
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 806815, 17 pages
doi:10.1155/2012/806815

Research Article
Structural Optimization of Slender Robot Arm
Based on Sensitivity Analysis

Zhong Luo,1 Xueyan Zhao,2 Le Liang,1 and Fei Wang1

1 School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China
2 Department of Automatic Control and Systems Engineering, University of Sheffield,
Mappin Street, Sheffield S1 3JD, UK

Correspondence should be addressed to Xueyan Zhao, zhaoxueyan1773@163.com

Received 30 June 2012; Revised 3 December 2012; Accepted 11 December 2012

Academic Editor: Gordon Huang

Copyright q 2012 Zhong Luo et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

An effective structural optimizationmethod based on a sensitivity analysis is proposed to optimize
the variable section of a slender robot arm. The structure mechanism and the operating principle
of a polishing robot are introduced firstly, and its stiffness model is established. Then, a design of
sensitivity analysis method and a sequential linear programming (SLP) strategy are developed.
At the beginning of the optimization, the design sensitivity analysis method is applied to select
the sensitive design variables which can make the optimized results more efficient and accurate.
In addition, it can also be used to determine the scale of moving step which will improve the
convergency during the optimization process. The design sensitivities are calculated using the
finite difference method. The search for the final optimal structure is performed using the SLP
method. Simulation results show that the proposed structure optimization method is effective in
enhancing the stiffness of the robot arm regardless of the robot arm suffering either a constant force
or variable forces.

1. Introduction

Structure optimization is concerned with finding the optimal shape of a structure by the
iterative process based on the structural response analysis and sensitivity calculation.
Sensitivity analysis is used to determine how “sensitive” a model is to changes in the value
of the parameters of the model and to changes in the structure of the model. This paper
focuses on parameter sensitivity. The parameter sensitivity is to find the most sensitive
parameters to the dynamic behavior of the slender robot arm, and such parameters the
main analysis object will in the optimization design. This will reduce the difficulty and
improve the efficiency. Remarkable progress has been achieved in the structure optimization
during the past three decades [1–3]. For new attempts of structure optimization, various
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methods have been developed. Viljoen et al. discussed the application of finite element and
genetic methods to design optimization of thin-walled panels considering buckling effects
[4]. Kim and Chang proposed fixed grid based shape optimization inspired from topology
optimization techniques [5]. Perezzan and Hernández carried out the design sensitivity
analysis of the normal stress in a flexural system [6]. Li et al. improved the efficiency
for the stress sensitivity calculation beneficially by introducing an integrated virtual load
system [7]. Zhao et al. the dynamic characteristics of flexible redundant parallel robot by the
sensitivity analysis and the optimization design and represented the displacement responses
of the moving platform are investigated through simulation [8, 9]. Jarmai et al. published
the works on design optimization of welded orthogonally stiffened cylindrical shells in
which constraint functions were expressed in explicit forms, and several new mathematical
optimization methods were used [10]. Akbari et al. compared the continuum-discrete
(C-D) with discrete-discrete (D-D) approaches in detail which presented shape sensitivity
formulations for design-dependent loadings [11]. Uhm and Youn eliminated limitations of a
shell formulation based on NURBS or T-splines and extended T-spline FEM to the analysis of
shells using a mapping scheme [12]. In the field of shape optimal design, Cho and Ha used
exact geometric models to enhance shape sensitivities of the isogeometric framework [13].

It should be pointed out that most of the previous studies on sensitivity analysis
were carried out based on the discrete approaches, in which the sensitivities of mechanical
properties were considered as the design parameters. The sensitivity analysis results can be
used to select the optimization variables, but these analysis results ignored the relationship
among different mechanical properties. For example, when the structure stiffness increases, it
may lead to the increase of mass. Therefore, it is necessary to improve the sensitivity analysis
method in the future work to determine the final optimization variables. These variables
must be more sensitive to the mechanical properties than the mass to ensure the accuracy of
optimization results. Besides, there were very limited theories and studies on the structure
optimization of slender robot arm. Nevertheless, the mechanical properties of slender robot
arm (such as stiffness, equivalent stress, and inherent frequency, etc) are greatly affected by
its own structure features, so further researches are very important, in both analytical and
application aspects, toward the structure optimization of slender robot arm.

In this paper, a sensitivity analysis-based optimization program of ANSYS parametric
design language (APDL) has been developed to perform structure optimization of a slender
robot arm which belongs to a 3-DOF innerwall grinding robot of the solid-propellant rocket
engines. Firstly, the main structure mechanism of the grinding robot is presented, and the
stiffness model of the robot arm is established. Then, a sensitivity analysis method which
has two functions for the structure optimization is proposed. The first function is to select the
sensitive design variables by comparing the ratios of themechanical performance sensitivities
to mass sensitivity of the robot arm. The second one is to improve the convergence in the
process of the optimization. Finally, the optimizing objective can be achieved using the SLD
method.

2. Structure Mechanism and Stiffness Model of the Robot Arm

As shown in Figure 1, the position adjusting mechanism of the inner-wall grinding robot
consists of the big arm, the forearm, and the wrist whose sections are rectangular thin-walled
structure [14]. The lengths of the three parts are l1, l2, and l3, respectively. The practical setup
is shown in Figure 2.
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Figure 1: Schematic of the grinding robot.
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Figure 2: Experimental setup.

The big arm driven by the ball screw canmove along the x-axis. The forearm can rotate
around the joint O2 so that the end-effector can be adjusted to its radial position in order to
contact the inner wall of the cylinder. With the rotation of the wrist around the joint O3, the
angle between the end-effector and the inner wall of the cylinder can be controlled so as to
guarantee the end-effector is tangent to the working surface.

In practice, the displacement of the slender robot arm due to its own gravity is much
smaller than that induced by the force in theworking process. Therefore, the impact of gravity
on the displacement is omitted in order to simplify the process of force analysis. When the
robot arm is contacted with the working surface, the end-effector will be subjected to two
kinds of forces. One is normal pressure FN which is perpendicular to the contact surface. The
other is frictional force Ff which is tangent to the profile surface of the end-effector. This is
shown in Figure 3. In addition, the force F ′′′

f and the equivalent rotational moment, T ′′′
f are

equivalent forces of Ff relative to the point O3.
The force diagram of the robot arm can be obtained after the force condition of the end-

effector is applied to each joint. As shown in Figure 4, the normal pressure is converted into
one force and one equi-moment acting on each joint. Similarly, the frictional force is converted
into one force, one equi-moment, and one rotational equi-moment.

Both big arm and forearm are variable cross-section cantilevers which are reducible to
constant section cantilever beam for the approximate calculation. Let the height of section
at the end of the big arm as hξ and hη, respectively, the simplified height h1 is equal
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Figure 4: Force diagram of the robot arm.

to (hξ + hη)/2. The simplified forearm height h2 can be calculated by using the same method.
Through the topological shape optimization, the relationship between the height and the
width of the robot arm can be preliminarily determined as kh = bi/hi. For the purpose of
guaranteeing the strength and stability of the robot arm, the thickness and height should be
satisfied with the relation of δi = kδ,ihi. Both elastic and frictional forces work, respectively,
in mutual perpendicular plane, so the superposition principle can be used for force analysis.
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The bending displacements for each part of the robot arm which are caused by the normal
pressure FN are as follows:
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The rotation angles of big arm and forearm are
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where kI,i = (kh/k4
δ,i
)− ((kh/kδ,i)− 2)((1/kδ,i)− 2)3, l4 = l2 cosα+ l3 cos β, l5 = l2 sinα+ l3 sin β,

E is the elastic modulus of the material, Ii is the rotational inertia of the ith section, kI,i is the
scale factor of the rotational inertia which relies on kδ,i and kh.

According to (2.1)∼(2.5), the displacement of the robot arm along the y-axis can be
deduced as
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The displacement along the x-axis is
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where K3 = ((l6 cos β/2kI,1l1) + (l4l6 cos β + l3l6 sin β)/kI,1l21) sin(β + γ),
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The bending displacement r ′i along the z-axis which is produced by the equi-moment
Mf can be calculated by using the same method shown in (2.1)∼(2.3). The robot arm can be
simplified as the space beam to calculate the twist angle ϕi which is caused by the rotational
equi-moment Tf . According to the free torsion theory, the twist angle can be expressed as

ϕi =
Tf li

GI ′i
=

Tf lisi

4GA2
i δi

=
Tf li

2Gk′
I,iδ

4
i

, (2.10)

where k′
I,i = (((kh+1)/kδ,i ) −2)/((1/kδ,i) − 1)2((kh/kδ,i) − 1)2,G = E/2(1+μ). Besides, si is

the length of the midline of the section, Ai is the size of the area surrounded by the midline,
G is the shear modulus of the material, and μ is the Poisson ratio.

Then the displacement of the robot arm along the z axis is
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In summary, the bending defection of the robot arm shown in (2.6), (2.8), and (2.11)
can be rewritten as follows:
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Based on the above calculations, the function relationships among the rotation angles
of the forearm and the wrist (α, β), the wall thicknesses of the robot arms (δ1, δ2, δ3), and the
displacement (R) can be obtained, so that the effect of wall thicknesses on stiffness of the robot
arm is identified when the robot arm is in any working state. It can be indicated by (2.12) that
even a subtle change of the wall thickness can have a relatively substantial impact on the
displacement. Therefore, the bending stiffness of the robot arm can be enhanced significantly
through the optimal allocation of the wall thicknesses.
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3. Design Sensitivity

Design sensitivity analysis, that is, the calculation of quantitive information on how the
response of a structure is affected by changes of the variables that define its shape, plays
an important role in structural shape optimization. There are generally two approaches to
calculate the sensitivities [15]. The first one is based on differentiation of the finite element
equations [16, 17], and the second one is the finite difference method. The first approach uses
a discretized structural model. For this model, the sensitivities are obtained by differentiating
the finite element matrix equations with respect to the design variables. Though this method
can achieve a relatively exact solution, the application of precise methods always leads to
perfect but impractical results for the complex model. So the finite difference method has
been considered as a reference method for linear elastic problems, since it performed well
for most of the cases. Of course, it has serious limitations related to truncation and round-off
errors. But these errors can usually be minimized by using an appropriate step size of the
design perturbation.

In this study, the first-order forward finite difference is used to calculate the design
sensitivities of the objective functions and constraint functions.

The design sensitivities for objective functions can be written as

Sf,i =
∂f
∂xi

=
f(xi + Δxi) − f(xi)

Δxi
, (3.1)

and, for jth constraint function,

Sg,i =
∂gj

∂xi
=

gj(xi + Δxi) − gj(xi)
Δxi

, (3.2)

where Δxi is a small perturbation in the variable xi.
Though the bigger absolute value of the above sensitivities, the faster response of the

corresponding variable is, only sensitivities may not be enough to evaluate the impact of the
variables on the objective function or the constraint functions. This is due to the fact that if a
variable is sensitive to bothmechanical properties andmass, this variable may not necessarily
be the key variable to the mechanical properties, because actually optimization may achieve
the purpose of controlling the properties at the cost of increasing the mass of the structure.
Based on the above consideration, the influence extent of each variable on the optimization
objective can be assessed by comparing the ratios of the mechanical performance sensitivities
to mass sensitivity of the robot arm. It can be calculated by the following equations:

Sf,i

Sm,i
=

f(xi + Δxi) − f(xi)
m(xi + Δxi) −m(xi)

,

Sg,i

Sm,i
=

g(xi + Δxi) − g(xi)
m(xi + Δxi) −m(xi)

,

(3.3)
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4. Optimization Model and Solution Algorithms

The mathematical model for design optimization problem can be formulated as

min f(X)

s.t. gj(X) ≤ 0 j = (1, 2, . . . , m),

xiL ≤ xi ≤ xiU i = (1, 2, . . . , n),

(4.1)

whereX = (x1, x2, . . . , xn) is the vector of the design variables, xiL and xiU are lower and upper
limit of the design variables, f(X) is the objective function, gj(X) is the constraint functions,
m is the number of constraints, and n is the number of design variables.

In this study, sequential linear programming (SLP) is used to minimize the objective
function with respect to the constraint equations. In the SLP algorithm, the objective and
constraints functions are approximated with linear extensions at the current design point
during the optimization iteration. Then the original problem is transformed into the following
linear programming problems [18]:

min f(x0) +∇Tf(x0)Δx

s.t. gj(x0) +∇Tgj(x0)Δx ≤ 0

xiL ≤ xi ≤ xiU,

(4.2)

where the ∇Tf(x0) and ∇Tgj(x0) are derivative gradients of the objective function and
constraint functions, respectively. The linear programming is solved with the Lamke pivot
algorithm to update design. These approximations and solution procedures are repeated until
the convergence is reached.

For this approach, the optimum solution is always obtained at one of the vertices
formed by the design constraints. Since there is the finite number of such vertices in the
feasible region, a systematic approach such as the simplex method is used to search for the
optimum solution among these vertices.

In a SLPmethod, the result of each iteration is expected to be a better solution. Since the
linear programming technique is used to find the optimum solution for a nonlinear problem,
some measures are taken to improve the optimization process. In this study a heuristic
iterative algorithm based on the design sensitivity is employed to control the changes in the
design variables. At a given design stage, the design variables are updated iteratively as

X(k+1) = X(k) − α(k)S(k), (4.3)

where, X denotes the vector of the design variables, S is the vector of the sensitivities values,
and α is the scale moving step along that direction, and the superscript k indicates the
optimization cycle number. In most cases, the search direction is chosen along the negative
of the vector of the sensitivities, as shown in (4.3), to make the optimization process more
effective.
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The success of the optimization process depends on the scale of moving stepwhich can
improve the convergence to a large degree. For efficiency and effectiveness of the algorithm,
the moving step α is now determined from the following equations:

f(X)(k+1) ≈ f(X)k +
(
S(k)
)T ·ΔX(k) = f(X)k − α(k)

∣∣∣S(k)
∣∣∣2. (4.4)

Then, it is suggested

α(k) =
μf(X)k∣∣S(k)

∣∣2 , (4.5)

where |S(k)| indicates the Euclidean norm of the vector of the sensitivities and μ is the
reduction of the objective value to be attained in the present design cycle.

The basic algorithm for the structural shape optimization based on mathematical
programming is shown in Figure 5 and can be summarized in the following steps.

Step 1. Establish the objective function f(X) and constraint function g(X) as defined in (4.1).

Step 2. Build the finite element model of the structure.

Step 3. Carry out a finite element analysis using the design variables.

Step 4. Evaluate the sensitivities of the objective and constraint functions of the current
design.

Step 5. Calculate the scale moving step with (4.5).

Step 6. Using a suitable optimization algorithm, such as SLP, generate a new structural shape
which satisfies the constraints.

Step 7. If the new structural shape is not optimum, update the model to Step 2 with (4.3),
otherwise stop.

To realize the structure optimization task, different principles such as structural
analysis, automatic mesh generation, finite element analysis, sensitivity analysis, and
mathematical programming are interrelated. As shown in Figure 5, the flowchart of the
optimization process is provided by a computer program coded, and the ANSYS is used
for automatic mesh generation and finite element analysis, but the value of the constraints is
obtained using finite differences.

5. Results

In order to validate the above analysis and optimization approach, the design of the robot arm
of the inner-wall grinding robot of the solid-propellant rocket engines which was introduced
at the beginning of the paper was performed.

When the robot arm is at the position shown in Figure 6 (α = 58.5◦, β = 27.8◦), its
working accuracy is at the lowest level in the operation process. Therefore, in this paper, the
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structure of the robot arm at this position state is optimized in order to ensure the mechanical
properties can still meet the engineering requirements in thewholework condition. As shown
in Figure 6, the position of the variables (x1–x10) has been pointed out. Where x1, x2, and x3

are design variables of the major arm thickness, x4, x5, and x6 are design variables of the joint
thickness, x7 and x8 are design variables of the length and width of the big arm, respectively,
x9 and x10 are design variables of the length and width of the forearm, respectively. Due to
the special working conditions, the length of the robot arm cannot be changed, so it cannot
be considered as design variables.

Due to the bigger the displacement of the robot arm, the smaller will be its stiffness,
so the stiffness sensitivity can be replaced by the displacement sensitivity. The sensitivities of
some significant mechanical properties are performed for the different design variables; the
results are listed in Table 1.

The ratios of the mechanical performance sensitivities to mass sensitivity of the
robot arm are demonstrated in Figure 7 which is implemented by in-house MATLAB code.
Thus, the major variables which have important impacts on the mechanical properties and
relatively insignificant effect on the mass can be found.
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Table 1: Variable sensitivity results.

Design
variable

Initial
value
(mm)

Mass
sensitivity

(Sm)

Bending
displacement
sensitivity (Sd)

Equivalent
stress

sensitivity (Sσ)

Modal strain
energy

sensitivity (Se)

Inherent
frequency

sensitivity (Sf )

x1 5 6.32e − 002 6.99e − 002 0.114 0.169 0.157
x2 5 8.24e − 002 2.51e − 002 0.17e − 002 0.110 5.17e − 002
x3 5 3.01e − 002 0.226 0.127 0.153 8.38e − 002
x4 6 5.73e − 002 2.33e − 002 7.29e − 003 3.58e − 002 6.26e − 002
x5 6 0.127 0.21e − 002 0.13e − 002 4.42e − 002 5.51e − 002
x6 7 0.158 1.82e − 002 0.15e − 002 1.33e − 002 3.15e − 002
x7 180 8.78e − 003 3.02e − 002 5.34e − 002 4.81e − 002 4.17e − 002
x8 90 0.106 3.63e − 002 0.155 8.20e − 002 7.64e − 002
x9 150 0.109 0.231 0.382 0.269 0.234
x10 75 5.16e − 004 0.15e − 002 0.16e − 002 0.18e − 002 0.15e − 002

1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8

Se
ns

it
iv

it
y 

co
nt

ra
st

 r
at

io

Design variable

Sd/Sm
Sσ/Sm

Se/Sm
Sf/Sm

Figure 7: Contrast of sensitivities.



12 Mathematical Problems in Engineering

Table 2: Initial properties value.

Properties Mass (kg) Bending
displacement (mm)

Equivalent
stress (Mpa)

Modal strain
energy (mJ)

Natural
frequency (Hz)

Value 74.21 1.31 20.00 44.28 130.47

Figure 7 indicates obviously that the sensitivity ratios of variables 2, 4, 5, 6, and 8 are
much less than the remaining ones. If the relevant variables are optimized to improve the
mechanical properties, the mass of the robot arm will increase significantly. As a result, and it
is unsuitable to optimize these variables. Therefore, variables 1, 3, 7, 9, and 10 are selected as
the subsequent optimization design variables. Definitely, the sensitivity analysis can greatly
reduce the number of design variables, so it can not only shorten distinctly the optimization
time, but also make the optimization results easier to comply with the design requirements.

Before the robot arm is optimized, the value of its properties is calculated by finite
element analysis. The results are listed in Table 2.

The constraint conditions are set as the following four parts. (1) The mass of the robot
arm must be controlled within certain range. (2) The maximum equivalent stress meets the
structure strength requirement. (3) The modal strain energy cannot exceed the limit value.
(4) In order to reduce the vibration, the natural frequency of the robot arm should be away
from the working frequency

(mb −ma)
mb

≥ Δm

σs

σmax
≥ Sa

U ≤ Uε

(5.1)

fw < ηfd or fw > ηfd, η > 1.2, (5.2)

where mb and ma are the mass of the robot arm before and after optimization, Δm is the
variation range of the mass. σs and σmax are yield strength and maximum equivalent stress,
respectively, and Sa is the safety factor. U is the modal strain energy, Uε is the limit value.
fw is the working frequency, fd is the natural frequency and η is the limit coefficient of the
frequency, range.

The objective function is taken as the bending deflection. In this paper, it is replaced
by the displacement R.

Figure 8 demonstrates the evolutionary history of the bending displacement of the
robot arm which decreases from 1.31mm to 0.67mm, that is, by about 49.01%. It can be seen
clearly from Figure 8 that the bending displacement of the robot becomes stable after iteration
29. Therefore, the optimization program is convergent well through the iterative computing.
In addition, the optimal properties of robot arm are listed in Table 3.

It can be indicated from Tables 2 and 3 that the mass of robot arm is reduced by 9.1%,
namely, from 74.211 kg to 67.464 kg. So the robot arm becomes lighter after optimization.
Besides, bending displacement, equivalent stress, modal strain energy, and natural frequency
are all decreased. Thus, the mechanical properties of the robot arm are greatly improved.

The bending displacement and equivalent stress of the robot arm in the optimum state
are shown in Figures 9 and 10, respectively.



Mathematical Problems in Engineering 13

Table 3: Optimization design results.

Design
variables

Optimal
value (mm)

Optimization results

Mass (kg) Bending
displacement (mm)

Equivalent
stress (MPa)

Modal strain
energy (mJ)

Natural
frequency (Hz)

x1 5.1842

x3 4.7505

x7 180.35 67.46 0.67 15.40 42.74 120.63
x9 146.06

x10 78.562

Iteration number

B
en

d
in

g 
d

efl
ec

ti
on

 (m
m

)

1.44
1.36
1.28
1.2

1.12
1.04
0.96
0.88
0.8

0.72
0.64

1 5 9 13 17 21 25 29 33 37 41

Figure 8: Evolutionary history of the bending deflection in the design process.

The above optimization results are obtained when the robot arm is suffering static
force. However, in the practical working process, the load is changed with time due to the
heterogeneity of the processing material, the vibration caused by the electromotor, and so
on. The mechanical testing on the inner-wall grinding robot in practical working process
indicates that the robot arm is subjected to a sinusoidal loading. When the robot arm is
remodeled according to the optimal variables, its displacement with the above variable load
is obtained by ANSYS and shown in Figure 11.

It can be demonstrated by Figure 11 that the displacement of the robot arm is
significantly declined. Therefore, the optimization method is also effective to the case when
the robot arm is subjected to a variable load.

6. Conclusions

By taking a 3-DOF inner-wall grinding robot of the solid-propellant rocket engines as an
example, a structure optimization programme has been developed for a slender robot arm
based on the finite element method and the sensitivity analysis strategy in this paper.
The search for the optimal structure is performed using the SLP technique. The following
conclusions are drawn.

(1) The sensitivity analysis method and a sequential linear programming (SLP)
strategy are applicated and developed for the structure optimization of slender arm
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Type: total deformation

Unit: mm
0.6699
0.59552
0.52108
0.44664
0.37220
0.29776
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0 Min

Max

Figure 9: Bending displacement of the robot arm.

Type: equivalent stress

Unit: MPa
15.398
13.6872
11.4763
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Figure 10: Equivalent stress of the robot arm.
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Figure 11: Displacement response curves of the robot arm.

robot. The main sensitive design variables are selected by comparing the ratios of
the mechanical performance sensitivities to mass sensitivity of the robot arm.

(2) The sensitivity analysis method can not only be used to reduce the number of the
design variables before optimizing for the purpose of increasing efficiency and
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accuracy, it can also be used to determine the scale of moving step which will
improve the convergency during the optimization process.

(3) The displacement of the robot arm with optimal structure is reduced significantly
no matter it is suffering constant force or variable force.

(4) This study is application oriented and can be a useful example of structural design
optimization for engineers.

Nomenclature

Ai: Size of the area surrounded by the midline, i = 1, 2, 3
bi: Simplified average width of big arm and

forearm, i = 1, 2
d1, α, β: Displacement and rotation variables of link i, i = 1, 2, 3
E: Elastic modulus of the material
fw: Working frequency
fd: Natural frequency
FN : Normal pressure
Ff : Frictional force
F ′′′
f
: Equivalent forces of Ff

G: Shear modulus of the material
hξ, hη: Height of section at the end of the big arm
hi: Simplified average height of big arm and

forearm, i = 1, 2
Ii: Rotational inertia of the section i, i = 1, 2, 3
kh: Height-width ratio
kδ,i: Thickness of arm i, i = 1, 2, 3
kI,i: Scale factor of rotational inertia, i = 1, 2, 3
li: Length of link i, i = 1, 2, 3
m: Number of constraints;
mb,ma: Mass of the robot arm before and after optimization
Δm: Variation range of the mass
Mf : Equi-moment of Ff

MN : Equi-moment of FN

n: Number of design variables
O: Origin of coordinates of xoy
ri: Bending deformation for arm i, i = 1, 2, 3
Rx, Ry, Rz: Displacement of the robot arm along the x-, y- and

z-axis
R: Bending displacement matrix
si: Length of the midline of the section, i = 1, 2, 3
|S(k)|: Euclidean norm of the vector of the sensitivities
Sf,i, Sg,i: Design sensitivities for objective functions and

constraint function, i = 1, 2, 3
Sa: Safety factor
Tf : Rotational equi-moment of Ff

T ′′′
f
: Rotational equi-moment relative to O3

U: Strain energy
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Uε: Limit value
Δxi: A small perturbation in the variable xi, i = 1, 2, 3
X = (x1, x2, . . . , xn): Vector of the design variables;
xiL, xiU: Lower and upper limit of the design variables, i = 1, 2, 3
f(X): Objective function
gj(X): Constraint functions, i = 1, 2, 3
∇Tf(x0),∇Tgj(x0): Derivative gradients of the objective function and

constraint functions
σs, σmax: Yield strength and maximum equivalent stress;
ϕi: The twist angle, i = 1, 2, 3
μ: Poisson’s ratio
θi: Rotational angles of big arm and forearm, i = 1, 2
δi: Wall thicknesses of arm i, i = 1, 2, 3
η: Limit coefficient of the frequency range.
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