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This paper investigates the problem of the global stabilization via partial-state feedback and adap-
tive technique for a class of high-order stochastic nonlinear systems with more uncertainties/un-
knowns and stochastic zero dynamics. First of all, two stochastic stability concepts are slightly
extended to allow the systems with more than one solution. To solve the problem, a lot of substan-
tial technical difficulties should be overcome since the presence of severe uncertainties/unknowns,
unmeasurable zero dynamics, and stochastic noise. By introducing the suitable adaptive updated
law for an unknown design parameter and appropriate control Lyapunov function, and by using
the method of adding a power integrator, an adaptive continuous (nonsmooth) partial-state
feedback controller without overparameterization is successfully designed, which guarantees that
the closed-loop states are bounded and the original system states eventually converge to zero,
both with probability one. A simulation example is provided to illustrate the effectiveness of the
proposed approach.

1. Introduction

In the past decades, stability and stabilization for stochastic nonlinear systems have been
vigorously developed [1–13]. As the early investigation in the area, in [1–3], some quite fun-
damental notations have been proposed to characterize different types of stochastic stability
and, meanwhile for which, sufficient conditions have been separately provided. As the recent
investigation, works [4] and [3, 5] considered stabilization problems by using Sontag’s
formula and backstepping method, respectively, and stimulated a series of subsequent works
[6–13].

The control designs for classes of high-order nonlinear systems have received intense
investigation recently and developed the so-called method of adding a power integratorwhich
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is based on the idea of the stable domain [14] and can be viewed as the latest achievement of
the traditional backstepping method [15]. By applying such skillful method, smooth state-
feedback control design can be achieved when some severe conditions are imposed on
systems (see, e.g., [16, 17]), while, without those conditions, only nonsmooth state-feedback
control can be possibly designed (see, e.g., [18–23]). As a natural extension, the output-
feedback case was considered in [24], for less available information, which is a more inter-
esting and difficult subject of intensive study. Another extension is the control design for
high-order stochastic nonlinear systems, which attract plenty of attention because of the
presence of stochastic disturbance and cannot be solved by simply extending the methods
for deterministic systems (see, e.g., [25–31]). To the authors’ knowledge, this issue has not
been richly investigated and on which many significant problems remain unsolved.

This paper considers the global stabilization for the high-order stochastic nonlinear
systems described by (3.1) below, relaxes the assumptions imposed on the systems in [25–
28], and obtains much more general results than the previous ones. Since the presence of
system uncertainties, some nontrivial obstacles will be encountered during control design,
which force many skillful adaptive techniques to be employed in this paper. Furthermore,
for the stabilization problem, finding a suitable and available control Lyapunov function is
necessary and important. In this paper, a novel control Lyapunov function is first successfully
constructed, which is available for the stabilization of system (3.1) and different from those
introduced in [25–28]which are unusable here. Then, by using the method of adding a power
integrator, an adaptive continuous partial-state feedback controller is successfully achieved
to guarantee that for any initial condition the original system states are bounded and can be
regulated to the origin almost surely.

The contributions of the paper are highlighted as follows.

(i) The systems under investigation are more general than those studied in closely related works
[25–28]. Different from [26], the zero dynamics of the systems are unmeasurable
and disturbed by stochastic noise. Moreover, the restrictions on the system nonlin-
ear terms are weaker than those in [25–28], and in particular, the assumption in [27]
that the low bounds of unknown control coefficients are known has been removed.

(ii) The paper considerably generalizes the results in [17, 22], and more importantly, no over-
parameterization problem is present in the adaptive control scheme. In fact, the paper
presents the stochastic counterpart of the result in [22] under quite weak assump-
tions. Particularly, the paper develops the adaptive control scheme without over-
parameterization (one parameter estimate is enough). Furthermore, it is easy to
see that the scheme developed can be used to eliminate the overparameterization
problem in [17, 21, 22] (reduce the number of parameter estimates from n + 1 to 1).

(iii) The formulation of zero dynamics is typical and suggestive. In fact, to make the formu-
lation of zero dynamics more representational, we adopt partial assumptions on
zero dynamics in [8, 9]. It is worth pointing out that the formulation of the gain
functions of stochastic disturbance is somewhat general than those in [8, 9].

The remainder of this paper is organized as follows. Section 2 presents some necessary
notations, definition and preliminary results. Section 3 describes the systems to be studied,
formulates the control problem, and presents some useful propositions. Section 4 gives the
main contributions of this paper and presents the design scheme to the controller. Section 5
gives a simulation example to demonstrate the effectiveness of the theoretical results. The
paper ends with an Appendices A and B.
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2. Notations and Preliminary Results

Throughout the paper, the following notations are adopted.Rn denotes the real n-dimension-
al space. R≥1

odd denotes the set {q1/q2 | q1 and q2 are odd positive integers, and q1 ≥ q2}. R+

denotes the set of all positive real numbers. For a given vector or matrix X, XT denotes its
transpose, Tr{X} denotes its trace when X is square, and ‖X‖ denotes the Euclidean norm
when X is a vector. Ck denotes the set of all functions with continuous partial derivatives
up to the kth order. K denotes the set of all functions from R+ to R+, which are continuous,
strictly increasing, and vanishing at zero, and K∞ denotes the set of all functions which are
of class K and unbounded.

Consider the general stochastic nonlinear system

dx(t) = f(t, x)dt + g(t, x)dw, (2.1)

where x ∈ Rn is the system state vector with the initial condition x(0) = x0; drift term
f : R+ × Rn → Rn and diffusion term g : R+ × Rn → Rn × Rm are piecewise continuous and
continuous with respect to the first and second arguments, respectively, and satisfy f(t, 0) ≡ 0
and g(t, 0) ≡ 0;w(t) ∈ Rm is an independent standard Wiener process defined on a complete
probability space (Ω,F, P) with Ω being a sample space, F a σ-algebra on Ω, and P a
probability measure.

Since both f(·) and g(·) are only continuous, not locally Lipschitz, system (2.1) may
not have the solution in the classical sense as in [7, 9]. However, the system always has
weak solutions which are essentially different from the classical (or strong) solution since the
former may not be unique and may be defined on a different probability space (Ω′,F′, P ′).
The following definition gives the rigorous characterization of the weak solution of system
(2.1), and for more details of weak solution, we refer the reader to [32, 33].

Definition 2.1. For system (2.1), if a continuous stochastic process x(t) defined on a probability
space (Ωx,Fx, Px) with a filtration {Fx,t}t≥0 and an m-dimensional Brownian motion w(t)
adapted to {Fx,t}t≥0, such that for all t ∈ [0, τx,+∞), the integrals below are well-defined and
x(t) satisfies

x(t) = x0 +
∫ t
0
f(s, x(s))ds +

∫ t
0
g(s, x(s))dw(s), (2.2)

then x(t) is called a weak solution of system (2.1), where τx,+∞ denotes either +∞ or the finite
explosion time of solution x(t) (i.e., τx,+∞ = limr→+∞ inf{s ≥ 0 : ‖x(s)‖ ≥ r}).

To characterize the stability of the origin solution of system (2.1), as well as the com-
mon statistic property of all possible weak solutions of the system, we slightly extend the
classical stochastic stability concepts of �������� �����	 
� �����
�
�� ��� ��������

��������
����� �����	 
� �����
�
�� given in [7]. This extension is inspired by the
deterministic analog in [34] and allows the above two stability concepts applicable to the
systems with more than one weak solution.
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Definition 2.2. The origin solution of system (2.1) is �������� �����	 
� �����
�
�� if, for
all ε > 0, for any weak solution x(t) which is defined on its corresponding probability space
(Ωx,Fx, Px), there exists a classK function γx(·) such that

Px
{‖x(t)‖ ≤ γx(‖x0‖)

} ≥ 1 − ε, ∀t ≥ 0, ∀x0 ∈ Rn \ {0}, (2.3)

and �������� ��������
����� �����	 
� �����
�
�� if it is globally stable in probabil-
ity and for any weak solution x(t),

Px

{
lim
t→+∞

‖x(t)‖ = 0
}

= 1, ∀x0 ∈ Rn. (2.4)

More importantly, we have the following theorem, which can be regarded as the ver-
sion of Theorem 2.1 of [7] in the setting of more than one weak solution, provides the suf-
ficient conditions for the above two extended stability concepts, and consequently will play
a key role in the later development. By comparison, one can see that Theorem 2.3 preserves
the main conclusion of Theorem 2.1 of [7] except for the uniqueness of strong solution. By
some minor/trivial modifications to the proofs of Theorem 3.19 in [35] (or that of Lemma 2
in [36]) and Theorem 2.4 in [37], it is not difficult to prove Theorem 2.3.

Theorem 2.3. For system (2.1), suppose that there exists a C2 function V (·)which is positive definite
and radially unbounded, such that

LV (x) :=
∂V

∂x
f(s, x) +

1
2
Tr

{
gT (s, x)

∂2V

∂x2
g(s, x)

}
≤ −W(x), ∀s ≥ 0, ∀x ∈ Rn, (2.5)

whereW(·) is continuous and nonnegative. Then the origin solution of (2.1) is globally stable in prob-
ability. Furthermore, ifW(·) is positive definite, then for any weak solution x(t) defined on probability
space (Ωx,Fx, Px), there holds Px{limt→+∞‖x(t)‖ = 0} = 1.

Proof. From Theorem 2.3 in [33, page 159], it follows that system (2.1) has at least one weak
solution. We use x(t) to denote anyone of the weak solutions, which is defined on its cor-
responding probability space (Ωx,Fx, Px) and on [0, τx,+∞) where τx,+∞ denotes either +∞ or
the finite explosion time of the weak solution x(t).

First, quite similar to the proof of Theorem 3.19 in [35, page 95-96] or that of Lemma 2
in [36], we can prove that Px{τx,+∞ = +∞} = 1 (namely, all weak solutions of system (2.1)
are defined on [0,+∞)) and that the origin solution of system (2.1) is globally stable in
probability.

Second, very similar to the proof of Theorem 2.4 in [37, page 114-115], we can show
that ifW(·) is positive definite, then for any weak solution x(t), it holds Px{limt→+∞‖x(t)‖ =
0} = 1.

We next provide three lemmas which will play an important role in the later devel-
opment. In fact, Lemma 2.4 can be directly deduced from the well-known Young’s Inequality,
and the proofs of Lemmas 2.5 and 2.6 can be found in [19, 20].
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Lemma 2.4. For any c > 0, d > 0, ε > 0, there holds

|x|c∣∣y∣∣d ≤ c

c + d
ε|x|c+d + d

c + d
ε−c/d

∣∣y∣∣c+d, ∀x ∈ R, ∀y ∈ R. (2.6)

Lemma 2.5. For any continuous function g : Rm × Rn → R, there are smooth functions a : Rm →
R+, b : Rn → R+, c : Rm → [1,+∞), and d : Rn → [1,+∞) such that

∣∣g(x, y)∣∣ ≤ a(x) + b(y), ∣∣g(x, y)∣∣ ≤ c(x)d(y), ∀x ∈ Rm, ∀y ∈ Rn. (2.7)

Lemma 2.6. For any p ≥ 1, and any x ∈ R, y ∈ R, there hold

∣∣x + y
∣∣p ≤ 2p−1

∣∣xp + yp∣∣,(|x| + ∣∣y∣∣)1/p ≤ |x|1/p + ∣∣y∣∣1/p ≤ 2(p−1)/p
(|x| + ∣∣y∣∣)1/p, (2.8)

and, in particular, if p ∈ R≥1
odd , |x − y|p ≤ 2p−1|xp − yp|.

3. System Model and Control Objective

In this paper, we consider the global adaptive stabilization for a class of uncertain high-order
stochastic nonlinear systems in the following form:

dη = f0
(
x, η
)
dt + g0

(
x, η
)
dw,

dx1 = d1
(
x, η
)
x
p1
2 dt + f1

(
x, η
)
dt + gT1

(
x, η
)
dw,

...

dxn−1 = dn−1
(
x, η
)
x
pn−1
n dt + fn−1

(
x, η
)
dt + gTn−1

(
x, η
)
dw,

dxn = dn
(
x, η
)
upndt + fn

(
x, η
)
dt + gTn

(
x, η
)
dw,

(3.1)

where η ∈ Rm1 is the unmeasurable system state vector, called zero dynamics; x =
[x1, . . . , xn]T ∈ Rn and u ∈ R are the measurable system state vector and the control input,
respectively; the system initial condition is η(0) = η0, x(0) = x0; pi ∈ R≥1

odd , i = 1, . . . , n are
said the system high orders; f0 : Rn × Rm1 → Rm1 , fi : Rn × Rm1 → R, i = 1, . . . , n and
g0 : Rn × Rm1 → Rm1×m, gi : Rn × Rm1 → Rm, i = 1, . . . , n are unknown continuous functions,
called the system drift and diffusion terms, respectively; di : Rn × Rm1 → R, i = 1, . . . , n are
uncertain and continuous, called the control coefficients; w ∈ Rm is an independent standard
Wiener process defined on a complete probability space (Ω,F, P) with Ω being a sample
space, F a σ-algebra on Ω, and P a probability measure. Besides, for the simplicity of
expression in later use, let xn+1 = u and x[k] = [x1, . . . , xk]

T .
Differential equations (3.1) describe a large class of uncertain high-order stochastic

nonlinear systems, for which some tedious technical difficulties will be encountered in control
design mainly due to the presence of the stochastic zero dynamics and the uncertainties/
unknowns in the control coefficients, the system drift, and diffusion terms. In the recent
works [25–28], with measurable inverse dynamics or deterministic zero dynamics and by
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imposing somewhat severe restrictions on pi’s, di’s, fi’s, and gi’s in system (3.1), smooth
stabilizing controllers have been designed. The purpose of this paper is to relax these
restrictions and solve the stabilization problem of the more general system (3.1) under the
following three assumptions.

Assumption 3.1. There exists a C2 function Ṽ0 : Rm1 → R+ such that

κ1
(∥∥η∥∥) ≤ Ṽ0

(
η
) ≤ κ2(∥∥η∥∥),

LṼ0
(
η
)
=
∂Ṽ0

∂η
f0 +

1
2
Tr

{
gT0
∂2Ṽ0

∂η2
g0

}
≤ −ν1

(
η
)∥∥η∥∥4 + bα(x1)x41,

∥∥∥∥∥gT0
∂Ṽ0

∂ηT

∥∥∥∥∥
2

≤ ν2
(
η
)∥∥η∥∥4 + bα(x1)x41,

(3.2)

where κi, i = 1, 2 areK∞ functions; ν1 : Rm1 → R+ \ {0}, ν2 : Rm1 → R+, and α : R → R+ are
continuous functions; and b > 0 is an unknown constant.

Assumption 3.2. For each i = 1, . . . , n, fi and gi satisfy

∣∣fi(x, η)∣∣ ≤ bfi
li∑
j=1

|xi+1|qij f ij
(
x[i], η

)
,

∥∥gi(x, η)∥∥ ≤ bgigi
(
x[i], η

)
, (3.3)

where fij : R
i × Rm1 → R+ and gi : R

i × Rm1 → R+ are known C1 functions with fij(0, 0) = 0
and gi(0, 0) = 0; bfi > 0 and bgi > 0 are unknown constants; li is some positive integer; qij ’s
satisfy 0 ≤ qi1 < · · · < qili < pi.

Assumption 3.3. For each di, i = 1, . . . , n, its sign is known, and there are unknown constants
a > 0 and a > 0, known smooth functions λi : Ri → R+ \ {0}, and μi : Ri+1 → R+ such that

0 < aλi
(
x[i]
) ≤ ∣∣di(x, η)∣∣ ≤ aμi(x[i+1]), (3.4)

where x[n+1] = x when i = n.

Above three assumptions are common and similar to the ones usually imposed on the
high-order nonlinear systems (see, e.g., [17, 20]). Based on Assumption 3.2 and Lemma 2.5,
we obtain the following proposition which dominates the growth properties of fi’s and
gi’s and will play a key role in overcoming the obstacle caused by system uncertain-
ties/unknowns. The proof is omitted here since it is quite similar to that of Proposition 2
in [22].
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Proposition 3.4. For each i = 1, . . . , n, there exist smooth functions δ : Rm1 → [1,+∞), ϕi : Ri →
R+, and φi : Ri → R+, such that

∣∣fi(x, η)∣∣ ≤
∣∣di(x, η)∣∣

2
|xi+1|pi + Θ

(
δ
(
η
)∥∥η∥∥ + ϕi(x[i])

i∑
k=1

|xk |
)
,

∥∥gi(x, η)∥∥ ≤ Θ

(
δ
(
η
)∥∥η∥∥ + φi(x[i])

i∑
k=1

|xk |
)
,

(3.5)

where Θ ≥ max{1, a} is obviously an unknown constant.

Remark 3.5. It is worth pointing out that in the recent related work [30], to ensure continu-
ously differential output feedback control design, somewhat stronger assumptions have been
imposed on the system drift and diffusion terms. For example, different from Proposition 1,
Assumption 1 in [30] requires that the powers of |xk|, k = 1, . . . , i are larger than one in the
upper bound estimations of fi(·) and gi(·) (the case of fn(·) and gn(·) is more evident).

Furthermore, as done in [8, 9], to ensure the stabilizability of system (3.1), it is nec-
essary to make the following restriction on κ1, ν1, and ν2 in Assumption 3.1, and δ in
Proposition 3.4.

Assumption 3.6. For some l ∈ (0, 1), there exist ζ(·) and ξ(·) which are continuous, positive,
and monotone increasing functions satisfying ζ(‖η‖) ≥ (lν1(η) + ν2(η))/2(1 − l)ν1(η) and
ξ(‖η‖) ≥ δ4(η)/ν1(η), such that

∫+∞

0
e−
∫ r
0 (1/ζ(κ−11 (s)))dsdξ

(
κ−11 (r)

)
< +∞, (3.6)

where κ−11 (·) denotes the inverse function of κ1(·).

To understand well the academic meaning of the control problem to be studied, and
in particular the generality and different nature of system (3.1) compared with the exiting
works, we make the following four remarks corresponding to above four assumptions, re-
spectively.

Remark 3.7. Assumption 3.1 indicates that the unmeasurable zero dynamics possesses the
Stochastic ISS (Input-State Stability) type property, like in [8, 9], and the restriction on g0 is
somewhat weaker than that in [8, 9] since the additional term b2α2(x1)x41 in the estimation of
‖gT0 (∂Ṽ0/∂η

T )‖2.

Remark 3.8. Assumption 3.2 demonstrates that the power of xi+1 in fi(x, η) must be strictly
less than the corresponding system high order. This is necessary to realize the stabilization
of the system by using the domination approach of [18]. Moreover, thanks to no further re-
strictions on fij ’s or gi’s, Assumption 3.2 is more possibly met than those in [25–28].

Remark 3.9. Assumption 3.3 shows that the control coefficients di’s never vanish and other-
wise system (3.1) would be uncontrollable somewhere. Besides, from this assumption, one
can easily see that the signs of di’s remain unchanged. Furthermore, the unknown constant
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“a” makes system (3.1) more general than those studied in [25–28] where the lower bounds
of uncertain control coefficients di’s are required to be precisely known.

Remark 3.10. In fact, Assumption 3.6 is similar to the corresponding one in [8, 9]. From above
formulation of the system, it can be seen that the unwanted effects of η, that is, “ν2(η)‖η‖4”
in Assumption 3.1 and “Θδ(η)‖η‖” in Proposition 3.4, can only be dominated by the term
“−ν1(η)‖η‖4” in Assumption 3.1, and therefore some requirements should be imposed on
these three terms. For the sake of stabilization, we make Assumption 3.6, which clearly in-
cludes a special case where ν1 = ν2 = δ4 since at this moment ζ and ξ can be constants and
(3.6) obviously holds.

As the recent development on high-order control systems, works [17, 21, 22] proposed
a novel adaptive control technique, which is powerful to successfully overcome the technical
difficulties in stabilizing system (3.1) caused by the weaker conditions on unknown control
coefficients. Inspired by these works, the paper extends the stabilization results in [17, 22]
from deterministic systems to stochastic ones, under quite weaker assumptions than those in
[25–28]. More importantly, instead of simple generalization, motivated by the novel adaptive
technique for deterministic nonlinear systems [23], we develop the adaptive control scheme
without overparameterization that occurred in [17, 21, 22]. (In fact, the number of parameter
estimates is reduced from n + 1 to 1.)

For details, in this paper, the main objective is to design a controller in the following
form:

˙̂δ = ψ
(
x, δ̂
)
, u = ϕ

(
x, δ̂
)
, (3.7)

where δ̂(t) ∈ R, and ψ is a smooth function, while ϕ is a continuous function, such that all
closed-loop states are bounded almost surely, and furthermore, the original system is globally
asymptotically stable in probability.

Finally, for the sake of the later control design, we obtain the following proposition by
the technique of changing supply functions [20, 38]. The proof of Proposition 3.11 is mainly
inspired by [9, 38] and placed in Appendix A.

Proposition 3.11. Define V0(η) =
∫ Ṽ0(η)
0 q(s)ds, and q : R+ → R+. Then, under Assumptions 3.1

and 3.6, one can construct a suitable q(s) which is C1, monotone increasing, such that

(i) V0(η) is C2, positive definite, and radially unbounded;

(ii) there exist a smooth function α0 : R → [1,+∞) and an unknown constant b > 0 such that

LV0 =
∂V0
(
η
)

∂η
f0 +

1
2
Tr

{
gT0
∂2V0

∂η2
g0

}
≤ −(n + 1)δ4

(
η
)∥∥η∥∥4 + bα0(x1)x41. (3.8)

4. Partial-State Feedback Adaptive Stabilizing Control

Since the signs of di’s are known and remain unchanged, without loss of generality, suppose
di > 0, i = 1, . . . , n. The following theorem summarizes the main result of this paper.
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Theorem 4.1. Consider system (3.1) and suppose Assumptions 3.1–3.3 and 3.6 hold. Then there
exists an adaptive continuous partial-state feedback controller in the form (3.7), such that

(i) the origin solution of the closed-loop system is globally stable in probability;

(ii) the states of the original system converge to the origin, and the other states of the closed-loop
system converge to some finite value, both with probability one.

About the main theorem, we have the following remark.

Remark 4.2. From Claim (i) and the former part of Claim (ii), we easily know that the original
system is globally asymptotically stable in probability.

Proof. To complete the proof, we will first construct an adaptive continuous controller in the
form (3.7) for system (3.1). Then by applying Theorem 2.3, it will be shown that the theorem
holds for the closed-loop system.

First, let us define Θ = Θ
4
max{b/a, 1/a4, a2}, where a and b are the same as in

Assumption 3.3 and Proposition 3.11, respectively. The estimate of Θ is denoted by Θ̂(t),
for which the following updating law will be designed:

˙̂Θ = τ
(
x, Θ̂
)
, Θ̂(0) = 1, (4.1)

where τ(x, Θ̂) is a to-be-determined nonnegative smooth function which ensures that Θ̂(t) ≥
1, for all t ≥ 0.

We would like to give some inequalities on above defined Θ for the sake of use in
the later control design. Noting Θ ≥ 1 (see Proposition 3.4) and max{1/a4, a2} ≥ 1, for
all a > 0, it is clear that Θ ≥ 1. Moreover, since pi ≥ 1, i = 1, . . . , n − 1, there hold
−1 < (4 − 4p1 · · ·pi)/(4p1 · · ·pi − 1) ≤ 0 < 4/(3p1 · · ·pi − 1) ≤ 2, i = 1, . . . , n − 1, and hence

Θ ≥ Θ
4
a(4−4p1 ···pi)/(4p1 ···pi−1) and Θ ≥ Θ

4
a4/(3p1 ···pi−1).

Remark 4.3. As will be seen, mainly because that the definition of new unknown parameter
Θ is essentially different form that in [17, 21, 22], the overparameterization problem that
occurred in the works is successfully overcome.

Next, we introduce the following new variables:

z1 = x1, zi = x
p1 ···pi−1
i − αp1···pi−1i−1

(
x[i−1], Θ̂

)
, i = 2, . . . , n, (4.2)

and the actual control law u = αn(x, Θ̂), where αi : Ri × R → R, i = 1, . . . , n are continuous
functions satisfying αi(0, Θ̂) = 0, for all Θ̂ ∈ R. In the following, a recursive design procedure
is provided to construct the virtual and actual controllers αi’s. For completing the control
design, we also introduce a sequence of functions {Wi, i = 1, . . . , n} as follows:

W1 =
1
4
z41, Wi =

∫xi
αi−1

(
sp1···pi−1 − αp1 ···pi−1i−1

)4−1/(p1 ···pi−1)
ds, i = 2, 3, . . . , n. (4.3)
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Similar to the corresponding proof in [18], it is easy to verify that, for each i = 1, . . . , n,Wi is
C2 in all its arguments,Wi = 0 when zi = 0,Wi > 0 when zi /= 0, andWi → +∞ as |zi| → +∞.

Step 1. Choose V1 = V0 +W1 + (a/2)Θ̃2 to be the candidate Lyapunov function for this step,
where Θ̃ = Θ − Θ̂ denotes the parameter estimation error. Then, along the trajectories of
system (3.1), we have

LV1 = LV0 + z31
(
d1α

p1
1 + d1z2 + f1

)
+
3
2
z21g

T
1 g1 − aΘ̃ ˙̂Θ. (4.4)

By Proposition 3.4 and Lemma 2.4, we have following estimations:

z31f1 ≤
d1
2
|z1|3|x2|p1 + z31Θ

(
δ
(
η
)∥∥η∥∥ + |x1|ϕ1(x1)

)

≤ d1
2
|z1|3|x2|p1 + 1

4
δ4
(
η
)∥∥η∥∥4 + 3

4
Θ

4/3
z41 + Θϕ1(x1)z41,

3
2
z21g

T
1 g1 ≤

3
2
z21Θ

2(
δ
(
η
)∥∥η∥∥ + |x1|φ1(x1)

)2

≤ 1
2
δ4
(
η
)∥∥η∥∥4 + 9

2
Θ

4
z41 + 3Θ

2
φ2
1(x1)z

4
1,

(4.5)

from which, (4.4), Proposition 3.11, and the factsΘ ≥ 1, aΘ ≥ max{b,Θ4
, 1/a3} ≥ 1, it follows

that

LV1 ≤ −nδ4(η)∥∥η∥∥4 + d1z31z2 + d1
2
|z1|3|x2|p1 + d1z31α

p1
1 + aΘρ1(x1)z41 − aΘ̃ ˙̂Θ

≤ −nδ4(η)∥∥η∥∥4 − n

a3
z41 + d1z

3
1z2 +

d1
2
|z1|3|x2|p1 + d1z31α

p1
1

+ aΘ
(
n − 1 +

5
4
+ ρ1(x1)

)
z41 − aΘ̃ ˙̂Θ

≤ −nδ4(η)∥∥η∥∥4 − n

a3
z41 + d1z

3
1z2 +

d1
2
|z1|3

(
|x2|p1 + sign(z1)α

p1
1

)

+ az31

(
d1
2a
α
p1
1 + Θ̂

(
n − 1 +

5
4
+ ρ1(x1)

)
z1

)
+ aΘ̃

(
τ1
(
x1, Θ̂

)
− ˙̂Θ
)
,

(4.6)

where ρ1(x1) = 6 + ϕ1(x1) + α0(x1) + 3φ2
1(x1) and τ1 = (n − 1 + (5/4) + ρ1(x1))z41. It will be

seen from the later design steps that a series of nonnegative smooth functions τk(x[k], Θ̂),

k = 2, . . . , n, are introduced so as to finally obtain the updating law of Θ̂, that is, ˙̂Θ = τ = τn.
Mainly based on (4.6), the virtual continuous controller α1 is chosen such that

α
p1
1 = −2Θ̂λ1(x1)−1

(
n − 1 +

5
4
+ ρ1(x1)

)
z1 =: −h1

(
x1, Θ̂

)
z1, (4.7)

and such choice makes (4.6) become

LV1 ≤ −nδ4(η)∥∥η∥∥4 − n

a3
z41 + aΘ̃

(
τ1 − ˙̂Θ

)
+
3
2
Θμ1
(
x[2]
)∣∣∣z31z2

∣∣∣. (4.8)
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Remark 4.4. It is necessary to mention that in the first design step, functions ρ1 and h1 have
been provided with explicit expressions in order to deduce the completely explicit virtual
controller α1. However, in the later design steps, sometimes for the sake of briefness, we will
not explicitly write out the functions which are easily defined.

Inductive Steps. Suppose that the first k−1 (k = 2, . . . , n) design steps have been completed. In
other words, we have found appropriate functions αi, τi, i = 1, . . . , k − 1 satisfying αp1 ···pii =
−hi(x[i], Θ̂)zi and τi =

∑i
j=1(n − j + (5/4) + ρj(x[j], Θ̂))z4j for known nonnegative smooth

functions hi, ρj , j = 1, . . . , i, such that

LVk−1 ≤ −(n − k + 2)δ4
(
η
)∥∥η∥∥4 − n − k + 2

a3

k−1∑
i=1

z4i +

(
aΘ̃ −

k−1∑
i=1

∂Wi

∂Θ̂

)(
τk−1 − ˙̂Θ

)

+
3
2
Θμk−1

(
x[k]
)|zk−1|(4p1 ···pk−2−1)/p1 ···pk−2

∣∣∣xpk−1k
− αpk−1

k−1

∣∣∣,
(4.9)

for the candidate Lyapunov function Vk−1(x[k−1], Θ̂).
Let Vk = Vk−1 + Wk be the candidate Lyapunov function for step k. Then, along the

trajectories of system (3.1), we have

LWk =
∂Wk

∂Θ̂
˙̂Θ + dkz

(4p1 ···pk−1−1)/p1 ···pk−1
k

(
x
pk
k+1 − α

pk
k

)
+ dkz

(4p1 ···pk−1−1)/p1 ···pk−1
k α

pk
k

+ z(4p1 ···pk−1−1)/p1 ···pk−1
k

fk +
k−1∑
i=1

∂Wk

∂xi

(
dix

pi
i+1 + fi

)
+
1
2

k∑
i=1

k∑
j=1

gTi
∂2Wk

∂xi∂xj
gj .

(4.10)

Just as in the first step, in order to design αk, one should appropriately estimate the last
four terms on the right-hand side of above equality and the last term on the right-hand side
of (4.9), as formulated in the following proposition whose proof is placed in Appendix B.

Proposition 4.5. There exists nonnegative smooth function ρk : Rk ×R → R+, such that

z
(4p1 ···pk−1−1)/p1 ···pk−1
k

fk +
k−1∑
i=1

∂Wk

∂xi

(
dix

pi
i+1 + fi

)
+
1
2

k∑
i=1

k∑
j=1

gTi
∂2Wk

∂xi∂xj
gj

+
3
2
Θμk−1

(
x[k]
)|zk−1|(4p1 ···pk−2−1)/p1 ···pk−2

∣∣∣xpk−1k − αpk−1k−1
∣∣∣

≤ dk
2
|zk|(4p1···pk−1−1)/p1 ···pk−1 |xk+1|pk + δ4

(
η
)∥∥η∥∥4 + 3

4a3

k−1∑
i=1

z4i + aΘz
4
kρk
(
x[k], Θ̂

)
.

(4.11)
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Then, by (4.9), (4.10), and Proposition 4.5, we have

LVk ≤ −(n − k + 1)δ4
(
η
)∥∥η∥∥4 − n − k + 5/4

a3

k−1∑
i=1

z4i +

(
aΘ̃ −

k−1∑
i=1

∂Wi

∂Θ̂

)(
τk−1 − ˙̂Θ

)

+
∂Wk

∂Θ̂
˙̂Θ + dkz

(4p1 ···pk−1−1)/p1 ···pk−1
k

(
x
pk
k+1 − α

pk
k

)
+
dk
2
z
(4p1 ···pk−1−1)/p1 ···pk−1
k |xk+1|pk

+ dkz
(4p1 ···pk−1−1)/p1 ···pk−1
k

α
pk
k
+ aΘz4kρk

(
x[k], Θ̂

)

≤ −(n − k + 1)δ4
(
η
)∥∥η∥∥4 − n − k + 5/4

a3

k∑
i=1

z4i +

(
aΘ̃ −

k∑
i=1

∂Wi

∂Θ̂

)(
τk − ˙̂Θ

)

+ az(4p1 ···pk−1−1)/p1 ···pk−1
k

(
dk
2a
α
pk
k
+ Θ̂z1/p1 ···pk−1

k

(
n − k +

5
4
+ ρk

(
x[k], Θ̂

)))

+ dkz
(4p1 ···pk−1−1)/p1 ···pk−1
k

(
x
pk
k+1 − α

pk
k

)
+
dk
2
|zk|(4p1 ···pk−1−1)/p1 ···pk−1

(
|xk+1|pk + sign(zk)α

pk
k

)

+
∂Wk

∂Θ̂
τk +

k−1∑
i=1

∂Wi

∂Θ̂
(τk − τk−1),

(4.12)

where τk = τk−1 + (n − k + (5/4) + ρk)z4k.
Observing that a nonnegative smooth function γk : Rk × R → R can be easily

constructed such that

∂Wk

∂Θ̂
τk +

k−1∑
i=1

∂Wi

∂Θ̂
(τk − τk−1) ≤ 1

4a3

k∑
i=1

z4i + az
4
kγk
(
x[k], Θ̂

)
, (4.13)

if we design the continuous virtual controller αk such that

α
p1 ···pk
k

= −λ−p1···pk−1
k

(
2Θ̂
(
n − k +

5
4
+ ρk

(
x[k], Θ̂

))
+ γk
(
x[k], Θ̂

))p1 ···pk−1
zk

=: −hk
(
x[k], Θ̂

)
zk,

(4.14)

(obviously, hk is a strictly positive smooth function), then (4.12) becomes

LVk ≤ −(n − k + 1)δ4
(
η
)∥∥η∥∥4 − n − k + 1

a3

k∑
i=1

z4i +

(
aΘ̃ −

k∑
i=1

∂Wi

∂Θ̂

)(
τk − ˙̂Θ

)

+
3
2
Θμk

(
x[k+1]

)|zk|(4p1 ···pk−1−1)/p1 ···pk−1
∣∣∣xpkk+1 − αpkk

∣∣∣.
(4.15)
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Noting the arguments in the last design step, we choose the adaptive actual continuous
controller u : Rn × R → R as follows:

u = αn
(
x, Θ̂
)
,

˙̂Θ = τ
(
x, Θ̂
)
= τn

(
x, Θ̂
)
,

(4.16)

from which, (4.15) with k = n and the aforementioned xn+1 = u, x[n+1] = x, it follows that

LVn ≤ −δ4(η)∥∥η∥∥4 − 1
a3

n∑
i=1

z4i

= −δ4(η)∥∥η∥∥4 − 1
a3
x41 −

1
a3

n∑
i=2

(
x
p1 ···pi−1
i − αp1 ···pi−1i−1

)4

=: −W(η, x),

(4.17)

whereW(η, x) is a smooth function.
With the adaptive controller (4.16) in loop, we know that [0, . . . , 0, Θ]T ∈ Rn+m1+1 is

the origin solution of the closed-loop system. Thus, from Theorem 2.3 and (4.17), it follows
that the origin solution is globally stable in probability; furthermore, sinceW(η, x) is positive
definite which can be deduced from the expressions of W(η, x) and α

p1 ···pi
i (i = 1, . . . , n − 1),

it follows that P{limt→+∞(‖η(t)‖ + ‖x(t)‖) = 0} = 1, and in terms of the similar proof of
Theorem 3.1 in [6], one can see that the state Θ̂ converges to some finite valuewith probability
one.

We would like to point out that the adaptive control scheme given above can be used
to remove the overparameterization in the recent works [17, 21, 22], where the number of
parameter estimates is not less than n + 1. For this aim, it suffices to introduce another new
unknown parameter like Θ defined before, and the design steps are quite similar to those
developed earlier and do not need further discussion.

5. A Simulation Example

Consider the following three-dimensional uncertain high-order stochastic nonlinear system:

dη = −
(
1 + η4

)
ηdt + θx1 sinx2dt + x1dw,

dx1 = θ(2 − 0.2 sinx2)x32dt + θx1 cos
(
3η
)
dt + 2ηx1dw,

dx2 = 2θudt + 2θηx1dt + θη2dw,

(5.1)

where θ > 0 is an unknown constant.
It is easy to verify that system (5.1) satisfies Assumptions 3.1 and 3.6 with Ṽ0(η) =

κ1(η) = κ2(η) = η4, ν1(η) = ν2(η) = 1 + η4, and δ4(η) = (1 + η2)2. Assumption 3.2 holds

with |θx1 cos(3η)| ≤ θ|x1|, |2ηx1| ≤ δ(η)|η| + |x1|
√
1 + x21, |2θηx1| ≤ θ(δ(η)|η| + |x1|

√
1 + x21),
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Figure 1: The trajectories of η, x1, x2.
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Figure 2: The trajectory of Θ̂.

and |θη2| ≤ θδ(η)|η|. Assumption 3.3 holds with aλ1(x1) = aλ2(x[2]) = θ, and aμ1(x1) =
aμ2(x[2]) = 2.2θ. Therefore, in terms of the design steps developed in Section 4, an adaptive
partial-state feedback stabilizing controller can be explicitly given.

Let θ = 1.2 and the initial states be η(0) = 2, x1(0) = 1, and x2(0) = −2.5. Using
MATLAB, Figures 1 and 2 are obtained to exhibit the trajectories of the closed-loop system
states. (To show the transient behavior more clearly, logarithmic X-coordinates have been
adopted.) From these figures, one can see that η, x1, and x2 are regulated to zero while Θ̂
converges to a finite value, all with probability one.

6. Concluding Remarks

In this paper, the partial-state feedback stabilization problem has been investigated for a
class of high-order stochastic nonlinear systems under weaker assumptions than the existing
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works. By introducing the novel adaptive updated law and appropriate control Lyapunov
function, and using the method of adding a power integrator, we have designed an adaptive
continuous partial-state feedback controller without overparameterization and given a simu-
lation example to illustrate the effectiveness of the control design method. It has been shown
that, with the designed controller in loop, all the original system states are regulated to zero
and the other closed-loop states are bounded almost surely for any initial condition. Along
this direction, there are a lot of other interesting research problems, such as output-feedback
control for the systems studied in the paper, which are now under our further investigation.

Appendices

A. The Proof of Proposition 3.11

It is easy to verify that the first assertion of Proposition 3.11 holds when q(s) is chosen to be
positive, C1, and monotone increasing. Thus, in the rest of the proof, we will find such q(s) to
guarantee the correctness of the second assertion.

First, as defined in Proposition 3.11, V0(η) =
∫ Ṽ0(η)
0 q(s)ds, where q(s) is C1 and, for

simplicity, q̇(s) := dq(s)/ds. Thus by Assumption 3.1, we have

LV0
(
η
)
=
∂V0
(
η
)

∂η
f0 +

1
2
Tr

{
gT0
∂2V0

(
η
)

∂η2
g0

}

= q
(
Ṽ0
(
η
))∂Ṽ

∂η
f0 +

1
2
Tr

{
gT0

(
q̇
(
Ṽ0
(
η
))∂Ṽ0

∂ηT
∂Ṽ0

∂η
+ q
(
Ṽ0
(
η
))∂2Ṽ0

∂η2

)
g0

}

= q
(
Ṽ0
(
η
))(∂Ṽ0

∂η
f0 +

1
2
Tr

{
gT0
∂Ṽ0

∂η2
g0

})
+
1
2
q̇
(
Ṽ0
(
η
))∥∥∥∥∥gT0

∂Ṽ0

∂ηT

∥∥∥∥∥
2

≤ q
(
Ṽ0
(
η
))(−ν1(η)∥∥η∥∥4 + bα(x1)x41

)
+
1
2
q̇
(
Ṽ0
(
η
))(

ν2
(
η
)∥∥η∥∥4 + bα(x1)x41

)
.

(A.1)

The following proceeds in two different cases in which l is the same as in Assumption 3.6.

(i) Case of lν1(η)‖η‖4 ≥ bα(x1)x41
For this case, from (A.1), we have

LV0
(
η
) ≤ −(1 − l)q

(
Ṽ0
(
η
))
ν1
(
η
)∥∥η∥∥4 + l

2
q̇
(
Ṽ0
(
η
))
ν1
(
η
)∥∥η∥∥4 + 1

2
q̇
(
Ṽ0
(
η
))
ν2
(
η
)∥∥η∥∥4.

(A.2)

Let l1(s) = 1/ζ(κ−11 (s)), l2(s) = ξ(κ−11 (s))/ζ(κ−11 (s)) for the same ξ and ζ as in
Assumption 3.6, and as done in [9], denote

q(s) =
n + 1
1 − l e

∫s
0 l1(τ)dτ

(
1 − l
n + 1

q(0) −
∫ s
0
l2(r)e−

∫r
0 l1(τ)dτdr

)
(A.3)
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by q(0) = ((n+ 1)/(1− l))(ξ(0) + ∫+∞0 e−
∫ r
0 (1/ζ(κ

−1
1 (r)))dτdξ(κ−11 (r))) ≥ 0. Then, it is easy to see that

q̇(s) = l1(s)q(s) − n + 1
1 − l l2(s)

=
n + 1
1 − l l1(s)e

∫s
0 l1(τ)dτ

(
1 − l
n + 1

q(0) −
∫ s
0
l2(r)e−

∫ r
0 l1(τ)dτdr − l2(s)

l1(s)
e−
∫s
0 l1(τ)dτ

)
.

(A.4)

Moreover, noting the above definitions of l1, l2 and using integration by parts, we have
for all s ≥ 0

∫ s
0
l2(r)e−

∫ r
0 l1(τ)dτdr +

l2(s)
l1(s)

e−
∫s
0 l1(τ)dτ

= −ξ
(
k−11 (r)

)
e−
∫r
0 l1(τ)dτ

∣∣∣s
0
+
∫ s
0
e−
∫r
0 l1(τ)dτdξ

(
κ−11 (r)

)
+ ξ
(
k−11 (s)

)
e−
∫s
0 l1(τ)dτ

= ξ(0) +
∫ s
0
e−
∫r
0 (1/ζ(κ

−1
1 (r)))dτdξ

(
κ−11 (r)

)
≤ 1 − l
n + 1

q(0),

(A.5)

which together with (A.4) concludes that q̇(s) ≥ 0, for all s ∈ R+, and therefore, q(s) is
positive, C1, and monotone increasing on R+.

Furthermore, from (A.4) and the definitions of l1, l2, ξ, and ζ we yield

(1 − l)q
(
Ṽ0
(
η
))
ν1
(
η
) − l

2
q̇
(
Ṽ0
(
η
))
ν1
(
η
) − 1

2
q̇
(
Ṽ0
(
η
))
ν2
(
η
) ≥ (n + 1)δ4

(
η
)
, (A.6)

which together with (A.2) results in

LV0
(
η
) ≤ −(n + 1)δ4

(
η
)∥∥η∥∥4. (A.7)

This shows that the second assertion of Proposition 3.11 holds for this case.

(ii) Case of lν1(η)‖η‖4 < bα(x1)x41
In this case, it is not hard to find a K∞ function κη(·) and an unknown constant b1 > 0
satisfying ‖η‖ ≤ b1κη(|x1|). Then from (A.1), we get

LV0
(
η
) ≤ −(1 − l)q

(
Ṽ0
(
η
))
ν1
(
η
)∥∥η∥∥4 + 1

2
q̇
(
Ṽ0
(
η
))
ν2
(
η
)∥∥η∥∥4 + bq(Ṽ0

(
η
))
α(x1)x41

+
1
2
bq̇
(
Ṽ0
(
η
))
α(x1)x41.

(A.8)

Choosing the same q(s) as in the first case and in view of (A.6), we have

(1 − l)q
(
Ṽ0
(
η
))
ν1
(
η
) − 1

2
q̇
(
Ṽ0
(
η
))
ν2
(
η
) ≥ (n + 1)δ4

(
η
)
. (A.9)
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From this, (A.4) and (A.8), it follows that

LV0
(
η
) ≤ −(n + 1)δ4

(
η
)∥∥η∥∥4 + bq(Ṽ0

(
η
))
α(x1)x41 +

1
2
bq̇
(
Ṽ0
(
η
))
α(x2)x41

≤ −(n + 1)δ4
(
η
)∥∥η∥∥4 + b

(
1 +

1
2
l1(0)

)
q
(
κ2
(
b1κη(|x1|)

))
α(x1)x41

(A.10)

which shows that second assertion of Proposition 3.11 holds for this case by letting b = b(1 +

q(κ2(b
2
1)))(1 + (1/2)l1(0)) and α0(x1) = α(x1)(1 + q(κ2(κ2η(|x1|)))). (Since 0 ≤ b1κη(|x1|) ≤

(1/2)(b
2
1 + κ

2
η(|x1|)) ≤ b

2
1 when b1 ≥ κ2η(|x1|), and otherwise 0 ≤ b1κη(|x1|) ≤ κ2η(|x1|), from the

fact that q(·) and κ2(·) are positive and monotone increasing functions on R+, it follows that

q(κ2(b1κη(|x1|))) ≤ q(κ2(b
2
1)) + q(κ2(κ2η(|x1|))) ≤ (1 + q(κ2(b

2
1)))(1 + q(κ2(κ2η(|x1|)))).)

B. The Proof of Proposition 4.5

We first prove the following proposition.

Proposition B.1. For k = 2, . . . , n, there exist smooth nonnegative functions σk(x[k], Θ̂),
Ck(x[k], Θ̂), and Dk(x[k+1], Θ̂), such that

k∑
r=1

|xr | ≤ σk
(
x[k], Θ̂

) k∑
r=1

|zr |1/(p1 ···pk−1),
∥∥∥∥∥
∂α

p1 ···pk
k

∂xi
gi

∥∥∥∥∥ ≤ ΘCk

(
x[k], Θ̂

)(
δ
(
η
)∥∥η∥∥ + k∑

r=1

|zr |
)
,

∣∣∣∣∣
∂2α

p1 ···pk
k

∂xi∂xj
gTi gj

∣∣∣∣∣ ≤ Θ
2
Ck

(
x[k], Θ̂

)(
δ2
(
η
)∥∥η∥∥2 + k∑

r=1

|zr |
)
,

∣∣∣∣∣
∂α

p1 ···pk
k

∂xi

(
dix

pi
i+1 + fi

)∣∣∣∣∣ ≤ ΘDk

(
x[k+1], Θ̂

)(
δ
(
η
)∥∥η∥∥ + i+1∑

r=1

|zr |
)
,

(B.1)

where i = 1, . . . , k, j = 1, . . . , k, and Θ is the same as in Proposition 3.4.

Proof. The first claim obviously holds when k = 2, because of the following inequality:

|x1| + |x2| ≤ |z1| +
∣∣∣z2 + z1h1

(
x1, Θ̂1

)∣∣∣1/p1 ≤ σ2
(
x[2], Θ̂1

)(
|z1|1/p1 + |z2|1/p1

)
(B.2)

and can be easily proven in the same way of Lemma 3.4 in [19].
Based on Lemma 2.4 and Proposition 3.4, the proof for the last three claims is

straightforward (though somewhat tedious) and quite similar to the proof of Lemma 3.5 in
[19] and is omitted here.

Next, in view of Proposition B.1, we complete the Proof of Proposition 4.5 by estimating
each term of the left-hand side of (4.11).
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From Propositions 3.4 and B.1, we have

z
(4p1 ···pk−1−1)/p1 ···pk−1
k fk ≤ dk

2
|zk|(4p1···pk−1−1)/p1 ···pk−1 |xk+1|pk + Θ|zk|(4p1 ···pk−1−1)/p1 ···pk−1δ

(
η
)∥∥η∥∥

+ Θφk
(
x[k]
)
σk
(
x[k], Θ̂

)
|zk|(4p1 ···pk−1−1)/p1 ···pk−1

k∑
j=1

|zi|1/p1 ···pk−1

≤ dk
2
|zk|(4p1···pk−1−1)/p1 ···pk−1 |xk+1|pk + 1

3
δ4
(
η
)∥∥η∥∥4 + 1

6a3

k−1∑
i=1

z4i

+ aΘz4kρk,1
(
x[k], Θ̂

)
,

(B.3)

where and whereafter ρk,i(x[k], Θ̂), i = 1, . . . , 4 are nonnegative smooth functions and can be
easily obtained by Lemma 2.4, and for the notional convenience, their explicit expressions are
omitted.

From Lemma 2.6, Propositions 3.4 and B.1, and the expression of Wk given by (4.3),
we have

k−1∑
i=1

∂Wk

∂xi

(
dix

pi
i+1 + fi

)

≤ 4
k−1∑
i=1

∣∣∣∣∣
∫xk
αk−1

(
sp1···pk−1 − αp1···pk−1

k−1
)(3p1···pk−1−1)/p1 ···pk−1

ds

∣∣∣∣∣ ·
∣∣∣∣∣
∂α

p1···pk−1
k−1
∂xi

(
dix

pi
i+1 + fi

)∣∣∣∣∣

≤
k−1∑
i=1

8|zk|3ΘDk−1
(
x[k], Θ̂

)⎛⎝δ
(
η
)∥∥η∥∥ + i+1∑

j=1

∣∣zj∣∣
⎞
⎠

≤ 1
3
δ4
(
η
)∥∥η∥∥4 + 1

6a3

k−1∑
i=1

z4i + aΘz
4
kρk,2

(
x[k], Θ̂

)
,

1
2

k∑
i=1

k∑
j=1

gTi
∂2Wk

∂xi∂xj
gj

≤ 2
k−1∑
i=1

k−1∑
j=1

∣∣∣∣∣
∫xk
αk−1

(
sp1···pk−1 − αp1 ···pk−1

k−1
)(3p1 ···pk−1−1)/p1 ···pk−1

ds

∣∣∣∣∣ ·
∣∣∣∣∣
∂2α

p1 ···pk−1
k−1

∂xi∂xj
gTi gj

∣∣∣∣∣

+ 6
k−1∑
i=1

k−1∑
j=1

∣∣∣∣∣
∫xk
αk−1

(
sp1···pk−1 − αp1 ···pk−11

)(2p1 ···pk−1−1)/p1 ···pk−1
ds

∣∣∣∣∣ ·
∥∥∥∥∥
∂α

p1 ···pk−1
k−1
∂xi

gi

∥∥∥∥∥

·
∥∥∥∥∥
∂α

p1 ···pk−1
k−1
∂xj

gj

∥∥∥∥∥ + 4|zk|(3p1 ···pk−1−1)/p1 ···pk−1
k−1∑
i=1

∥∥∥∥∥
∂α

p1 ···pk−1
k−1
∂xi

gi

∥∥∥∥∥ ·
∥∥gk∥∥

+ 2p1 · · ·pk−1|zk|(3p1···pk−1−1)/p1 ···pk−1 |xk|p1···pk−1−1
∥∥gk∥∥2
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≤ 4(k − 1)2|zk|3Θ
2
Ck−1

(
x[k−1], Θ̂

)(
δ2
(
η
)∥∥η∥∥2 + k−1∑

r=1

|zr |
)

+ 12(k − 1)2z2kΘ
2
C2
k−1
(
x[k−1], Θ̂

)(
δ(η)

∥∥η∥∥ + k−1∑
r=1

|zr |
)2

+ 4(k − 1)Θ|zk|(3p1···pk−1−1)/p1 ···pk−1Ck−1
(
x[k−1], Θ̂

)(
δ
(
η
)∥∥η∥∥ + k−1∑

r=1

|zr |
)∥∥gk∥∥

+ 2p1 · · ·pk−1|zk|(3p1···pk−1−1)/p1 ···pk−1 |xk|p1···pk−1−1
∥∥gk∥∥2

≤ 1
3
δ4
(
η
)∥∥η∥∥4 + 1

6a3

k−1∑
i=1

z4i + aΘz
4
kρk,3

(
x[k], Θ̂

)
.

(B.4)

For the last term, by Lemma 2.6, we get

3
2
Θμk−1

(
x[k]
)|zk−1|(4p1 ···pk−2−1)/p1 ···pk−2 ·

∣∣∣xpk−1k
− αpk−1

k−1

∣∣∣
≤ 3Θμk−1

(
x[k]
)|zk−1|(4p1 ···pk−2−1)/(p1 ···pk−2) · |zk|1/(p1 ···pk−2)

≤ 1
4a3

z4k−1 + aΘz
4
kρk,4

(
x[k], Θ̂

)
.

(B.5)

So far, by choosing ρk =
∑4

i=1 ρk,i, the proof of Proposition 4.5 is finished.
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