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We aim to study the behavior of polymer crystallization during cooling stage in injection molding
more accurately, the multiscale model and multiscale algorithm proposed in our previous work
(Ruan et al., 2012) have been extended to the 3D polymer crystallization case. Our multiscale
model incorporates two distinct length scales: a coarse grid for the heat diffusion and a fine
grid for the crystal morphology evolution (nucleation, growth, and impingement). Our multiscale
algorithm couples the different methods on different length scales, namely, the finite volume
method (FVM) on the coarse grid and the pixel coloring method on the fine grid. By using
these multiscale model and multiscale algorithm, simulations for 3D polymer crystallization are
carried out. Macroscopic variables, for example, temperature, relative crystallinity, as well as the
microscopic structural characters, for example, crystal morphology development, and mean size
of spherulites, are investigated at various cooling conditions. We also show the importance of
coupling heat transfer with crystallization as well as 3D numerical studies.

1. Introduction

Nowadays, semicrystalline polymers play an important role in industry due to their
advantages of enhanced mechanical properties, ease of manufacturing, and so forth [1].
These polymers are typically processed by injection molding processing techniques to form
the products. As one of the most widely used polymer processing techniques, injection
molding mainly consists of filling, packing, and cooling [2]. Among these, cooling stage
is the most significant part not only because it accounts for the largest part of the total
injection molding cycle, but also for the crystal morphology formed during crystallization
which is known as a crucial factor to the physical and mechanical properties of products. The
crystal morphology also known as the microstructure is in turn determined by a number of
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processing conditions during the cooling stage. Thus, it is of great importance to accurately
model the crystallization during cooling stage and predict the final crystal morphology
formed under different processing conditions [1].

Polymer crystallization is a typical multiscale processing: the molecular chains fold
together and form ordered regions called lamellae, which compose larger spheroidal
structures named spherulites [1]. Since the polymer crystallization has a span of about 1010

(from the molecular chain length 10−8 ∼ 10−10 m to the product length 10−2 ∼ 100 m [1]) in
length scale, it is hard to carry out a full-scale simulation to bridge single molecular chain
folding to the final product. Therefore, to model the polymer crystallization, one should first
choose a suitable length scale. Spherulite level (10−3 ∼ 10−5 m [1]) is proper because it is the
single largest feature of polymer microstructures, in addition, it is relatively easier to link the
heat transfer in the macroscopic level (10−2 ∼ 100 m [1]).

To date, a number of numerical investigations have appeared on spherulitic
crystallization in polymer melts during cooling. Charbon and Swaminarayan [3] proposed a
multiscale algorithm for the simulation of polymer crystallization. They incorporated front-
tracking techniques with nucleation, spherulite impingement, and latent heat release as well
as heat diffusion to predict the evolution of microstructures and relative crystallinity during
cooling stage. Huang and Kamal [4] presented a physical model for polymer crystallization.
They coupled a nonconserved envelop vector field of the local macroscopic growth domains
with a vector field of the local mesoscopic lamellae directors. Prabhu et al. [5] proposed a cou-
pling finite-element method and the cell model to the numerical study of polymer crystalliza-
tion. The importance of micro-macro-coupling was analyzed and explained. Recently, Ruan
et al. [6] proposed a coupling FVM and the pixel coloring method to deal with crystallization
in short-fiber-reinforced composites. Crystal morphology evolution was explicitly shown
by the pixel coloring method. However, it should be pointed out that the aforementioned
papers only deal with the 2D case which is a qualitative simplification for the actual problem.
Moreover, works of Charbon and Swaminarayan [3] as well as Huang and Kamal [4] only
deal with the imposed temperature filed, the effect of processing conditions has not been
investigated.

In the numerical study of 3D polymer crystallization, Raabe [7], Raabe and Godara
[8], and Lin et al. [9] were the pioneers. The cellular automaton method was constructed
to deal with the detailed development of crystal morphology. However, their works are
only concentrated on the simple isothermal case. So far, no literature has been found to
deal with the crystal morphology development with the heat transfer in 3D numerical
study.

The objective of this article is to extend the multiscale model and the multiscale
computational method proposed in our pervious work [6] to the 3D numerical study
of polymer crystallization during cooling. Since the injection molding is 3D in realistic
situation, 3D numerical study can predict the temperature distribution and the crystallization
behavior more accurately. Our multiscale model incorporates two distinct length scales
to simulate the crystallization: a coarse grid for the heat diffusion and a fine grid
for capturing the crystal morphology formation. FVM is employed on the coarse grid
to solve the energy equation while the pixel coloring method is applied on the fine
grid to track the crystal morphology development. The present paper is organized as
follows: in Section 2, the multiscale model and the coupled computational method are
introduced; in Section 3, results and discussion are given; finally the conclusions are drawn in
Section 4.
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2. Multiscale Model and Multiscale Algorithm

During the cooling stage, the process of crystallization is coupledwith the heat transfer which
makes the modeling more difficult and complex. On the one hand, it is well known that the
kinetic parameters of nucleation and growth in microscopic scale are strongly dependent
on the temperature or processing conditions. On the other hand, the crystallization is an
exothermic process which releases the heat and affects the thermal field in macroscopic level.

2.1. Thermal Field in the Macroscopic Level

Thermomechanical histories are of great importance in the estimate of the final product
properties. The corresponding simplified energy equation is [6]

ρcp
∂T

∂t
= ∇ · (kp∇T

)
+ ρΔH

∂α

∂t
, (2.1)

where ρ is the material density, cp is the thermal capacity, T is the temperature field, t is the
time, kp is the thermal conductivity, ΔH is the total enthalpy released during crystallization,
and α is the relative crystallinity. The last source term is the contribution of the latent heat
released by the crystallization, which plays the role in macro-micro-coupling.

In the accurate modeling, it is important to consider the thermal properties as a
function of temperature and relative crystallinity. The thermal capacity, thermal conductivity
can be described by the “mixing rule” of the solid state and the liquid state values to get [10]

cp = αcpsc + (1 − α)cpa,

kp = αkpsc + (1 − α)kpa,
(2.2)

where cpsc and cpa are the thermal capacity of semicrystalline phase and amorphous
phase, respectively, kpsc and kpa are the thermal conductivity of semicrystalline phase, and
amorphous phase, respectively. Also cpsc, cpa, kpsc, and kpa are temperature dependent
variables, which can be modeled as a linear temperature dependency functions [10].

2.2. Crystal Morphology Evolution in the Microscopic Level [6]

Crystallization is a mechanism of phase change in semicrystalline polymeric materials [11].
It represents a mix between nucleation, growth, and impingement. When the temperature of
semicrystalline polymeric melt is decreased below its crystallization temperature, “nuclei”
appears randomly in space and time; then the appeared nuclei start to grow to form what
is referred to as “spherulites.” As the time progresses, the spherulites grow until they hit
another crystal and stop growing which is called “impingement.” If all the spherulites are
impinged with other spherulites, the crystallization process is finished.

2.2.1. Nucleation

Polymer nucleation is an important factor which affects the final morphology. Usually,
the nucleation may vary material from material. In the numerical study, one may adopt
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an empirical nucleation relation which is derived from fitting the experiment data. Here, we
use the following relation of nucleation density [12, 13]:

N(T) = N0 exp
[
ϕΔT

]
, (2.3)

where ΔT = T0
m − T is the supercooling temperature with T0

m being the equilibrium melting
temperature, N0 and ϕ are the empirical parameters. This nucleation density relation was
also used in our pervious work [6] for the description of nucleation density in polymer bulk.

2.2.2. Growth and Impingement

Growth rate is another important factor which affects the development of morphology. Here,
we adopt the Hoffman-Lauritzen theory [14] to describe the spherulite growth rate:

G(T) = G0 exp

[

− U∗

Rg(T − T∞)

]

exp
(
− Kg

TΔTf

)
, (2.4)

where G0 and Kg are constants, U∗ is the activation energy of motion, Rg is the gas constant,
T∞ = Tg − 30 with Tg is the glass transition temperature, and f = 2T/(T0

m + T).
With the growth of spherulites, it is inevitable to meet with the “impingement.”

Impingement is happed in spherulites which contact with their neighbors or the walls.
Different spherulites impinge to form grain boundaries. With the help of grain boundaries, it
is possible to calculate the mean size of spherulites.

2.3. Macro-Micro-Algorithm

In our paper, we assume that the temperature field is in the macroscopic level while the
crystal morphology evolution is in the microscopic level (see Figure 1). Therefore, it is
important to build up a macro-micro-algorithm. Here we extend the algorithm of coupling of
FVM [15] and the pixel coloring method [6, 11, 16] proposed in our pervious work [6] to the
3D numerical study.

In our algorithm, the domain is first divided by a coarse grid. FVM with cell vertex
scheme is used on this coarse grid to calculate the temperature. Then, each coarse grid
is subdivided into a number of cubes to form the fine grid. The pixel coloring method is
employed on this fine grid to track the development of crystal morphology. We assume the
temperature on each coarse grid is the samewhich determines the nucleation and growth rate
of spherulites through (2.3) and (2.4). On the other side, with the evolution of crystallization
(nucleation, growth, and impingement) on the fine grid, the relative crystallinity changes
which affects the temperature through (2.1). This realizes the macro-micro-coupling.

On the coarse grid, FVM is used to solve the energy equation. The reason why we use
FVM is because thismethod uses the control volumewhich ismore like the cell in the statistics
for the microscopic information. Figure 2(a) shows a 3D control volume for FVM. Here, P is
the computational point with the neighbor points E, W , N, S, T , B and the interface points
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Figure 1: Schematic representation of different length scale for computation.
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Figure 2: Schematic of a control volume (a) 3D grid (b) 2D grid (profile of 3D grid).

e,w, n, s, t, b. See Figure 2(b)which gives a 2D gird. We use the first-order forward-time and
second-order central-space scheme to discrete the energy equation (2.1) to get

ρcp
Tn+1
P − Tn

P

Δt
= kp

(
Tn
E − 2Tn

P + Tn
W

Δx2
+
Tn
N − 2Tn

P + Tn
S

Δy2
+
Tn
T − 2Tn

P + Tn
B

Δz2

)
+ ρΔH

αn
P − αn−1

P

Δt
.

(2.5)

The choice for such a scheme is because of numerical simplicity. In our algorithm, we
first calculate the temperature then calculate the relative crystallinity, therefore, the relative
crystallinity is obtained with a delay that is why we use ρΔH(αn

P − αn−1
P )/Δt instead of

ρΔH(αn+1
P − αn

P )/Δt for the last term in (2.5). It should be noted that this energy equation
calculation is to obtain temperature which is the input of nucleation and growth of spherulites
on fine grid.

On the fine grid, the pixel-coloring method [6, 11, 16] is implemented to capture
the growth front of a population of spherulites. Here, we will not present the detailed
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Figure 3: Multiscale algorithm.

implementation of the pixel-coloring method and refer our previous work [6] for more
details. The statistical character of the evolution of crystal morphology on fine grid is the
relative crystallinity which is the input of temperature calculation on coarse gird. In our study,
the relative crystallinity can be calculated by

α =
number of cells that have been transformed

total number of cells
. (2.6)

Since the algorithm on fine grid can explicitly show the details of spherulites, here, we define
another important factor, the mean radius of each spherulite, as

R = 3

√
3V
(4π)

(2.7)

with V the volume of the spherulite which can be calculated with the number of cells
occupied by the spherulite and the cell size. It should be mentioned that the mean radius
of spherulite directly affects the stress of the final product through the Hall-Petch relation
[11].

Figure 3 shows the macro-micro-algorithm used for our simulation.
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Figure 4: Computational geometry.

3. Results and Discussion

3.1. Problem Formulation

3D polymer crystallization during cooling stage is studied here. Figure 4 describes the
computational geometry. The length of themold cavity is 8mmwhile its width and height are
4mm respectively. We assume the walls y = 0mm, and z = 0mm experiencing the constant
cooling rate operation and the temperature boundary conditions are set to be T = T0 − c × t,
with T0 the initial temperature and c the cooling rate. The other boundaries are assumed
adiabatic and the temperature boundary conditions are set to be ∂T/∂n = 0 with n the
outward unit normal vector. It should be mentioned that this geometry it related to the think-
wall parts in injection molding which is because the ratio of width/height of the cross-section
is less than 10 [2].

The material we considered here is iPP and the parameters used in the simulation
are [6, 12, 13]: N0 = 17.4 × 106/m3, ϕ = 0.155, G0 = 2.1 × 1010 μm/s, U∗/Rg = 755K,
Kg = 534858K2, T0

m = 467K, Tg = 266K, ρ = 900 kg/m3, cp = 2.14 × 103 J/kg/K, kp =
0.193W/m/K, ΔH = 107 × 103 J/kg. Unless otherwise stated, the other parameters are set
to be T0 = 470K, c = 2K/min. Due to the lack of material parameters, here we neglect the
thermal difference between the solid state and the liquid state.

We test three meshes in this problem computation, namely, Mesh1: 8 × 4 × 4 for coarse
grid and 100×100×100 for fine grid; Mesh2: 12×6×6 for coarse grid and 100×100×100 for fine
grid; Mesh3: 8 × 4 × 4 for coarse grid and 150 × 150 × 150 for fine grid. Results of temperature
and relative crystallinity at the intersection line of x = 4mm plane and z = 4mm plane (line:
AB, see Figure 4) are compared in Figure 5. As we can see that the result obtained on Mesh1
agrees with the results obtained on Mesh2 and Mesh3 very well. As we know, the refinement
of either coarse grid (Mesh2) or fine grid (Mesh3) can lead to more accurate of the final
results, it brings in a large of storage which affects the efficiency and challenges the computer.
When we balance the accuracy with the efficiency, we find that Mesh1 is proper. Therefore,
in our following study, Mesh1 is used and its coarse grid size is 1mm × 1mm × 1mm and
the fine grid size is 10μm × 10μm × 10μm. Here, we will not explain the phenomenon of
temperature and relative crystallinity obtained in Figure 5 and describe it in the next section.
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Figure 5: Evolution of temperature and relative crystallinity at the intersection line of x = 4mm plane and
z = 4mm plane (line: AB).

3.2. Importance of Macro-Micro-Coupling

3.2.1. Temperature and Relative Crystallinity Evolution in Macroscopic Level

Evolution of temperature and relative crystallinity during cooling at the plane of x = 4mm
are shown in Figure 6(a). As we can see in the figure of temperature evolution, a quasi-
isothermal plateau is formed at the positions near the adiabatic boundary (y = 4mm,
z = 4mm). This plateau is caused by the latent heat released by crystallization. We also
reported this plateau in our pervious work [6]which deals with the 2D short-fiber-reinforced
system. The figure of relative crystallinity evolution tells us that the polymer in the skin layer
crystallizes much earlier and faster than that in the core layer. This can be explained that the
supercooling temperature in the skin layer is much higher than that in the core layer due to
the temperature difference which is the fundamental reason for the crystallization.

Latent heat released by the crystallization is the bridge in macro-micro-coupling.
To determine the importance of the contribution of the latent heat, the results of our
simulation are compared with the results of model which ignores the latent heat. Figure
6(b) shows the results of model without consider the latent heat. We can see that there is
a large difference between these two models especially at the positions near the adiabatic
boundaries. Moreover, the results of model without considering latent heat do not develop
the quasi-isothermal plateau at the positions near the adiabatic boundary. This is the error
caused by ignoring the latent heat. Since the nucleation and growth rate of the spherulites
is completely determined by the temperature, therefore, to predict crystal morphology more
accurately, the model of temperature is necessary to include the influences of the latent heat.

3.2.2. Crystal Morphology in Microscopic Level

Evolution of crystal morphology at the control volume of x = 4mm is shown in Figure 7. We
use the fronts of spherulitics in surface (or slices) to show the crystal morphology evolution.
Here, the white region is the polymer melt and the colored region is the spherulitics. Different
spherulitics are distinguished by different colors. Figure 7 clearly shows that crystals first
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Figure 6: Evolution of temperature and relative crystallinity (a) considering the latent heat (b) without
considering the latent heat.
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Figure 7: Evolution of crystal morphology at the control volume of x = 4mm (a) t = 2360 s, (b) t = 2400 s,
(c) t = 2600 s.
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(a) (b)

Figure 8: Crystal morphology at different positions (a) skin (b) core.

appear in the skin layer, with the time evolutes, they gradually appear to the core layer. This
is consistent with the change tendency of relative crystallinity (see Figure 6(a)) which is a
macrostatistical character of crystal morphology evolution in microscopic level. The results
presented here show qualitatively agreement with our pervious work [6] for the 2D short
fiber reinforced polymer solidification.

Final morphology in the skin layer and in the core layer is compared in Figure 8. We
choose skin layer as a representative control volume of point with the coordinate (4mm,
1mm, 1mm)while core layer as a representative control volume of point with the coordinate
(4mm, 3mm, 3mm) which is illustrated in Figure 4. It is not so obvious for us to distinguish
the skin morphology from the core morphology. However, the size of spherulitics in the core
layer is somewhat bigger than that in the skin layer.

Mean radius of each spherulite and the distribution of spherulite size at different
positions are shown in Figure 9. We should mention that we do not consider the “phantom
nuclei” in the comparison. Figure 9 shows that spherulite size is relative smaller in the
position which is close to skin layer. Since the spherulites size directly affects the mechanical
properties of the products according to Hall-Petch relation [11], it can be concluded that
mechanical properties vary from skin to core.

3.3. Importance of 3D Simulation

In order to highlight the importance of 3D simulation, we also give the comparison of the
results obtained in 2D case with the 3D case. Since the problem we studied is a quasi-three
dimensional problem, it can be also reduced as a two-dimensional one. Here, we consider the
profile of x = 4mm (see Figure 4) as our 2D studied cavity with the boundaries y = 0mm and
z = 0mm experiencing the cooling rate operation and the other boundaries been assumed to
be adiabatic. We will mention that the only difference between 3D case and 2D case is that
the heat transfer in x direction is considered in 3D case while its effect is ignored in 2D case.
In our study, the nucleation density in 2D and 3D is related with the following statistical
formulation [3]: N2D = 1.458 × (N3D)

2/3 and the growth rate of spherulites in 2D and 3D are
assumed to be the same.
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Figure 9: Spherulite size and distribution of spherulite size at different positions.

Figure 10 shows the evolution of temperature and relative crystallinity which are
obtained in 2D simulation. Through comparing with Figure 6(a), it is observed that the
temperature away from the cooling boundaries is higher in 2D case than 3D case at
the same time; particularly, the maximum temperature divergence is about 1K in the
core layer. Moreover, the internal relative crystallinity is also higher in 2D case than 3D
case; in particular, the maximum relative crystallinity divergence is about 0.15 in the core
layer.

Evolution of crystal morphology at the whole computational geometry in 2D case is
shown in Figure 11. Compared with Figure 7, we can find that the tendency of microstructure
formation in 2D case is the same as 3D case. To emphasize the difference between 2D
case and 3D case, we also investigate the spherulite size and its distribution at different
positions of the cavity. For the sake of simplicity, we also choose the “skin” and “core”
control volume as our comparison cells as illustrated in Figure 4. Figure 12 shows the
spherulite size and its distribution as obtained in 2D simulation. By the comparison with
Figure 9, we find that the trends of spherulite size distribution in skin and core are identical
in 2D case and 3D case, however, in 2D case, the distribution of spherulite size is more
concentrated.

The comparison in this section tells us that the macroscopic and microscopic values
obtained in 2D simulation are quantitatively different from that in 3D simulation. Therefore,
if the models, algorithms, and computational conditions are allowed, we should consider the
3D simulation in order to obtain the more precise results.

3.4. Effects of Thermal Condition on the Crystallization

Effects of cooling rate and initial temperature are also investigated in this 3D polymer
crystallization case. Without loss of generality, we here choose the “core” control volume
as our cell for showing the results.
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Figure 10: Evolution of temperature and relative crystallinity (2D results).
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Figure 11: Evolution of crystal morphology in 2D case (a) t = 2360 s (b) t = 2400 s (c) t = 2600 s.
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Figure 13: Evolution of relative crystallinity and the distribution of spherulite size in core layer for different
cooling rates.

3.4.1. Effects of Cooling Rate

We change the boundary conditions by varying the cooling rate as 1K/min, 2K/min,
5K/min in order to study the effects of cooling rate.

Figure 13 shows the relative crystallinity evolution and the distribution of spherulite
size in the core layer for different cooling rate. According to Figure 13, the higher cooling
rate causes an acceleration of the crystallization and a reduction of spherulite size. We will
mention that the effects of cooling rate are similar as our pervious work [6] where the 2D
short-fiber-reinforced system are studied. In addition, this tendency is also reported in the
experimental work by Zheng et al. [17].

Thus, we will conclude that if the designer wants to obtain the smaller size of the
spherulites, he shall impose a relatively higher cooling rate boundary condition.

3.4.2. Effects of Initial Temperature

We varying the initial temperature as 470K, 480K, 490K in order to study the effects of initial
temperature.

Figure 14 shows the relative crystallinity evolution and the distribution of spherulite
size in the core layer with different initial temperature. It is observed that the higher
initial temperature leads to a deceleration of crystallization and minor effect on the crystal
morphology. This is also in agreement with our pervious work [6] in 2D case.

Thus, if the designer wants to improve efficiency, he should cool down the melt with
a relative lower initial temperature.
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Figure 14: Evolution of relative crystallinity and the distribution of spherulite size in core layer with
different initial temperatures.

4. Conclusion

We have extended our previous proposed multiscale model and multiscale algorithm to the
simulation of 3D polymer crystallization during cooling stage. With the multiscale model and
multiscale algorithm, we obtained the temperature distributions and relative crystallinity at
various locations in the mold cavity, meanwhile, we also predicted the crystal morphology
development and its size as well as its distributions. We have also shown the importance
of coupling between the heat transfer with crystallization as well as 3D numerical studies.
Results presented in this paper shows that latent heat released by crystallization plays
a very important role in macro-micro-coupling which should be considered in order to
predict the more accurate crystal morphology; 2D simulation is qualitatively agreement
with the 3D simulation (not only for the variables predicted in macroscopic level and
microscopic level, but also for the effects of cooling rate and initial temperature), however,
in the view of quantitative analysis, results obtained for these two cases have some
differences. Therefore, if the computational conditions are allowed, we recommend the 3D
simulation.

Future work will concentrate on 3D crystallization simulation during cooling coupled
with heat transfer in reinforced system as well as flow-induced crystallization (FIC)
simulation in injection molding.
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