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It takes two design goals as different game players and design variables are divided into strategy
spaces owned by corresponding game player by calculating the impact factor and fuzzy clustering.
By the analysis of behavior characteristics of two kinds of intelligent pigs, the big pig’s behavior
is cooperative and collective, but the small pig’s behavior is noncooperative, which are endowed
with corresponding game player. Two game players establish the mapping relationship between
game players payoff functions and objective functions. In their own strategy space, each game
player takes their payoff function asmonoobjective for optimization. It gives the best strategy upon
other players. All the best strategies are combined to be a game strategy set. With convergence
and multiround game, the final game solution is obtained. Taking bi-objective optimization of
luffing mechanism of compensative shave block, for example, the results show that the method
can effectively solve bi-objective optimization problems with preferred target and the efficiency
and accuracy are also well.

1. Introduction

Multiobjective optimization problem in actual engineering design is very common. The
essential characteristics of multiobjective optimization are as follows: (1) there exist several
objective interests; (2) the status of the various objectives are different and have conflicts. The
solutionmethods are diverse; the latest research is as follows: Akbari and Ziarati [1] applied a
novel bee swarm optimization method to obtain a uniformly distributed Pareto front. Ismail
et al. [2] proposed a new self-organizing genetic algorithm for multiobjective optimization
problems to obtain a better value as compared to the existing weighted-sum methods.
Lee et al. [3] used the multiobjective fuzzy optimization method to obtain the optimal
parameters of rotor experimental apparatus. Ding et al. [4] proposed a new multiobjective
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optimization algorithm named KSVC-SPEA to effectively achieve the overall performance of
injection molding machine.

In recent years, considering the similarity between multiobjective design and the
game, game theory has been used to solve multiobjective design problems, especially
for practical problems in engineering fields. According to the different behaviors of each
game player seeking for benefit, the game can be divided into noncooperative game and
cooperative game. In a noncooperative game, each player benefits from competitive behavior
patterns and the typical models are Nash equilibrium game model and the Stackelberg
oligopoly game model. A cooperative game is defined as game players abiding by a
binding agreement, benefiting from cooperative behavior patterns. The typical binding
agreements contain three types, which are known as the “self-interest do not harm the
others” (competitive and cooperative game model), “You have me, I have you” (coalition
cooperative game model), and “all for one and one for all” (unselfish cooperative game
model). About noncooperative game to solve multiobjective design, Spallino and Rizzo [5]
proposed a noncooperative game optimization method based on evolutionary strategy in
the multiobjective design of the composite laminate, which treated each game player as an
equal body and eventually found a Nash equilibrium point through negotiation functions.
Neng-gang et al. [6] established a multiobjective game design technology roadmap and key
indicators based on the Nash equilibrium model and the Stackelberg oligopoly game model
and successfully applied tomultiobjective optimization design such as gravity dam, structure
of arch-arch ring, and luffmechanism of compensative sheave block. In the use of cooperative
games to solve multiobjective design, Chen and Li [7] proposed three-tier two-objective
optimization method and applied this method to the manufacture of concurrent product and
process optimization; Neng-gang et al. [8] adopted a competitive-cooperative game model
to conduct a multi-objective optimization design and obtained a good design. However,
whether the non-cooperative game methods or the cooperative game methods are used to
solve multi-objective design problems, if the game method is selected, behavior modes of
all players remain unchanged during the whole process. But this is an ideal situation. Each
player’s behavior is diverse in many survival games in nature. Neng-gang et al. [9] proposed
a mixed game model according to the diversity of behavior patterns caused by differences in
resources and endowment of each player. Through the bionics of the survival mechanisms
of reproduction of lizard species, a typical mixed game model is presented, which consists
of both competitive behavior patterns and cooperative behavior patterns of “all for one and
one for all” and “benefits oneself but do not harm other people”. This method is very good to
solve the oneness problem of constructing payoff functions, but there exist two shortcomings
as follows. (1) It can only be applied to three objectives or more than three objectives
and cannot solve two-objective optimization problems. (2) It cannot solve “principal and
subordinate” optimization problems. That is, it cannot solve the optimization problem with
target preference. To compensate this deficiency and improve the game method for solving
optimization problems, bi-objective optimization method is proposed based on pigs’ payoff
behavior, which can be applied in two-objective optimization problemwith target preference.

2. The Basic Idea

2.1. Pigs’ Payoff Game Model

American economist named Nash (the Nobel economic prize winner) has proposed “Pigs’
Payoff”. It is shown in Figure 1 and is as follows: there are a big pig and a small pig in
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Figure 1: The picture of pigs’ payoff.

Table 1: The payoff matrix.

Pigs’ payoff Small pig
Pressing the button Waiting

Big pig
Pressing the button (5, 1) (4, 4)
Waiting (9, −1) (0, 0)

the pigsty. One side of the pigsty has food slot and the other side has food control button.
Whether the big pig or the small pig will pay 2-unit energy cost if it presses the food control
button and 10-unit food will fall into food slot in return. If the big pig first arrives in the food
slot, the benefit ratio of the big pig to the small pig is 9 : 1. If the big pig and the small pig
arrive in the food slot at the same time, the benefit ratio of the big pig to the small pig is 7 : 3.
If the small pig first arrives in the food slot, the benefit ratio of the big pig to the small pig
is 6 : 4. The payoff matrix is shown in Table 1. In premise of both the big pig and small pig
having intelligence, the final game result is that the big pig presses the button and the small
pig dose not press the button but chooses to wait [10].

From the result of the behavior, the strategy of waiting is a selfish behavior of non-
cooperation and the strategy of pressing the button is a collective behavior of cooperation.
Hence, two game players (the big pig and the small pig) adopt two different behavior modes
and constitute a hybrid game mode. The equilibrium solution (4, 4) is Pareto solution.

2.2. The Technology Principle

The design variables:X = (x1, x2, . . . , xn) ∈ Ωn,

let the objective functions be minimized:F(X) = (F1(X), F2(X)) −→ min,

subject to constraint conditions: gk(X) ≤ 0
(
k = 1, 2, . . . , q

)
,

(2.1)

where n is the number of design variables. q is the number of constraint conditions. Ωn is the
feasible space of design variables.

Meanwhile, the definition of game is as follows: Gm represents one game. If Gm has 2
players (Illustration: the implication of number of players is equal to the number of objective
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functions), the sets of available strategies are denoted by S1, S2. The payoff functions are
u1, u2. Hence, the game with 2 players can be written as Gm = (S1,S2; u1, u2).

The basic idea for bi-objective optimization method based on game is as follows:
(1) there are 2 design objectives, which are seen as 2 players and the design variables X
are divided into strategy subsets S1, S2 of the corresponding players by certain technical
methods. (2) According to the specific game model, mapping relationships are established
between the payoff functions u and objective functions F. (3) Each player takes its own
payoff function as its objective and gets a single-objective optimal solution in its own strategy
subset. So this player obtains the best strategy versus other players. The best strategies of all
players form the group strategy in this round. The final equilibrium solutions can be obtained
through multiround game according to the convergence criterion.

The payoff function u is closely related to the game model. The different behavior
characteristics of the big pig and small pig, respectively, are assigned to the corresponding
game players based on pigs’ payoff game behavior model; then, the payoff functions u is
constructed according to the corresponding behavior characteristics.

3. The Key Technology and Structure of the Algorithm

3.1. Game Player’s Strategy Subset Computation

Fuzzy mathematics has been successfully used in the related design fields with the
multidisciplinary cross research. Fuzzy mathematics has been successfully applied in filter
design [11], T-S fuzzy systems [12, 13], and T-S fuzzy stochastic systems [14] and abundant
research results are obtained. In this paper, the design variables are divided into each game
players strategy subsets (S1, S2) by calculating the impact factor and fuzzy clustering based
on fuzzy mathematics.

Computation steps are as follows.

(1) Optimize 2 mono-objectives; then obtain optimal solution F1(X∗
1), F2(X∗

2), where

X∗
i =

{
x∗
1i, x

∗
2i, . . . , x

∗
ni

}
(i = 1, 2). (3.1)

(2) Every xj is divided into T fragments with step length Δxj in its feasible space; Δji

is an impact factor (xj affecting the objective fi) and is shown as

Δji

=

∑T
t=1

∣∣∣Fi

(
x∗
1i, . . . , x

∗
(j−1)i, xj(t), x∗

(j+1)i, . . . , x
∗
ni

)
− Fi

(
x∗
1i, . . . , x

∗
(j−1)i, xj(t − 1), x∗

(j+1)i, . . . , x
∗
ni

)∣∣∣

T ·Δxj
.

(3.2)

To avoid the different functions’ self-affecting, make impact factors dimensionless:

Δji =
Δji

∣∣Fi

(
X∗
i

)∣∣ . (3.3)
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(3) All samples classification Δ = {Δ1,Δ2, . . . ,Δn}, the classification of j is Δj =
{Δj1, . . . ,Δj2} (j = 1, . . . , n), and Δj means the impact factor set of j on all the
players. The purpose is classifying highly similar samples as one classification; this
paper uses a similar degree approach to reflect the samples’ similarity relation.
Select any two samples Δk and Δl and analyze their similarity relation; define a
fuzzy relation function by normal distribution:

μi(Δk,Δl) = exp
(
− |Δki −Δli|
(1/m)

∑m
i=1|Δki −Δli|

)
(k, l = 1, 2, . . . , n; k /= l; i = 1, 2), (3.4)

where μi(Δk,Δl) is the fuzzy relation between Δk and Δl in the ith objective
function.

The correlation degree of Δk and Δl is

rkl =
1
2

2∑

i=1

mini∈{1,2}|Δki −Δli| + 0.5maxi∈{1,2}|Δki −Δli|
|Δki −Δli| + 0.5maxi∈{1,2}|Δki −Δli| . (3.5)

(4) Establish the matrix R based on rkl and do fuzzy clustering to matrix R:

R =

∣∣∣∣∣∣∣∣∣∣

r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
...

...
rn1 rn2 · · · rnn

∣∣∣∣∣∣∣∣∣∣

. (3.6)

Classification results of Δ represent the classification results of X because of a one-
to-one relationship between Δ = {Δ1,Δ2, . . . ,Δn} and X = {x1, x2, . . . , xn}.

(5) According to fuzzy clustering, divide the design variables X into strategy subsets
S1, . . . ,Sm and assign the strategy subset to the corresponding player by the average
value of impact factors. According to a statistical viewpoint [15], when the number
of design variables and objective functions is small, we can directly divide variable
sets X into strategy space S1, S2 according to the value of impact factor. When the
number design variables and objective functions are large, fuzzy clusterings are
needed. Meanwhile, according to experience, we can first classify variables with
strong correlation as a sample to reduce the complexity of clustering analysis.

Input system’s classification control value isM andmaximal sample number is P ; each
with sample as one classification, the system is Δ1,Δ2, . . . ,Δn.

The steps of clustering are as follows.

(1) Calculate the correlation degree rkl and build matrix R(0); attention: rkl = rlk, rkl > 0.

(2) Set maximum value of matrix R(0) to be rab, rab = maxk,l∈{1,2,...,n}rkl and classify Δa

and Δb into a new classification Δs; if the sample number is larger than P , then
combine the second maximal value of R(0).
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(3) Combine Δc(c = 1, 2, . . . , n; c /=a, c /= b) and Δs into a new classification system,
calculate its correlation degree, and build a new matrix R(1); the correlation degree
of any classification Δc and Δs is rcs = min{rca, rcb}.

(4) Repeat procedures (1), (2), and (3) until the system classification number equals
control value M.

3.2. Behavior Modes and Construction of Game Payoff Functions

The characteristic of the small pig is competitive behavior mode and its corresponding game
payoff function is as follows:

ui =
Fi

Fi

(i = 1, 2), (3.7)

where F is a reference value, which can eliminate the differences in the magnitude for each
objective function. In this paper, the initial objective function value is chosen to be F.

The characteristic of the big pig is cooperative behavior mode and its corresponding
game payoff function is as follows:

ui = wii
Fi

Fi

+
m∑

j=1(j /= i)

wij

Fj

Fj

(i = 1, 2), (3.8)

where
∑m

j=1 wij = 1 value ofwii reflects the degree of considering its own interest. The greater
the value is, the lower the cooperative degree is.

3.3. Algorithm Procedures and Flow Chart

(1) Obtain strategy subset S1, S2 attached to each player through calculating the impact
factor and fuzzy clustering.

(2) Payoff functions ui to any ith player (i = 1, 2) is constructed according to the
characteristic of the small pig and big pig proposed by Section 3.2 above.

(3) Generate the initial feasible strategies in the strategy set of each player randomly
and then form a strategy permutation s(0) = {s(0)1 , s

(0)
2 }.

(4) Let s(0)1 , s
(0)
2 be the corresponding complementary set of s(0)1 , s

(0)
2 in s(0). For any

player i (i = 1, 2), solve the optimal strategy s∗i ∈ Si, and make payoff minimum
ui(s∗i , s

(0)
i ) → min(i = 1, 2);

(5) Define optimal strategy permutation s(1) = s∗1 ∪ s∗2. Then judge the feasibility of s(1).
If gk(s(1)) ≤ 0 (k = 1, 2, . . . , q) does not satisfy, turn to step (3). Otherwise, compute
the distance between s(1) and s(0) which is called the Euclidean norm. Then examine
whether the distance satisfies the convergence criterion ‖s(1) − s(0)‖ ≤ ε or not (ε is a
decimal parameter given in advance). If it satisfies, the game is over; if not, let s(1)

displace s(0) and turn to step (4) to repeat.
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Objective function–F1 Objective function–F2

S1 S2Dividing the design variables–X

Initial strategy–s(0)1 s
(0)
2 –initial strategy

Payoff function–u2Payoff function–u1

s(0)–strategy permutation

Convergence judgement

Small
pig–noncooperative

Big
pig–cooperative

Optimal strategy–s∗1 s∗2–optimal strategys

s(1)–optimal strategy permutation

Figure 2: The algorithm chart.

The algorithm chart is shown in Figure 2 (illustration: if the big pig stands for F1, then
the small pig stands for F2 and if the big pig stands for F2, then the small pig stands for
F1).

4. Bi-Objective Optimization Model of Luff Mechanism of
Compensative Sheave Block

4.1. The Design Model

The luff mechanism of compensative sheave block is a working device, which can realize
mechanical loading range and is widely used in hoisting machinery. In its working process,
there exists the stability goal; namely, the goods need to move along the horizontal path. On
the other hand, there also exists the economic goal; namely, it needs less energy consumption.
So, design problems have multiobjective optimization issues.

The luff mechanism of compensative sheave block is shown in Figure 3. The design
variables are X = (x1, x2, x3, x4, x5). Constraints need tomeet upper and lower limits of design
variables and amplitude range cannot exceed the prescribed range. The objective functions
are F1 (stability index) and F2 (economic index).
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Figure 3: The luffmechanism of compensative sheave block.

4.2. The Objective Function of the Stability Index

Consider

R = L cosα + x3 sin(α + x5) + f + r, (4.1)

where R is the amplitude of fluctuation and α is the elevation.
The mechanism in the biggest amplitude is the starting point and the rise quantity

relative to the starting point is Δz(t) in any time t,

Δz(t) = L(sinωt − sinα1) + x3[cos(α1 + x5) − cos(ωt + x5)], (4.2)

where ω = (α2 − α1)/T is angular velocity, T is the total time of the fluctuation, α1 is the
elevation in Rmax (the maximum luffing), and α2 is the elevation in Rmin (the minimum
luffing).

The fall quantity relative to the starting point is Δl(t) in any time t due to the rope
releasing:

Δl(t) =
mb

mq
(l1 − l(t)), (4.3)

where mq is the number of wire rope of lifting pulley and mb is the number of wire rope of
compensation pulley, where

l1 =
√
[L cosα1 − x4 sin(α1 + x5) − x1]2 + [L sinα1 + x4 cos(α1 + x5) − x2]2,

l(t) =
√
[L cosωt − x4 sin(ωt + x5) − x1]2 + [L sinωt + x4cos(ωt + x5) − x2]2,

Δh(t) = Δz(t) −Δl(t),

(4.4)

where Δh(t) is the deviation relative to the starting point in any time t.
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So, the objective function of the stability index is as follows:

F1 = sup
t∈[0,T]

Δh(t) − inf
t∈[0,T]

Δh(t). (4.5)

4.3. The Objective Function of the Economic Index

The energy consumption is P(t) in any time t.

P(t) = Mq(t)ω, (4.6)

where Mq(t) is the torque. For no frame balance system, it is as follows:

Mq(t) =
G

9.8
[L cosωt + x3 sin(ωt + x5) + r] − mb

mq

G

9.8
(
zB cos β − yB sin β

)
+

G′

9.8
Lξ cosωt,

(4.7)

where yB = L cosωt − x4 sin(ωt + x5), zB = L sinωt + x4 cos(ωt + x5), G is the gravity of the
goods, β = arctg((zB − x2)/(yB − x1)), G′ is the gravity of the arm frame, and ξ is the ratio of
the distance (center of gravity of the arm frame from O point in Figure 3) to arm length-L.

So, the objective function of the economic index is as follows:

F2 =
∫T

0
P(t)dt = ω

∫T

0
Mq(t)dt. (4.8)

5. The Application in Mechanism Design

5.1. Calculation Statement

The paper takes the luff mechanism of compensative sheave block (shown in Figure 3) as
application object. G = 31360N, G′ = 13720N, L = 14m, f = 0.7m, ξ = 0.5, r = 0.2m, mb = 6,
mq = 2. Rmax = 12m, Rmin = 5.8m, −0.4 ≤ x1 ≤ 0.5, 3 ≤ x2 ≤ 8, 0.4 ≤ x3 ≤ 0.8, 0.3 ≤ x4 ≤ 0.7,
0 ≤ x5 ≤ 0.43633. The total fluctuation time is 40 seconds (T = 40 seconds). The smallest unit
time is 1 second. The more-detailed mechanism instructions can refer to [16]. Meanwhile,
a group of realistic optimization design parameters (x1 = −0.030, x2 = 4.040, x3 = 0.550,
x4 = 0.370, x5 = 0.160) is listed [16].

5.2. Single-Objective Optimization Results

Consider

X∗
1 = (0.01897, 4.08848, 0.51854, 0.53969, 0.33220), F1

(
X∗
1

)
= 0.01558m,

X∗
2 = (0.00954, 4.83460, 0.77453, 0.57673, 0.31204), F2

(
X∗
2
)
= 2.946 kJ.

(5.1)

The impact factors are shown in Table 2.
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Table 2: The impact factors.

Impact factors Δji
Design variables

x1 x2 x3 x4 x5

Objective functions
F1 95.53 85.86 29.75 21.57 1.78
F2 17.12 13.99 5.34 5.27 0.36

Table 3: The impact factors of strategy subsets to objection functions.

Impact factors
Strategy subsets

Sa Sb

Objection functions

F1 90.695 17.700
F2 15.555 3.657

5.3. Fuzzy Clustering

Consider Δ1 = (95.53, 17.12), Δ2 = (85.86, 13.99), Δ3 = (29.75, 5.34), Δ4 = (21.57, 5.27), Δ5 =
(1.78, 0.36),

R =

⎛

⎜⎜⎜⎜⎜
⎝

∗ 1.66393 1.54728 1.52919 1.54697
∗ 1.52336 1.50450 1.53111

∗ 1.34602 1.54624
Symmetry ∗ 1.60735

∗

⎞

⎟⎟⎟⎟⎟
⎠

, (5.2)

M = 2, and P = 3. Because r12 = 1.66393 is the maximum value of matrix R, x1 and x2 belong
to one class. Namely, Sa = {x1, x2} and Sb = {x3, x4, x5}. The impact factors bof strategy
subsets to objection functions are shown in Table 3.

According to Table 3, because the maximum value is 90.695, Sa = S1 = {x1, x2} is the
strategy subset of F1. Sb = S2 = {x3, x4, x5} is the strategy subset of F2.

5.4. Calculation Results

There exist two kinds of cases. Case 1 is that the big pig stands for F2 and the small pig stands
for F1. Case 2 is that the big pig stands for F1 and the small pig stands for F2.

We take case 1; for example, the detailed calculation steps are as follows.

(1) Take the corresponding values of the initial design in strategy subsets S1, S2 as
the initial feasible strategies s

(0)
1 , s(0)2 . Then, form a strategy permutation s(0) =

{s(0)1 , s
(0)
2 }.

(2) Perform the following two single-objective optimization.
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Table 4: The iterative process of Case 1.

Game round
Design variables Objective functions

x1/m x2/m x3/m x4/m x5/rad F1/m F2/KJ

Initial strategy 0.02968 4.09656 0.59710 0.56809 0.04602 0.06290 34.819
Bout 1 −0.02685 4.06819 0.68734 0.30528 0.35235 0.04682 30.382
Bout 2 0.06769 4.15154 0.63034 0.46589 0.30726 0.03309 32.764
Bout 3 −0.01810 4.07167 0.69530 0.32966 0.41033 0.03157 30.829
Bout 4 0.00422 4.09241 0.72985 0.30224 0.40272 0.02267 31.060
Bout 5 −0.00605 4.06225 0.58250 0.49698 0.02102 0.01581 33.438
Bout 6 −0.00605 4.06225 0.58250 0.49698 0.02102 0.01581 33.438

(a) Seek the optimal strategy s∗1 ∈ S1 and minimize the payoff function,

u1

(
s∗1, s

(0)
2

)
=

F1

(
s∗1, s

(0)
2

)

F1

(
s
(0)
1 , s

(0)
2

) −→ min . (5.3)

(b) Seek the optimal strategy s∗2 ∈ S2 and minimize the payoff function,

u2

(
s
(0)
1 , s∗2

)
= w22 ×

F2

(
s
(0)
1 , s∗2

)

F2

(
s
(0)
1 , s

(0)
2

) +w21 ×
F1

(
s
(0)
1 , s∗2

)

F1

(
s
(0)
1 , s

(0)
2

) −→ min . (5.4)

(3) Define strategy permutation s(1) = s∗1 ∪ s∗2. Then, justify the feasibility of s(1). If
s(1) does not satisfy constraint conditions, turn to step (1). Otherwise, compute√∑5

j=1(((x
(1)
j − x

(0)
j )/x(0)

j )2/5) and examine whether it satisfies the convergence
precision ε (ε is 0.0001 in this paper). If it satisfies, the game is over; if not, let
s(0) = s(1) and turn to step (2) to iteration loop.

Illustration: for case 2, u1 is constructed according to cooperative behavior mode and
u2 is constructed according to noncooperative behavior mode.

(1) For case 1, w22 = 0.5, w21 = 0.5, calculation starts from the initial strategy
X0 = (0.02968, 4.09656, 0.59710, 0.56809, 0.04602) and obtains convergence value
X∗ = (−0.00605, 4.06225, 0.58250, 0.49698, 0.02102) after six rounds game and F1 =
0.01581m, F2 = 33.438KJ. Iterative process is shown in Table 4.

(2) For case 2, w11 = 0.5, w12 = 0.5, calculation starts from the initial strategy
X0 = (0.19247, 4.17230, 0.42101, 0.31284, 0.31592) and obtains convergence value
X∗ = (0.01724, 4.08923, 0.40303, 0.30493, 0.43130) after four rounds game and F1 =
0.14471m, F2 = 28.255KJ. Iterative process is shown in Table 5.

The compared results are shown in Table 6. (Illustration: multiobjective fuzzy opti-
mization method is adopted in [17] and multiobjective Nash equilibrium game method is
adopted in [6]).



12 Mathematical Problems in Engineering

Table 5: The iterative process of Case 2.

Game round
Design variables Objective functions

x1/m x2/m x3/m x4/m x5/rad F1/m F2/KJ

Initial strategy 0.19247 4.17230 0.42101 0.31284 0.31592 0.03357 33.212
Bout 1 0.05860 4.02781 0.40414 0.30544 0.40052 0.02428 32.968
Bout 2 0.18459 4.17053 0.41018 0.30223 0.39318 0.03514 32.457
Bout 3 0.01724 4.08923 0.40303 0.30493 0.43130 0.14471 28.225
Bout 4 0.01724 4.08923 0.40303 0.30493 0.43130 0.14471 28.225

Table 6: The compared results.

Reference
Design variables Objective functions

x1/m x2/m x3/m x4/m x5/rad F1/m F2/KJ

[16] −0.030 4.040 0.550 0.370 0.160 0.05935 31.166
[17] −0.02199 4.14131 0.76369 0.44838 0.32446 0.04325 30.174
[6] 0.11480 4.08089 0.40800 0.30067 0.41340 0.01604 33.140
Method in this
paper

Case 1 −0.00605 4.06225 0.58250 0.49698 0.02102 0.01581 33.438
Case 2 0.01724 4.08923 0.40303 0.30493 0.43130 0.14471 28.225

The comparison of deviation trajectory (cases 1 and 2, [6, 16, 17]) is shown in Figure 4.
According to Table 6, we can know that F1 in case 1 is better than [6, 16, 17] and case

2, and that F1 in case 2 is the worst. According to Figure 4, the deviation trajectory in case
1 is better than [6, 16, 17] and case 2. F2 in case 2 is better than [6, 16, 17] and case 1. F2

in case 1 is the worst. The results show that the method can effectively solve bi-objective
optimization problems with preferred target and that multiobjective fuzzy optimization
method [17] is an effective method without preferred target (both F1 and F2 are better than
realistic optimization results [16]).

By analyzing the results, we can know three conclusions as follows. (1) The game
player with noncooperative characteristic of the small pig has greater advantage in the
pursuit of its own interests than the game player with cooperative characteristic of the big pig.
(2) If the designers have target preference, they need to take the preferred target as the small
pig side and take another target as the big pig side. (3) The satisfactory equilibrium solution
can be obtained through less iteration rounds because the design variables are decomposed
into the strategy subset owned by 2 game players.

To reveal the influence ofwii on the final solutions, wii = 0.1, 0.3, 0.5, 0.7, respectively.
The results are shown in Tables 7 and 8. In case 1, the big pig stands for F2 and the greater the
value of w22 is (the cooperative degree is lower), the better the final value of F2 is. In case 2,
the big pig stands for F1 and the greater the value ofw11 is (the cooperative degree is lower),
the better the final value of F1 is.

6. Conclusions

(1) One new bi-objective optimization game method is proposed. Two design goals
can be regarded as two game players, the design variables set can be regarded as
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Figure 4: The comparison of deviation trajectory.

Table 7: The influence of w22 on the final solutions in Case 1.

w22
Design variables Objective functions

x1/m x2/m x3/m x4/m x5/rad F1/m F2/KJ

0.1 0.00034 4.06904 0.49224 0.57956 0.07845 0.01569 33.585
0.3 −0.00605 4.06225 0.59757 0.48890 0.00316 0.01574 33.481
0.5 −0.00605 4.06225 0.58250 0.49698 0.02102 0.01581 33.438
0.7 0.01812 4.09616 0.58756 0.48979 0.37132 0.01588 32.383

Table 8: The influence of w11 on the final solutions in Case 2.

w11
Design variables Objective functions

x1/m x2/m x3/m x4/m x5/rad F1/m F2/KJ

0.1 0.03455 4.11824 0.40770 0.30283 0.39273 0.15709 27.850
0.3 0.00833 4.08878 0.40770 0.30283 0.39273 0.15380 27.973
0.5 0.01724 4.08923 0.40303 0.30493 0.43130 0.14471 28.225
0.7 0.02928 4.10112 0.40770 0.30283 0.39273 0.14075 28.377

strategy subsets named S1, S2, and the constraints in multiobjective problems can
be regarded as constraints in the game method. Through the specific technological
means, the design variables can be divided into each game players strategy subsets
(S1, S2) and two payoff functions u are constructed based on pigs’ payoff game
behavior.

(2) The solution step of game player’s strategy subset is presented. The design
variables are divided into strategy spaces owned by the corresponding game player
by calculating the impact factor and fuzzy clustering.

(3) The big pig’s behavior is cooperative but the small pig’s behavior is noncooperative.
The different behavior characteristics of the big pig and small pig, respectively, are
assigned to the corresponding game players based on pigs’ payoff game behavior.
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The paper constitutes a hybrid game mode and proposes the detailed solution
steps.

(4) For optimization problems with preferred target, the designers need to emphasize
one design goal. For this problem, there exist traditional methods such as weighting
method (by adjusting the weight of each goal), hierarchical sequence method (by
adjusting the objective optimization order), and goal programming method. In this
paper, one new bi-objective optimization game method is proposed based on pigs’
payoff game behavior for solving optimization problems with preferred target. It
takes bi-objective optimization of luffing mechanism of compensative shave block;
for example, the results show that the method can effectively solve the bi-objective
optimization problems with preferred target (designers need to take the preferred
target as the small pig side and take another target as the big pig side), the efficiency
and accuracy are well, and the solution is obtained only through fewer game
rounds.
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