, the values ofM1,M2, andM3 are 0.105000, 0.010667 and 0.033075,

respectively. With the values of M1, M2, and M3 defined above and using Δt = 50, it is

possible to calculate the increment in the quantities C1, C2, and C3 as ΔC1 = 5.25000, ΔC2 =
0.53335 and ΔC3 = 1.65375, respectively. These increments are shown in Tables 10, 11, and 12

at different values of slope d.

5. Conclusions

The RLW equation is a PDE that can be used to solve several nonlinear physical problems. In

fact, there exist various numerical approximations, such as FD, PS, and FEM, which are also

suitable for this kind of problem.

In this paper, we present a meshless FPM as an alternative approach for the numerical

solution of the RLW equation. About the FPM, we remark that the linearized algebraical
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Figure 9: (a) Perspective, (b) superior, and (c) final detailed view of the evolution of the Maxwellian pulse
into stable waves for μ = 0.001.
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Figure 11: (a) Perspective, (b) superior, and (c) final detailed view of the development of an undular bore
for d = 1.

system (3.8) is easy to implement, as shape functions are computed only at the beginning of

calculation.

The efficiency of the proposed technique has been tested using different numerical

experiments. The above is remarked by the comparision between exact and numerical

solutions shown in Tables 2, 3, and 4 (see L2, L∞ error norms).
In cases in which precision (L2, L∞) cannot be evaluated, we verify the accuracy of the

simulations by measuring the conservation quantities C1, C2 and C3 at different time steps.

Note that the values of C1 are stables for different time step, as such quantity is defined in

linear terms of u; see (4.3).
We have also presented relevant features of this equation in order to better understand

the behavior of the model.
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Figure 12: (a) Perspective, (b) superior, and (c) final detailed view of the development of an undular bore
for d = 2.

The numerical test problems presented in Section 4 are in agreement with related

literature; see [20, 21, 47].
According to the numerical results, we conclude that the present method can be

considered a useful scheme for solving the type of nonlinear PDE considered here.
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Figure 13: (a) Perspective, (b) superior, and (c) final detailed view of the development of an undular bore
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