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A prey-predator model with gestation delay, stage structure for predator, and selective harvesting
effort on mature predator is proposed, where taxation is considered as a control instrument to
protect the population resource in prey-predator biosystem from overexploitation. It shows that
interior equilibrium is locally asymptotically stable when the gestation delay is zero, and there
is no periodic orbit within the interior of the first quadrant of state space around the interior
equilibrium. An optimal harvesting policy can be obtained by virtue of Pontryagin’s Maximum
Principle without considering gestation delay; on the other hand, the interior equilibrium of model
system loses as gestation delay increases through critical certain threshold, a phenomenon of Hopf
bifurcation occurs, and a stable limit cycle corresponding to the periodic solution of model system
is also observed. Finally, numerical simulations are carried out to show consistencywith theoretical
analysis.

1. Introduction

Recently, the dynamics of a class of stage-structured prey-predator models with gestation
delay have been studied by several authors [1–9]. Especially, there is a well-developed theory
of stage structured models which incorporates time delay into maturity of population [1].
The prey-predator models with stage structure and gestation delay play an important role
in the modelling of multispecies population dynamics. Generally, individuals in each stage
are identical in biological characteristics, and the reproduction of mature predator population
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after predating the prey is not instantaneous but mediates by some discrete time lag required
for gestation of mature predator. Xu and Ma [9] proposed the following model,

ẋ(t) = x(t)
(
r − αx(t) − a1y2(t)

)
,

ẏ1(t) = a2x(t − τ)y2(t − τ) − r1y1(t) − dy1(t),

ẏ2(t) = dy1(t) − r2y2(t) − βy2
2(t),

(1.1)

where x(t) represents the density of prey population at time t, y1(t) and y2(t) represent the
density of immature and mature predator population at time t, respectively; r is the intrinsic
growth rate of prey population, r1 is death rate of immature predator and r2 is the death rate
of mature predator, α and β represents the intraspecific competition rate of prey and mature
predator population, respectively; a2/a1 is the rate of converting prey population into new
immature predator population. The constant τ ≥ 0 denotes the gestation delay of mature
predator, and τ ≥ 0 is based on the assumption that the reproduction of predator population
after predating the prey population is not instantaneous but mediates by some discrete time
lag required for gestation of mature predator population. d > 0 denotes the proportional
transforming rate from immature predator population to mature predator population. All
the parameters mentioned above are positive constants.

It is well known that exploitation of several biological resources has been increased
by the growing human needs for more food and energy, which attracts a global concern to
protect the limited biological resources. Consequently, regulation of exploitation of biological
resources has become a problem of major concern in view of dwindling resource stocks and
deteriorating environment. It should be noted that some techniques and issues associated
with bioeconomic exploitation have been discussed in details by Clark [10]. Due to its
economic flexibility, taxation is usually considered as possible governing instruments in
regulation for harvesting to keep the damage to the ecosystem minimal.

Recently, there has been considerable interest in the modeling of harvesting of
biological resources. In these models, the harvesting effort is considered to be a dynamic
variable, several kinds of harvesting policies are utilized to study the dynamical behavior of
the model system. Furthermore, optimal harvesting policies with taxation are also discussed.
Ganguly and Chaudhuri [11], Krishna et al. [12], and Dubey et al. [13, 14] investigated
the optimal harvesting of a class of models of a single fishery species with taxation as
a control. Chaudhuri et al. [15–17], Pradhan and Chaudhuri [18], and Kar et al. [19–25]
studied the optimal taxation policies for harvesting of the prey-predator system. However,
from the above literature survey, it may be pointed out that no attempt has been made to
study the optimal taxation policy of a stage-structured prey-predator system. Furthermore,
taxation instrument is discussed to control overharvesting from prey-predator system with
gestation delay in [26]. However, stage structure of predator population is not considered,
and the periodic orbit within the interior of the first quadrant of state space around interior
equilibrium is also not investigated in [26].

The stability analysis of interior equilibrium is performed in the third section. It
reveals that when gestation delay is zero, the interior equilibrium is locally asymptotically
stable. It is also found that equilibrium switch occurs due to variation of gestation delay.
Furthermore, an optimal harvesting policy for mature predator is also discussed in the
absence of gestation delay. We aim to find an optimal harvesting policy which guarantees
an ever-lasting exploitation of the biological resource and maximizes the benefits resulting
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from the harvesting. Numerical simulations are provided to support the analytical findings
in this paper. Finally, this paper ends with a conclusion.

2. Model Formulation

Based on the above analysis, the work done by Xu andMa in [9] is extended by incorporating
harvest effort on mature predator, and taxation is chosen to control the conservation of
biological resource. In this paper, a prey-predator model with gestation delay and stage
structure for predator is established. It is assumed that mature predator is subject to
a dynamic harvesting. To conserve the population in the prey-predator ecosystem, the
regulatory agency imposes a taxation σ > 0 per unit biomass of mature predator (σ < 0
denotes the subsidies given to the harvesting effort). Based on the above aspects, the model
can be governed by the following differential equations:

ẋ(t) = x(t)
(
r − αx(t) − a1y2(t)

)
,

ẏ1(t) = a2x(t − τ)y2(t − τ) − r1y1(t) − dy1(t),

ẏ2(t) = dy1(t) − r2y2(t) − βy2
2(t) − qE(t)y2(t),

Ė(t) = α0E(t)
[(
p − σ)qy2(t) − c

]
,

(2.1)

where initial conditions are as follows:

x(t) = ψ1(t) > 0, y2(t) = ψ2(t) > 0, t ∈ [−τ, 0),
y1(0) = ψ3(0) > 0, E(0) = ψ4(0) > 0.

(2.2)

The harvesting term E(t) is assumed to be proportional to both stock level and effort,
which follows the catch per unit effort hypothesis [10]. The constant q is the catchability
coefficient, p is the fixed price per unit of predator species, c is the fixed cost of harvesting
per unit of effort, and α0 is called stiffness parameter measuring the strength of reaction of
harvesting effort. The parameters mentioned above are all positive constants.

3. Qualitative Analysis of Model System

From the view of ecological management, we only concentrate on the interior equilibrium
of the model system in this paper, since the biological meaning of the interior equilibrium
implies that juvenile preys, mature preys, predators, and harvesting effort on predators all
exist, which are relevant to our study.

It can be obtained that the only interior equilibrium of the model system (2.1) is
P ∗(x∗, y∗

1, y
∗
2, E

∗), where x∗ = (r − a1y
∗
2)/α, y

∗
1 = a2y

∗
2(r − a1y

∗
2)/α(r1 + d), E∗ = (a2d(r −

a1y
∗
2) − α(r2 + βy∗

2)(r1 + d))/αq(r1 + d), and y∗
2 = c/(p − σ)q. It is easy to show that interior

equilibrium exists, provided the following conditions are satisfied:

0 < σ < min

{

p − ca1
rq

, p − c
[
a1a2d + αβ(r1 + d)

]

q[a2dr − αr2(r1 + d)]

}

, (3.1)
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which provides the range of taxation for the existence of interior equilibrium. This range
of taxation may be utilized when the regulatory agency establishes relevant agencies for
harvesting.

The model system (2.1) can be interpreted as the matrix form:

Ẋ(t) = H(X(t)), (3.2)

where X(t) = (x(t), y1(t), y2(t), E(t))
T ∈ R

4, andH(X(t)) is given as follows,

H(X(t)) =

⎛

⎜
⎜
⎝

H1(X(t))
H2(X(t))
H3(X(t))
H4(X(t))

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

x(t)
(
r − αx(t) − a1y2(t)

)

a2x(t − τ)y2(t − τ) − r1y1(t) − dy1(t)
dy1(t) − r2y2(t) − βy2

2(t) − qE(t)y2(t)
α0E(t)

[(
p − σ)qy2(t) − c

]

⎞

⎟
⎟
⎠. (3.3)

Let R
4
+ = [0,∞)4 be the nonnegative octant in R

4, then G : R
4+1
+ → R

4 is locally Lipschitz and
satisfies the conditionHi(X(t))|X∈R4 ≥ 0.

Due to lemma in [27] and Theorem A.4 in [28], any solution of the model system (2.1)
with positive initial conditions exist uniquely, and each component of the solution remains
within the interval [0, b) for some b > 0. Furthermore, if b < ∞, then lim sup[x(t) + y1(t) +
y2(t)+E(t)] = ∞. Hence, this completes the positivity for the solutions of model system (2.1).

Nowwe consider boundedness of positive solutions (x(t), y1(t), y2(t), E(t)), and firstly
choose the functionW1(t) = x(t − τ) + y1(t).

For t > T1 + τ, a1 − a2 > 0 (T1 is some fixed positive time), by calculating the time
derivative ofW1(t) along the solutions of model system (2.1), we get

Ẇ1(t) = rx(t − τ) − αx2(t − τ) − (a1 − a2)x(t − τ)y2(t − τ) − (r1 + d)y1(t). (3.4)

By virtue of positiveness of solution x(t − τ), it is easy to show that

rx(t − τ) − αx2(t − τ) ≤ r2

4α
. (3.5)

Based on the positiveness of solution x(t − τ), y2(t − τ) and assumption a1 − a2 > 0, it
is easy to show that

(a1 − a2)x(t − τ)y2(t − τ) > 0. (3.6)

Hence, it is easy to show that

Ẇ1(t) <
r2

4α
− (r1 + d)y1(t) <

r2

4α
− (r1 + d)

(
x(t − τ) + y1(t)

)
, (3.7)

which follows that there exists a positive quantityM1 such that 0 < W1(t) < M1 for all large
t > T1 + τ . It proves the boundedness of positive solution x(t), y1(t).
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Let W2(t) = y2(t), by calculating the time derivative of W2(t) along the solutions of
model system (2.1), we have

Ẇ2(t) ≤ dy1(t) − r2y2(t). (3.8)

By virtue of the positivity of the solutions of model system (2.1) and the boundedness
of y1(t) mentioned above, it follows that there exists a positive quantity M2 such that
Ẇ2(t) < M2 − r2y2(t) for all large time t > T2 (T2 is some fixed positive time). From the
above differential inequality it follows that, there exists a positive quantity M3 such that
0 < W2(t) < M3 for all large t > T2, which proves the boundedness of positive solution y2(t).

LetW3(t) = y2(t)+E(t), by calculating the time derivative ofW3(t) along the solutions
of model system (2.1), we have

Ẇ3(t) = dy1(t) − r2y2(t) − βy2
2(t) −

(
1 − α0

(
p − σ))qE(t)y2(t) − cα0E(t). (3.9)

By virtue of positiveness and boundedness of solution y1(t) and y2(t), it follows that
there exists a positive quantity M4 such that dy1(t) − r2y2(t) − βy2

2(t) ≤ M4. Furthermore,
under the following assumption:

1 − α0
(
p − σ) > 0 (3.10)

it is easy to show that Ẇ3(t) ≤ M4 − cα0E(t) for for all large t > T3 (T3 is some fixed positive
time), which derives that there exists a positive quantityM5 such that 0 < W3(t) < M5 for all
large t > T3, which proves boundedness of positive solution E(t).

Remark 3.1. Since the components (x(t), y1(t), y2(t)) of solution of model system (2.1) repre-
sent the population in the prey-predator system, the positivity implies that the population
survives, and the boundedness reveals a natural restriction to growth as a consequence of
limited resources. Furthermore, with the purpose of maintaining the sustainable develop-
ment of prey-predator system, the harvesting cannot increase without any restriction. As
analyzed above, the assumption (3.10) provides the range of taxation for the boundedness
of harvesting effort. It is an inspiration for people to regulate the harvesting effort by means
of economic instrument.

The Jacobian of model system (2.1) evaluated at the only interior equilibrium P ∗ leads
to the following characteristic equations:

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ + αx∗ 0 a1x
∗ 0

−a2y∗
2e

−λτ λ + (r1 + d) −a2x∗e−λτ 0

0 −d λ +
(
dy∗

1

y∗
2

+ βy∗
2

)
qy∗

2

0 0 −α0E∗(p − σ)q λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (3.11)
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M(λ) +N(λ)e−λτ = 0, (3.12)

where

M(λ) = λ4 +m1λ
3 +m2λ

2 +m3λ +m4,

N(λ) = n2λ
2 + n3λ,

m1 = r1 + d +
dy∗

1

y∗
2

+ βy∗
2 + αx

∗,

m2 = (r1 + d)
(
dy∗

1

y∗
2

+ βy∗
2

)
+ αx∗(r1 + d)

(
dy∗

1

y∗
2

+ βy∗
2

)
+ cα0qE∗,

m3 = αx∗(r1 + d)
(
dy∗

1

y∗
2

+ βy∗
2

)
+ cα0qE∗(r1 + d + αx∗),

m4 = cα0qE
∗αx∗(r1 + d),

n2 = − a2dx∗,

n3 = a2dx
∗(a1y∗

2 − αx∗).

(3.13)

3.1. Case I: Gestation Delay τ = 0

In absence of gestation delay, stability of interior equilibrium P ∗ is investigated, and an
optimal harvesting policy with taxation control is also investigated.

3.1.1. Local Stability Analysis

In the absence of gestation delay (τ = 0), model system (2.1) is written as follows:

ẋ(t) = x(t)
(
r − αx(t) − a1y2(t)

)
,

ẏ1(t) = a2x(t)y2(t) − r1y1(t) − dy1(t),

ẏ2(t) = dy1(t) − r2y2(t) − βy2
2(t) − qE(t)y2(t),

Ė(t) = α0E(t)
[(
p − σ)qy2(t) − c

]
,

(3.14)

and (3.12) can be written as follows:

λ4 +m1λ
3 + (m2 + n2)λ2 + (m3 + n3)λ +m4 = 0. (3.15)
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It can be shown that

m1 > 0, m4 > 0,

m1(m2 + n2) − (m3 + n3) = αx∗
[

(r1 + d)
2 +

(
dy∗

1

y∗
2

+ βy∗
2

)2

+ (r1 + d)
(
dy∗

1

y∗
2

+ βy∗
2

)]

+ (αx∗)2
(
r1 + d +

dy∗
1

y∗
2

+ βy∗
2

)
+ cα0qE∗

(
dy∗

1

y∗
2

+ βy∗
2

)

+ αβ(r1 + d)y∗2
2

(
r1 + d +

dy∗
1

y∗
2

+ βy∗
2

)
> 0,

(m1 + n1)[(m2 + n2)(m3 + n3) − (m3 + n3)] −m2
1m4

= αx∗(r1 + d)
(
dy∗

1

y∗
2

+ βy∗
2

)

×
[(

r1 + d +
dy∗

1

y∗
2

+ βy∗
2

)
(r1 + d)

(
dy∗

1

y∗
2

+ βy∗
2 + αx

∗
(
r1 + d +

dy∗
1

y∗
2

+ βy∗
2 + αx

∗
))

+ a2dx
∗
(
r1 + d +

dy∗
1

y∗
2

+ βy∗
2 + αx

∗ + a1y∗
2

)]
+ cα0qE∗(r1 + d + αx∗)

×
[(

dy∗
1

y∗
2

+ βy∗
2

)(
(r1 + d)

(
r1 + d +

dy∗
1

y∗
2

+ βy∗
2

)
+ cα0qE∗

)

+ a2dx
∗r1

(
+d +

dy∗
1

y∗
2

+ βy∗
2 + αx

∗ + a1y∗
2

)]
+ αx∗

(
dy∗

1

y∗
2

+ βy∗
2

)2

+ a2dx∗(a1y∗
2 − αx∗)

[(
dy∗

1

y∗
2

+ βy∗
2

)(
(r1 + d)

(
r1 + d +

dy∗
1

y∗
2

+ βy∗
2

)
+ cα0qE∗

)

+ αx∗
(
r1 + d +

dy∗
1

y∗
2

+ βy∗
2 + αx

∗
)(

r1 + d +
dy∗

1

y∗
2

+ βy∗
2

)]

+ (a2dx∗)2
(
r1 + d +

dy∗
1

y∗
2

+ βy∗
2 + αx

∗
)
> 0.

(3.16)

Based on the above analysis, it can be concluded that the roots of (3.15) have negative
real parts by using the Routh-Hurwitz criteria [10]. Consequently, the interior equilibrium P ∗

is locally asymptotically stable in absence of gestation delay.
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Furthermore, let J∗ represent the variational matrix of the model system (3.14) at P ∗,
then

∫T

0
tr
(
J
(
x∗, y∗

1, y
∗
2, E

∗))dt =
∫T

0
tr

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−αx∗ 0 −a1x∗ 0

a2y
∗
2 −(r1 + d) a2x

∗ 0

0 d −
(
dy∗

1

y∗
2

+ βy∗
2

)
−qy∗

2

0 0 α0E
∗(p − σ)q 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

dt

= −
∫T

0

(
αx∗ + r1 + d +

dy∗
1

y∗
2

+ βy∗
2

)
dt < 0.

(3.17)

It can be easily verified that −(αx∗ + r1 +d+ (dy∗
1/y

∗
2) +βy

∗
2) < 0 based on the positivity

of the solutions of model system.
Hence,

∫T
0 tr(J(x∗, y∗

1, y
∗
2, E

∗))dt < 0, which eliminates the existence of Hopf bifurcating
periodic solution in the vicinity of P ∗.

Subsequently, we will show the nonexistence of periodic orbit encircling P ∗. Let
h(x(t), y1(t), y2(t), E(t)) = 1/x(t)y1(t)y2(t)E(t). According to the positivity of solutions of
the model system (3.14), it is obvious that h(x(t), y1(t), y2(t), E(t)) > 0.

Define Δ(x(t), y1(t), y2(t), E(t)) = (∂/∂x)(H1h) + (∂/∂y1)(H2h) + (∂/∂y2)(H3h) +
(∂/∂E)(H4h), whereHi, i = 1, 2, 3, 4 have been defined before, then we have

Δ
(
x(t), y1(t), y2(t), E(t)

)
= − α

y1y2E
− a2

y2
1E

− d

xy2
2E

− β

xy1E
< 0 (3.18)

for x(t), y1(t), y2(t), E(t) > 0, since all other parameters are strictly positive.
Therefore, there will be no periodic orbit within the interior of the first quadrant of

state space around P ∗ based on Benedixon-Dulac criterion [29].

3.1.2. Optimal Harvesting Policy

With the purpose of planning harvesting and keeping sustainable development of ecosystem,
we design an optimal harvesting policy to maximize the total discounted net revenue
from the harvesting using taxation as a control instrument. The path traced out by
(x(t), y1(t), y2(t), E(t))with optimal taxation σ(t) is also investigated.

Net economic revenue to the society π(x(t), y1(t), y2(t), E(t), σ, t) = Net economic rev-
enue of harvesting + Net economic revenue to the regulatory agency = (p − σ(t))qy2(t)E(t) −
cE(t) + σqy2(t)E(t) = (pqy2(t) − c)E(t).

Our objective is to maximize the following optimization problem:

max
∫∞

0
e−δt

(
pqy2(t) − c

)
dt, (3.19)

where δ is the instantaneous annual rate of discount, and the optimization problem is subject
to the model system (3.14).
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By using the Pontryagin’s Maximum Principle [10], the associated Hamiltonian func-
tion is constructed by

H
(
x(t), y1(t), y2(t), E(t), σ(t), t

)
= e−δt

(
pqy2(t) − c

)
E(t) + λ1(t)

[
x(t)

(
r − αx(t) − a1y2(t)

)]

+ λ2(t)
[
a2x(t)y2(t) − r1y1(t) − dy1(t)

]

+ λ3(t)
[
dy1(t) − r2y2(t) − βy2

2(t) − qE(t)y2(t)
]

+ λ4(t)α0E(t)
[(
p − σ(t))qy2(t) − c

]
,

(3.20)

where λ1, λ2, λ3, λ4 are adjoint variables. σ is the control variable satisfying the constraints
σmin ≤ σ ≤ σmax. σmax and σmin represent a feasible upper and lower limit of the taxation
for harvesting effort, respectively. Specially, σmin < 0 implies that subsidies have the effect
of increasing the rate of expansion of the harvesting. According to [29], the condition for a
singular control to be optimal can be obtained, that is, ∂H/∂σ = 0, from which we get

λ4(t) = 0. (3.21)

For adjoint variables λi(t), i = 1, 2, 3, 4, we have

dλ1
dt

= −∂H
∂x

,
dλ2
dt

= −∂H
∂y1

,
dλ3
dt

= −∂H
∂y2

,
dλ4
dt

= −∂H
∂E

, (3.22)

dλ1
dt

=
(
2αx + a1y2 − r

)
λ1 − a2y2λ2, (3.23)

dλ2
dt

= (r1 + d)λ2 − dλ3, (3.24)

dλ3
dt

= a1xλ1 − a2xλ2 +
(
2βy2 + r2 + qE

)
λ3 − pqEe−δt, (3.25)

dλ4
dt

= qy2λ3 − e−δt
(
pqy2 − c

)
. (3.26)

Based on (3.21), it follows from (3.26) that

λ3(t) = e−δt
(
p − c

qy2

)
. (3.27)

In order to obtain an optimal equilibrium solution, by considering the interior equi-
librium P ∗ and solving (3.25),

λ1(t) =
a2λ2 −A1e

−δt

a1
, (3.28)
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where A1 = (p(2βy∗
2 + r2) − (p − (c/qy∗

2))(2βy
∗
2 + r2 + qE

∗ + δ))/x∗. By virtue of (3.28), (3.23)
can be rewritten as follows:

dλ2
dt

= (2αx∗ − r)λ2 −A2e
−δt, (3.29)

where A2 = (2αx∗ + a1y∗
2 − r + δ)A1/a2.

It is easy to obtain the solution of the above linear differential equation

λ2(t) = A3e
−δt, (3.30)

where A3 = (2αx∗ + a1y∗
2 − r + δ)A1/a2(δx∗ + 2αx∗ + r), based on (3.30), by solving (3.24) it

follows that

λ3(t) =
r1 + d + δ

d
A3e

−δt. (3.31)

Substituting (3.31) into (3.27), we have

p − c

qy∗
2
=
(
1 +

r1 + δ
d

)
A3, (3.32)

which provides an equation to the singular path and gives the optimal equilibrium levels of
population x∗ = xδ, y

∗
1 = y1δ, y

∗
2 = y2δ. Then the optimal equilibrium levels of harvesting

effort and taxation can be obtained as follows:

Eδ =
a2d

(
r − a1y2δ

) − α(r2 + βy2δ
)
(r1 + d)

αq(r1 + d)
,

σδ = p − c

qy2δ
.

(3.33)

Remark 3.2. According to [30], λi(t)eδt (i = 1, 2, 3, 4) represent unusual shadow prices along
the singular path. From (3.30), (3.32), and (3.36), it may be concluded that these shadow
prices remain constant over time interval in an optimum equilibrium when they strictly
satisfy the transversality condition at ∞ [31]. Furthermore, they remain bounded as t → ∞.

Considering the interior equilibrium, (3.27) can be written as

λ3(t)qy∗
2 = e

−δt(pqy∗
2 − c

)
= e−δt

∂π

∂E
, (3.34)

which implies that the user’s total cost of harvesting per unit effort is equal to the discounted
values of the future price at the steady state effort level.



Mathematical Problems in Engineering 11

3.2. Case II: Gestation Delay τ > 0

In this section, a stability switch in model system (2.1) due to gestation delay is investigated.
Furthermore, a phenomenon of Hopf bifurcation occurs, and a stable limit cycle correspond-
ing to the periodic solution of model system (2.1) is observed.

3.2.1. Local Stability Analysis

Let λ = iω be a root of (3.12), where ω is positive. Substitute λ = iω into (3.12), and separate
the real and imaginary parts, then two transcendental equations can be obtained as follows:

ω4 −m2ω
2 +m4 = −n3ω sin(ωτ) + n2ω2 cos(ωτ), (3.35)

m1ω
3 −m3ω = n3ω cos(ωτ) + n2ω2 sin(ωτ). (3.36)

By squaring and adding these two equations, it can be obtained that,

ω8 + B1ω
6 + B2ω

4 + B3ω
2 + B4 = 0, (3.37)

where B1 = m2
1 − 2m2, B2 = m2

2 + 2m4 − 2m1m3 − n22, B3 = m2
3 − 2m2m4 − n23, B4 = m2

4 andmi, nj
(i = 1, 2, 3, 4; j = 2, 3) have been defined in (3.12).

According to the values of Bi (i = 1, 2, 3, 4) and the Routh-Hurwitz criteria [10], a
simple assumption of the existence of a positive root for (3.37) is B3 < 0. If B3 < 0 holds, then
(3.37) has a positive root ω0, and (3.12) has a pair of purely imaginary roots of the form ±iω0.
Consequently, it can be obtained by eliminating sin(ωτ) from (3.35) and (3.36) that

cos(ωτ) =
ω4 +m1ω

3 −m2ω
2 −m3ω +m4

n2ω2 + n3ω
, (3.38)

where the τk corresponding to ω0 is as follows,

τk =
1
ω0

arccos

[
ω4 +m1ω

3 −m2ω
2 −m3ω +m4

n2ω2 + n3ω

]

+
2kπ
ω0

, k = 0, 1, 2, . . . . (3.39)

By virtue of Butler’s lemma [32], it can be concluded that the interior equilibrium remains
stable for τ < τ0, as k = 0.

3.2.2. Hopf Bifurcation

In this section, the condition for Hopf bifurcation in [29] is utilized to investigate whether
there is a phenomenon of Hopf bifurcation as τ increases through τ0. As stated above, λ =
iω0 represents a purely imaginary root of (3.12), and it follows from the above analysis that
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|M(λ)| = |N(λ)|, which determines a set of possible values of ω0. We will determine the
direction of motion of λ = iω0 as τ is varied, namely,

Θ = sign
[
d(Reλ)

dτ

]

λ=iω0

= sign

[

Re
(
dλ
dτ

)−1]

λ=iω0

. (3.40)

Theorem 3.3. Model system (2.1) undergoes Hopf bifurcation at the interior equilibrium P ∗ when
tau = τk, k = 0, 1, 2, . . .. Furthermore, an attracting invariant closed curve bifurcates from interior
equilibrium P ∗ when τ > τ0 and ‖τ − τ0‖ 	 1.

Proof. Differentiating (3.12) with respect to τ , we get

(
dλ
dτ

)−1
=

4λ3 + 3m1λ
2 + 2m2λ +m3

λ4 +m1λ3 +m2λ2 +m3λ +m4
+

2n2λ + n3
n2λ2 + n3λ

− τ

λ
,

Θ = sign

[

Re
(
dλ
dτ

)−1]

λ=iω0

= sign

[

Re
4λ3 + 3m1λ

2 + 2m2λ +m3

λ4 +m1λ3 +m2λ2 +m3λ +m4
+

2n2λ + n3
n2λ2 + n3λ

− τ

λ

]

λ=iω0

=
1
ω2

0

sign

⎡

⎣
m1ω

6
0 + (m1m2 − 2m3)ω4

0 + (m2m3 − 3m1m4)ω2
0 +m3m4

(
ω4

0 −m2ω
2
0 +m4

)2 +
(
m3ω0 −m1ω

3
0

)2

⎤

⎦.

(3.41)

According to the values of m1, m2, and n1 defined in (3.12), it is easy to show that m1m2 −
2m3 > 0 and m2m3 − 3m1m4 > 0. Consequently, it follows that sign[d(Reλ)/dτ]λ=iω0

> 0,
which implies there exists at least one eigenvalue with positive real part for τ > τ0, and
the condition for Hopf bifurcation in the reference [29] is also satisfied yielding the required
periodic solution.

Furthermore, an attracting invariant closed curve bifurcates from interior equilibrium
P ∗ when τ > τ0 and ‖τ − τ0‖ 	 1.

4. Numerical Simulation

With the help of MATLAB, numerical simulations are provided to understand the theoretical
results, which have been established in the previous sections of this paper.

4.1. Numerical Simulation for Optimal Harvesting Policy

In this subsection, values of parameters are taken from [9] which are used in Example 1 of
[9] and set in appropriate units, r = 5, α = 4, β = 1, a1 = 3, a2 = 2, r1 = 0.1, r2 = 0.1, d = 2,
p = 13, q = 0.18, α0 = 0.08, c = 1. For the model system (3.14), the range of the taxation
σ ∈ (0.5, 7.0848) can be obtained based on (3.1) and (3.10). According to [10], we take the
instantaneous annual rate of discount δ = 0.05 in appropriate units. According to the given
values of parameters, (3.32) can be numerically computed and three roots can be obtained as
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Figure 1: Dynamical responses of model system (3.14) with the optimal taxation.

follows: y∗
2 = 0.5212, 1.6323, 2.2935. Based on (p − σ)q = y∗

2, the corresponding σi (i = 1, 2, 3)
can be calculated, σ1 = 2.3405, σ2 = 9.5965, and σ3 = 10.5777, respectively. It is obvious
that only σ1 = 2.3405 satisfies the range (0.5, 7.0848). Consequently, the optimal taxation
is σδ = σ1 = 2.3405, then the optimal equilibrium levels of population and harvest effort
can be also obtained (xδ, y1δ, y2δ, Eδ) = (0.8591, 0.4245, 0.5212, 5.6399), which are indicated in
Figure 1.

4.2. Numerical Simulation for the Hopf Bifurcation

In this subsection, values of parameters are taken from [9], which are used in Example 3
of [9] and set in appropriate units, r = 2, α = 0.5, β = 0.5, a1 = 3, a2 = 2, r1 = 1, r2 =
0.1, d = 1, p = 13, q = 0.18, α0 = 0.08, and c = 1. It follows from (3.1) and (3.10) that
the taxation range is (0.5, 3.7407), and it can be obtained that population densities in model
system (2.1) is (x∗, y∗

1, y
∗
2) = (0.4, 0.24, 0.6) with σ = 2.3. It should be noted that σ = 2.3

is arbitrarily selected from the interval (0.5, 3.7407), which can guarantee the existence of
interior equilibrium of model system (2.1). Furthermore, it can be also calculated that B3 < 0,
which satisfies the assumption of the existence of a positive root for (3.37), and then τ0 =
0.8734 is calculated based on (3.39). By virtue of Butler’s lemma [32], it can be concluded that
the interior equilibrium remains stable for τ < τ0, which can be seen in Figure 2. It should be
noted that τ = 0.3 is randomly selected in the interval (0, 0.8734), which is enough to merit
the above mathematical study.

According to Theorem 3.3 in this paper, a periodic solution caused by the phenomenon
of Hopf bifurcation and a limit cycle corresponding to this periodic solution occurs as τ
increases through τ0, which are shown in Figures 3 and 4, respectively.
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Figure 2: Dynamical responses of model system (2.1)with discrete time delay τ = 0.3.
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Figure 3: Dynamical responses of model system (2.1) with discrete time delay τ = 0.8734.

5. Conclusion

In this paper, a bioeconomic model is proposed to investigate dynamics of the effects of a
stage-structured prey-predator systemwith harvesting effort and gestation delay. Theoretical
analysis shows that the interior equilibrium is locally asymptotically stable around interior
equilibriumwhen themodel system is in absence of discrete time delay. By using Pantryagin’s
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Figure 4:A limit cycle for the model system (2.1) corresponding to the periodic solution shown in Figure 3.

Maximum Principle, an optimal harvesting policy with taxation is derived to ensure the
sustainable development of biological resource and prosperous commercial harvesting. It
reveals that the user’s total cost of harvest per unit effort must be equal to the discounted
value of the future price at the steady state level. In the case of gestation delay, the stability
analysis reveals that gestation delay is responsible for the stability switch of model system. A
phenomenon of Hopf bifurcation occurs as the discrete time delay increases through a certain
threshold.

It should be noted that taxation instrument is discussed to control overharvesting
from prey-predator system with gestation delay in [26]. Compared with work done in
[26], stage structure of predator population is considered, and the periodic orbit within the
interior of the first quadrant of state space around interior equilibrium is also investigated
in this paper. The work done in [9] is extended by incorporating the harvesting effort into
the prey-predator system, and taxation is adopted as a controlling instrument to regulate
harvesting of predator. From the qualitative analysis of the model, the effect of harvesting
effort is extensively investigated with andwithout discrete time delay. Compared with model
system investigated in this paper, the harvesting effort is not considered in [9], the interior
equilibrium becomes unstable as τ = 0.7. However, the interior equilibrium of the model
system (2.1) remains stable as τ = 0.7 based on the analysis in this paper. It implies that the
harvesting effort has an effect of stabilizing the interior equilibrium, and the cyclic behavior
can be prevented by applying the harvesting effort into the model system.
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