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The purpose of this paper is to explore the Hilbert space functional structure of the Helmholtz
equation inverse source problem. An integral equation for the sources reconstruction based on
the composition of the trace and Green’s function operators is introduced and compared with the
reciprocity source reconstruction methodologies. An equivalence theorem comparing the integral
inverse source equation with the variational weak reciprocity gap functional equation is then
demonstrated. Some examples on applications to the unitary disk are presented.

1. Introduction

The inverse source problem for the Helmholtz Dirichlet equation is a basic tool for the
investigation of transient source problems [1–4]. In order to investigate this class of problems,
let Ω ⊂ R

N be a bounded domain with smooth boundary Γ. Let κ be a complex number,
g ∈ H1/2(Γ), and f ∈ L2(Ω). The direct problem with the Helmholtz operator: to find a
regular field u that satisfy the system

−Δu − κ2u = f in Ω,

γ0u = g on Γ,
(1.1)

is well posed and has a unique solution u ∈ H1(Ω) when κ2 is not an eigenvalue of the
Laplacian. In this paper we consider γ0 : H1(Ω) → H1/2(Γ) the trace operator and simplify
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the notation by calling the boundary data g of problem (1.1) γ0u. The trace theorem [5]
assures the existence of a function gνx ∈ H−1/2(Γ) which is the normal trace, that is,

γ1u = ∂νxu. (1.2)

When κ is a real positive or an imaginary number we have, respectively, the proper
or the modified Helmholtz equation. When κ = 0, we obtain the Laplace equation. For the
complete setting of complex values, we consider the problem as the Helmholtz equation
direct problem.

The inverse source problem consist, in knowing the Cauchy data in the boundary Γ,
that is, the Dirichlet to Neumann map in at least one Dirichlet datum g, to recover the source
f . It may be formally posed as follows:

given a Cauchy data set
{(
g, gνx

)} ⊂ H1/2(Γ) ×H−1/2(Γ),

with compatibility condition
∂g

∂νx
= gνx on Γ,

for the equation model in the system (1.1),

to find
(
u, f

) ∈ H1(Ω) × L2(Ω).

(1.3)

The two problems, direct and inverse, can also be formulated with only one system of
equations: to find (u, f) ∈ H1(Ω) × L2(Ω) such that

−Δu − k2u = f in Ω,

γ0u = g on Γ,

γ1u = gνx on Γ.

(1.4)

Since in the inverse problem the Cauchy data are known, we may associate these data
with a fourth-order Dirichlet problem with the Bilaplacian operator

Δ2u − κ4u = h in Ω,

γ0u = g on Γ,

γ1u = gνx on Γ,

(1.5)

where h ∈ H−2(Ω) is an arbitrary given function. This problem is well posed and has a
unique solution u ∈ H2(Ω) when κ4 is not an eigenvalue of the Bilaplacian. This motivates
the following naive existence result

Remark 1.1. Suppose that a Cauchy data pair (g, gνx) ∈ H3/2(Γ)×H1/2(Γ) is more regular than
normal case and κ4 /∈ Σ4 is not an eigenvalue of the Bilaplacian, then there exists a solution
to inverse source problem (1.3).
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Proof. Since data is regular, we may consider the fourth-order direct Dirichlet problem (1.5)
with the given Cauchy data and some h ∈ H−2(Ω). The inverse source solution will be f =
−Δu + κ2u ∈ L2(Ω).

To obtain the existence of global solution for problems (1.1), and (1.5), please see
[6]. For more information about linear integral equations, see [7]. For the inverse source
problems, see [8]. For functional analysis, please see [9].

In Section 2 we develop a Hilbert space functional framework to the problem based on
special L2(Ω) decomposition. The analysis of the Dirichlet to Newmanmap and of the Source
to Neumann maps is done in Sections 2.1 and 2.2, respectively. It is based only on the analysis
of the direct problem structure. The analysis of the Adjoint Source toNeumannmap is done in
Section 2.3. In Section 3 we use the Green function operator to put together the results found
in Section 2. There in Section 3.1 we present an integral equation for the inverse problem
based on the relative Dirichlet to Newman map. The reciprocity gap functional is introduced
in Section 4, where an equivalence theorem between this and the integral formulation is
proved. In Section 5 some particular results for the unitary disk in R

2 are presented. Finally,
we conclude the paper in Section 6.

2. The Dirichlet and the Source to Neumann Map

For l ∈ R, the space Hl(Ω) is the Sobolev class of the functions of the spatial variable x. For
more information, see [5]. Let us consider for future use the following sets of eigenvalues:

Σ2 :=
{
λ ∈ C : −Δu = λu in H2(Ω) ∩H1

0(Ω)
}
,

Σ4 :=
{
λ ∈ C : Δ2u = λu in H4(Ω) ∩H2

0(Ω)
}
.

(2.1)

Definition 2.1. One says that a function is metaharmonic when it is in the set

H−Δ−κ2(Ω) =
{
v ∈ L2(Ω); −Δv − κ2v = 0

}
, (2.2)

where κ2 /∈ Σ2 and κ4 /∈ Σ4.

2.1. The Dirichlet to Neumann Map

Definition 2.2. Consider problem (1.1) with zero source, that is, f = 0 and g ∈ H1/2(Γ). This
problem has a solution w0 ∈ H1(Ω). One defines the Dirichlet to Neumann map for the
Helmholtz equation as the operator

Λ0 : H1/2(Γ) −→ H−1/2(Γ),

Λ0[g
]
(x) =

∂w0

∂νx
(x), x ∈ Γ.

(2.3)

By the trace theorem [5], it is well defined, linear, and continuous.
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Remark 2.3. We alternatively can define the Dirichlet to Neumann map (2.2) for the problem
(1.1) as an operator with a nonzero source problem Λf : H1/2(Γ) → H−1/2(Γ) defined by the
graph (g,Λfg) := (u, ∂νu)|∂Ω.

Definition 2.4. One has

M :=
{(
g, gνx

) ∈ H1/2(Γ) ×H−1/2(Γ); gνx −Λ0g ∈ H1/2(Γ)
}
, (2.4)

where Λ0 is a Dirichlet to Neumann map.

Theorem 2.5. Let (g, gνx) ∈ H1/2(Γ) × H−1/2(Γ). A function f ∈ H−Δ+κ2(Ω)is a solution to the
inverse source problem (1.3) if and only if (g, gνx) ∈ M

Proof. Suppose (g, gνx) ∈ M. Consider the following fourth-order problem:

(
Δ2 − k4

)
w = 0 in Ω,

γ0w = 0 on Γ,

γ1w = gνx −Λ0g on Γ.

(2.5)

Let us use this problem to define a source f0 = (−Δ − k2)w, where w ∈ H2(Ω) is solution
of problem (2.5). Note that f0 ∈ H−Δ+κ2(Ω). Let (u, f) ∈ H1(Ω) × L2(Ω) be a solution of the
inverse source problem (1.4). Then u = w0 +w, wherew0 is the solution of the homogeneous
source problem in the definition of the Dirichlet to Neumann map (2.2) and f = f0. The
sufficiency is proved.

To proof necessity, suppose that there exists a (u, f) ∈ H1(Ω) × H−Δ+κ2(Ω) which is
solution of the inverse problem (1.4).

Consider the second-order problem with homogeneous boundary Dirichlet data

(
−Δ − k2

)
w0 = f, x ∈ Ω,

γ0w0 = 0, x ∈ Γ,
(2.6)

with a unique solution w0 ∈ H2(Ω) ∩H1
0(Ω). By the trace theorem, we have γ1w0 ∈ H1/2(Γ).

Note that gνx = γ1w0 + γ1w0, where γ1w0 = Λ0g. So, γ1w0 = gνx −Λ0g.

Remark 2.6. We have proved the existence and uniqueness of solution to (1.4) in H1(Ω) ×
H−Δ+κ2(Ω). However, this does notmean that whenwe do the search in a larger spaceH1(Ω)×
L2(Ω), we will continue having uniqueness. In fact, we will prove in the next proposition that
f − f0 ⊥ v ∈ H−Δ−κ2(Ω) and consequently

f ∈ f0 + [H−Δ−κ2(Ω)]⊥, (2.7)

where f ∈ L2(Ω) and f0 ∈ H−Δ+κ2(Ω). This leads us to conclude that the solution of (1.4)
is actually a class of functions, where we can “reconstruct” or “observe” only part of the
solution inH−Δ+κ2(Ω).
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Proposition 2.7. If κ2 /∈ Σ2 and κ4 /∈ Σ4, then

L2(Ω) = [H−Δ−κ2(Ω)]⊥ ⊕H−Δ+κ2(Ω). (2.8)

Proof. Consequence of Lemmas 2.8 and 2.9.

From now on, we are supposing always that κ2 /∈ Σ2 and κ4 /∈ Σ4.

Lemma 2.8. One has L2(Ω) = H−Δ+κ2(Ω) ⊕ (−Δ − κ2)[H2
0(Ω)].

Proof. For an arbitrarily given f ∈ L2(Ω), the problem (1.1)with zero Dirichlet datum g = 0 is
well posed and has an w0 ∈ H2(Ω) with normal derivative trace Λf = ∂νw0 ∈ H1/2(Γ). Also,
since κ4 /∈ Σ4, the fourth-order problem (1.5)with Cauchy datum (0,Λf) ∈ H3/2(Γ)×H1/2(Γ)
and zero source has solution v and is well posed inH2(Ω). These twoH2(Ω) solutions may
be used to define a function

w := w0 − v ∈ H2
0(Ω), (2.9)

and since by problem (1.1)

f =
(
−Δ − κ2

)
w0 =

(
−Δ − κ2

)
v +

(
−Δ − κ2

)
w, (2.10)

we obtain that arbitrary L2(Ω) function f is the sum of a function inH−Δ−κ2(Ω) and a function
in (−Δ − κ2)[H2

0(Ω)]. If we show that

H−Δ+κ2(Ω) ∩
(
−Δ − κ2

)[
H2

0(Ω)
]
= {0}, (2.11)

we prove that L2(Ω) = H−Δ+κ2 ⊕ (−Δ − κ2)[H2
0(Ω)]. For this, take a u in the intersection

H−Δ−κ2 ∩ (−Δ + κ2)[H2
0(Ω)]. Then

(
−Δ − κ2

)
u = 0, u =

(
−Δ + κ2

)
v, for some v ∈ H2

0(Ω) (2.12)

which means that v is a solution of completely homogeneous fourth-order problem (1.5),
with no source and zero Cauchy datum. Since κ4 /∈ Σ4, the unique solution is trivial v = 0,
and u = (−Δ + κ2)v = 0. We have proved that L2(Ω) = H−Δ−κ2(Ω) ⊕ (−Δ + κ2)[H2

0(Ω)].

Lemma 2.9. One has (−Δ − κ2)[H2
0(Ω)] = [H−Δ−κ2(Ω)]⊥.

Proof. Using the second Green theorem with f ∈ H−Δ−κ2(Ω) and v = (−Δ − κ2)w for some
w ∈ H2

0(Ω), we obtain

∫

Ω
fv dx =

∫

Ω
f
(
−Δ − κ2

)
wdx =

∫

Ω
f(−Δw)dx − κ2

∫

Ω
fw dx

=
∫

Ω

(−Δf)wdx − κ2
∫

Ω
fw dx = 0,

(2.13)
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and since the scalar product with arbitrary h ∈ (−Δ − κ2)[H2
0(Ω)] is zero, the inclusion (−Δ −

κ2)[H2
0(Ω)] ⊂ H⊥

−Δ−κ2(Ω) follows.
To prove the other inclusion, let f ∈ L2(Ω), suppose f is orthogonal to v for all v ∈

H−Δ−κ2(Ω), and take a function w ∈ H2(Ω) such that w is solution of (1.1) with source f and
Dirichlet datum g = 0.

By using the second Green formulas for v ∈ H−Δ−κ2(Ω), we have

0 =
∫

Ω
fv dx =

∫

Ω

(
−Δ − κ2

)
wvdx =

∫

Ω
w

(
−Δ − κ2

)
v dx =

∫

Γ
v∂νxw dσx. (2.14)

Note that, since the test functions are dense on H−Δ−κ2(Ω), we may consider a variational
formulation using the dual system (D(Ω), D(Ω)∗). Because v ∈ L2(Ω), by trace theorem
v|∂Ω ∈ H−1/2(Γ) and

∫

Γ
v∂νxw dσx = 〈v, ∂νxw〉(D(Ω),[D(Ω)]∗) = 0 =⇒ ∂νxw = 0 on H1/2(Γ). (2.15)

So, if an arbitrary L2(Ω) function is orthogonal to all functions in H−Δ−κ2(Ω), then it is in
(−Δ − κ2)[H2

0(Ω)] and the reverse inclusion follows.

2.2. The Source to Neumann Map

Let us consider the simultaneous solution of the direct and inverse source problem (1.4) and
search for a solution (u, f) ∈ H1(Ω) × L2(Ω). It follows from Theorem 2.5 that if we restrict
the source search to the subspaceH−Δ+κ2(Ω) ⊂ L2(Ω), we will find a unique solution.

Definition 2.10. Consider problem (1.1) with zero Dirichlet data, that is, g = 0 and f ∈
H−Δ+κ2(Ω) ⊂ L2(Ω) and solution wf

0 ∈ H2(Ω) ∩H1
0(Ω). One defines the Source to Neumann

map for the Helmholtz equation as the operator

Λ0 : H−Δ+κ2(Ω) −→ H1/2(Γ),

Λ0
[
f
]
(x) =

∂w
f

0

∂νx
(x) = γ1

[
w
f

0

]
(x), x ∈ Γ.

(2.16)

By the trace theorem [5], it is well defined, linear, and continuous.

Theorem 2.11. Λ0 : H−Δ+κ2(Ω) → H1/2(Γ), is an isomorphism.

Remark 2.12. If we consider problem (1.1) with Dirichlet data g ∈ H3/2(Γ) and f ∈
H−Δ+κ2(Ω) ⊂ L2(Ω) and solutionwf

g ∈ H2(Ω)∩H1
0(Ω), we can define the Source to Neumann

map for the Helmholtz equation as the operator

Λg : H−Δ+κ2(Ω) −→ H−1/2(Γ),

Λg

[
f
]
(x) =

∂w
f
g

∂νx
(x) = γ1

[
w
f
g

]
(x), x ∈ Γ.

(2.17)
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Note that this more general situation will produce results such as

Λg[0](x) = Λ0[g
]
(x) = γ1

[
g
]
=
∂w0

g

∂νx
(x). (2.18)

As consequence,

(i) a functional such as a Source-Dirichlet to Neumann map may be defined

Λ[·, ·] : H−Δ+κ2(Ω) ×H1/2(Γ) −→ H−1/2(Γ),

[
f, g

] �−→ Λ
[
f, g

]
= γ1

[
w
f
g

]
,

(2.19)

(ii) and restrieted to be a functional such as a Dirichlet to Neumann map

Λ[0, ·] : {0} ×H1/2(Γ) −→ H−1/2(Γ),

g �−→ Λ
[
0, g

] ≡ Λ0[g
]
= γ1

[
w0
g

]
,

(2.20)

(iii) or to be a functional such as a Source to Neumann map

Λ[·, 0] : H−Δ+κ2(Ω) × {0} −→ H−1/2(Γ),

f −→ Λ
[
0, f

] ≡ Λ0
[
f
]
= γ1

[
w
f

0

]
.

(2.21)

It is important to note that in this more general definition it is not possible to prove thatΛ[·, ·]
is an isomorphism, since the fact that the trace γ0[w

f
g ] = 0 is used in the proof.

Lemma 2.13. H−Δ+κ2(Ω) is a Hilbert space with L2(Ω) norm.

Proof. Let us consider the canonical projection

π2 : L2(Ω) = H−Δ+κ2(Ω) ⊕H⊥
−Δ−κ2(Ω) −→ H⊥

−Δ−κ2(Ω)
[
f, f⊥

]
�−→ f⊥. (2.22)

Note that π2 is continuous, π−1
2 [0] is closed. Since

π−1
2 [0] =

[
f, 0

]
(2.23)

for all f ∈ H−Δ+κ2(Ω), it follows that {0} × HΔ+κ2(Ω) is closed. Consequently H−Δ+κ2(Ω) is
closed subspace of the Banach space L2(Ω). So, it is Banach and, consequently, is a Hilbert
space with the scalar product induced by L2(Ω).
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Proof of Theorem 2.11. (i) Λ0 : H−Δ+κ2(Ω) → H1/2(Γ) is continuous.

Note that Λ0 = γ1 ◦ i is a composition of the normal trace γ1 : H2(Ω) → H1/2(Γ) and
the canonical embedding i : H−Δ+κ2(Ω) → H2(Ω). The normal trace is continuous by
trace theorem. The canonical embedding is also continuous since H−Δ+κ2(Ω) is closed by
Lemma 2.13. So, Λ0 is continuous.

(ii) Λ0 : H−Δ+κ2(Ω) → H1/2(Γ) is one to one.

Take some arbitrary f ∈ Ker(Λ0). Then Λ0[f] = γ1[w0] = 0 is the normal derivative of the
problem (1.1) with g = 0. By hypotheses, f ∈ H−Δ+κ2(Ω) and, consequently, (−Δ + κ2)f =
(−Δ + κ2)(−Δ − κ2)wf

0 = 0. The fourth-order problem

(
Δ2 − k4

)
w
f

0 = 0 in Ω,

γ0w
f

0 = 0 on Γ,

γ1w
f

0 = 0 on Γ,

(2.24)

is well posed and has a unique wf

0 = 0. Then f = (−Δ − κ2)wf

0 = 0. Since f is arbitrary,
Ker(Λ0) = {0} and the injectivity is proved.

(iii) Λ0 : H−Δ+κ2(Ω) → H1/2(Γ) is onto.

Consider an arbitrary gνx ∈ H1/2(Γ) and κ/= 0, where gνx does not necessarily satisfy the
compatibility condition. Letwgνx ∈ H−Δ+κ2(Ω) be a solution of the well-posed Neumann data
problem,

(
−Δ + κ2

)
wgνx = 0 on Ω,

γ1wgνx = gνx in Γ.
(2.25)

Note that with f = wgνx we obtain Λ0[f] = γ1[wgνx ] = gνx . So, Λ0 is surjective.
It remains to prove the following.

(iv) Λ−1
0 : H1/2(Γ) → H−Δ+κ2(Ω) is continuous.

In fact, this is a consequence of the Banach open map theorem, since.

Λ0 : H−Δ+κ2(Ω) −→ H1/2(Γ) (2.26)

is a linear continuous bijective application between Banach spaces.
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2.3. The Adjoint Source to Neumann Operator

Definition 2.14. Consider again the problem (1.1) with zero Dirichlet data, that is, g = 0 and
f ∈ L2(Ω) and solution w

f

0 ∈ H2(Ω) ∩ H1
0(Ω). One defines the extension of the Source to

Neumann map for the Helmholtz equation as the operator

Λ0 : L2(Ω) −→ H1/2(Γ),

Λ0
[
f
]
(x) =

∂w
f

0

∂νx
(x) = γ1

[
w
f

0

]
(x), x ∈ Γ.

(2.27)

Remark 2.15. By the trace theorem [5], it is well defined, linear, and continuous. As an
extension of Λ0, surjectivity is preserved. Also Λ0 = Λ0 ◦ π1.

Corollary 2.16. The quotient of L2(Ω) byH⊥
−Δ−κ2(Ω) is a copy ofH1/2(Γ).

Proof. Consider the following chain of embeddings:

L2(Ω) = H−Δ+κ2(Ω) ⊕ [H−Δ−κ2(Ω)]⊥ Λ0→ H (Γ)

↓c0 ↑Λ0

L2(Ω)
[H−Δ−κ2 (Ω)]⊥

c1→ H−Δ+κ2(Ω),

1/2

(2.28)

where c0 is a canonic embedding and c1 is an isomorphism by the Banach isomorphism
theorem. Since Λ0 also is an isomorphism by Theorem 2.11, the corollary is proved, that is,
L2(Ω)/H⊥

−Δ+κ2(Ω) ∼= H1/2(Γ).

Corollary 2.17. Ker(Λ0) = H⊥
−Δ−κ2(Ω) is a closed subspace of L2(Ω).

Remark 2.18. Since Λ0 ∈ L(L2(Ω);H1/2(Γ)) is bounded, then its adjoint operator Λ0
∗ ∈

L(H−1/2(Γ);L2(Ω)) is well defined and continuous and one to one.

Corollary 2.19. Λ0
∗
: H−1/2(Γ) → H−Δ−κ2(Ω) is an isomorphism.

Proof. (i) Λ0
∗
: H−1/2(Γ) → H−Δ−κ2(Ω) is well defined.

We know that

H⊥
−Δ−k2(Ω) = Ker

(
Λ0

)
= Rg

(
Λ0

∗)
,

[
⊥Rg

(
Λ0

∗)]⊥
= H−Δ−k2(Ω),

(2.29)

where Rg and Ker denote the operator range and kernel, respectively. It is well known that if

X is a Banach space andN, that is, a subspace of its dual X∗, then [⊥N]⊥ = N
w∗

is the weak
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star closure ofN in X∗. Applying this result to our case, we have H−Δ−κ2(Ω) = Rg(Λ0
∗
)
w∗

in
L2(Ω). Particularly, Rg(Λ0

∗
) ⊂ H−Δ−κ2(Ω) assures that Λ0

∗
is well defined.

(ii) Λ0
∗
: H−1/2(Γ) → H−Δ−κ2(Ω) is one to one.

Note that, Λ0 : H−Δ+κ2(Ω) → H1/2(Γ) is onto andH−Δ−κ2(Ω) is a closed subspace of L2(Ω),

(iii) Λ0
∗
: H−1/2(Γ) → H−Δ−κ2(Ω) is onto.

Note that since, Rg(Λ0) is closed in L2(Ω),

Ker
(
Λ0

)
= H⊥

−Δ−κ2(Ω) =⇒ H−Δ−κ2(Ω) = Ker
(
Λ0

)⊥ ⊂ Rg
(
Λ0

∗)
= Rg

(
Λ0

∗)w
∗

= H−Δ−κ2(Ω).

(2.30)

Since Λ0
∗
is linear, continuous, and bijective from H−1/2(Γ) to H−Δ−κ2(Ω), by the open

mapping Banach theorem, Λ0
∗
is an isomorphism.

Proposition 2.20. If κ1 /=κ2, thenH−Δ−κ21(Ω) ∩H−Δ−κ22(Ω) = {0}.

Proof. Suppose that v ∈ H−Δ−κ21(Ω) ∩H−Δ−κ22(Ω). Then

(
−Δ − κ21

)
v = 0, if v ∈ H−Δ−κ21(Ω),

(
−Δ − κ22

)
v = 0, if v ∈ H−Δ−κ22(Ω),

(2.31)

and, consequently, v = 0.

Remark 2.21. If we substitute κ by iκ in problem (1.1) and use the same argument already
used in the precedent proofs, then

(i) L2(Ω) = H−Δ−κ2(Ω) ⊕ (−Δ + κ2)[H2
0(Ω)],

(ii) H⊥
−Δ+κ2(Ω) = (−Δ + κ2)[H2

0(Ω)],

(iii) H−Δ+κ2(Ω) is a closed subspace of L2(Ω),

(iv) L2(Ω) = H−Δ−κ2(Ω) ⊕H⊥
−Δ+κ2(Ω),

(v) if κ1 /=κ2,H−Δ−κ21(Ω) ∩H−Δ−κ22(Ω) = {0}.

3. Integral Representation

Definition 3.1. The Dirichlet Green function G(x, ζ) for the problem (1.1) is its solution with
source δ(x − ζ), x, ζ ∈ Ω, and homogeneous Dirichlet data, that is, G(x, ζ) = 0 for x on Γ.
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Definition 3.2. Let G(x, ζ) be the Green function for problem (1.1) with homogeneous
Dirichlet boundary conditions. Then, the solution

S : L2(Ω) ×H1/2(Ω) −→ H1(Ω),
(
f, g

) �−→ u = S
[
f, g

]
,

S
[
f, g

]
(x) =

∫

Ω
f(ζ)G(x, ζ)dζ +

∫

Γ
g(ζ)

∂G(x, ζ)
∂νζ

dσζ for x ∈ Ω.
(3.1)

Remark 3.3. By using problem (1.1) linearity, we formally decompose the solution in two
additive parts

u = S
[
f, g

]
:= S

[
f, 0

]
+ S

[
0, g

]
: L2(Ω) ×H1/2(Γ) −→ H1(Ω), (3.2)

where S[f, 0] : L2(Ω)×{0} → H1(Ω) is the homogeneous Dirichlet source auxiliary problem
solution and S[0, g] : {0} ×H1/2(Γ) → H1(Ω) is the zero source auxiliary Dirichlet problem
solution. For simplicity, for a fixed f ∈ L2(Ω) or g ∈ H1/2(Γ), we will denote

Sf = S
[
f, ·] : H1/2(Γ) −→ H1(Ω),

Sg = S
[·, g] : L2(Ω) −→ H1(Ω).

(3.3)

By taking the normal trace of the solution (3.1), we obtain

Λ
[
f, g

]
(x) = γ1 ◦ S

[
f, g

]
=

∫

Ω
f(ζ)

∂G(x, ζ)
∂νx

dζ +
∫

Γ
g(ζ)

∂2G(x, ζ)
∂νx∂νζ

dσζ for x ∈ Γ (3.4)

which is an explicit representation to the Dirichlet to Newman map with arbitrary f and g.
By using the same notation adopted for the additive decomposition of the solution

map, fixed f ∈ L2(Ω) or g ∈ H1/2(Γ), we will denote

Λf = Λ
[
f, ·] : H1/2(Γ) −→ H1(Ω),

Λg = Λ
[·, g] : L2(Ω) −→ H1(Ω).

(3.5)

Remark 3.4. Note that

S0
[
f
]
(x) = S

[
f, 0

]
(x) =

∫

Ω
f(ζ)G(x, ζ)dζ, x ∈ Ω,

S0[g
]
(x) = S

[
0, g

]
(x) =

∫

Γ
g(ζ)

∂G(x, ζ)
∂νζ

dσ(ζ), x ∈ Ω.

(3.6)
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With this decomposition, we obtain the following explicit representation to operators
in Section 2:

(1)

Λ
[
f, g

]
= γ1 ◦ S

[
f, g

]
(x) =

∂S
[
f, g

]

∂νx
(x)

=
∫

Ω
f(ζ)

∂G(x, ζ)
∂νx

dζ +
∫

Γ
g(ζ)

∂2G(x, ζ)
∂νx∂νζ

dσ(ζ),

(3.7)

with x ∈ Γ;

(2)

Λ0[g
]
(x) = Λ

[
0, g

]
(x) = γ1 ◦ S

[
0, g

]
(x) =

∫

Γ
g(ζ)

∂2G(x, ζ)
∂νx∂νζ

dσ(ζ), x ∈ Γ, (3.8)

is an explicit representation to the Dirichlet to Neumann map;

(3)

Λ0
[
f
]
= (x)Λ

[
f, 0

]
(x) = γ1 ◦ S

[
f, 0

]
(x) =

∫

Ω
f(ζ)

∂G(x, ζ)
∂νx

dζ, x ∈ Γ, (3.9)

is an explicit representation to the Source to Neumann map.

3.1. The Inverse Source Integral Equation

Lemma 3.5. Let uj , j = 1, 2, be two solutions of problem (1.1) with the same source f and different
Dirichlet data gj , j = 1, 2, respectively. Then

(i) Λf[g1]−Λ0[g1] = Λf[g2]−Λ0[g2] on Γ, that is, the relative Dirichlet to Newman operator
Λf −Λ0 : H1/2(Γ) → H1/2(Γ) is constant operator whose functional value is independent
of the Dirichlet datum g and depends only on the source function f ;

(ii)
∫
Ω f(ζ)(∂G(x, ζ)/∂νx)dζ = Λf[gj] − Λ0[gj] for all solutions of (1.1) with arbitrary
Dirichlet data but the same source, that is, the integral is the function given by the relative
Dirichlet to Newman map.

Proof. The equality
∫
Ω f(ζ)(∂G(x, ζ)/∂νx)dζ = Λf[g1] − Λ0[g1] = Λf[g2] − Λ0[g2] in both

(i) and (ii) is a trivial consequence of (3.4). Note that in this case the unique information
available for source reconstruction is given by only one measurement, say that Neumann
boundary measurement

∂νxu = Λf[g
]
, (3.10)

corresponding to some specific Dirichlet datum g, which without loss of generality can be
assumed zero. Note also that problem (1.1)with Dirichlet datum g = 0 and source f ∈ L2(Ω)
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has solution u ∈ H2(Ω). The normal trace of this regular solution is in H1/2(Γ). So we have
proved that the range of Λf −Λ0 is inH1/2(Γ). The domain of Λf −Λ0 isH1/2(Ω) since this is
the set of nonzero Dirichlet data that gives the same function in the range.

Definition 3.6 (strong integral equation problem). Since in the inverse source problem the
exact Cauchy data pair (g, gνx) is given, the relative Dirichlet to Newman map value for the
source problem (1.1)

Λ =
(
Λf −Λ0

)[
g
]
= gνx(x) −

∫

Γ
g(ζ)

∂2G(x, ζ)
∂νx∂νζ

dσζ for x ∈ Γ, (3.11)

is known and Lemma 3.5 suggests the following integral equation formulation for the source
reconstruction problem: to find f ∈ L2(Ω) such that

F
[
f
]
= Λ on Γ, (3.12)

where F := Λ0 = Λ[·, 0] : L2(Ω) → H1/2(Γ),

F
[
f
]
(x) :=

∫

Ω
f(ζ)

∂G(x, ζ)
∂νx

dζ, (3.13)

for x ∈ Γ.

Remark 3.7. Note that we introduce here F as a simplified notation to the extended Source to
Neumann map Λ0. This notation is more usual.

The following corollary resumes all that has been discussed.

Corollary 3.8. Supposed that κ2 /∈ Σ2 and κ4 /∈ Σ4. Then,

(i) for a Cauchy datum (v, ∂νv)|Γ = (0,Λ) ∈ H3/2(Γ) × H1/2(Γ), there exists a unique
function f ∈ H−Δ+κ2(Ω) solution of the inverse source problem (1.3) for the Helmholtz
equation (1.1),

(ii) the associated mapping

F−1 : H1/2(Γ) −→ H−Δ+κ2(Ω) (3.14)

defines a linear homeomorphism between these spaces,

(iii) and is a right inverse of the mapping F : L2(Ω) → H1/2(Ω) defined by the strong inverse
source equation (3.12),

(iv) the projection Q : L2(Ω) → L2(Ω) \H−Δ+κ2(Ω) is well defined and constant in the level
set

Ch =
{
f ∈ L2 :

(
−Δ + κ2

)
f = h

}
, (3.15)
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(v) if the source f is known to be in the class Ch, then a single boundary measurement (0,Λ)
is sufficient to identify f ,

(vi) for a Cauchy datum (v, ∂νv)|Γ = (0,Λ) ∈ H3/2(Γ) ×H1/2(Γ), there are many functions
f = f + h, where f ∈ H−Δ+κ2(Ω) is an observed consequence of (ii) and h ∈ (−Δ +
κ2)[H2

0(Ω)] = L2(Ω) \H−Δ+κ2(Ω) is an arbitrary nonobserved function.

Proof. The items are trivial consequences of the results already proved.

Remark 3.9. Given h ∈ Ch, the unique solution referred to in Section 3.1 is the unique solution
of the fourth-order direct problem [1]:

(
Δ2 − κ4

)
wf = h in Ω,

wf = 0 on Γ,

∂νw
f = 0 on Γ.

(3.16)

Remark 3.10. The adopted Hilbert space framework for solution of the problem may be
understood as an a priori information about the criteria for selecting the observable and the
nonobservable part of the source. Other Sobolev spaces that induced partitions of the pivot
space Lp(Ω), 1 ≤ p ≤ ∞ (in this work p = 2) will modify this observability relation.

Remark 3.11 (relation between star-shaped and metaharmonic functions). Let us define the
set

UType =
{
χω : ω ⊂ Ω is of type Type

}
. (3.17)

The Usquares ⊂ Ustar shape ⊂ Ucharacteristic. Note that Usquares is dense in L2(Ω). If, for all
ω ⊂ Ω, there exists a family of metaharmonic functions inH−Δ+κ2(Ω) that approach χω, then
H−Δ+κ2(Ω) is dense in L2(Ω).

Remark 3.12. The most important classes of sources that may be reconstructed uniquely from
boundary data occurwhen f is metaharmonic or when f ≡ fχω, where χω is the characteristic
function of an open star-shaped set ω ⊂ Ω with C2 being boundary and f a C2(Ω) function.
We will discuss these classes when establishing uniqueness.

Remark 3.13 (the adjoint integral equation). This equation may be used for the source
reconstruction independent of solution of the direct problem (1.1). By substituting the explicit
integral definition of F in the duality definition of adjoint

〈
F[f], ψ

〉
H1/2×H−1/2 =

〈
f, F∗[ψ

]〉
L2×L2 , (3.18)

we obtain that F∗ : H−1/2(Γ) → L2(Ω) is explicitly given by

h(ζ) = F∗[ψ
]
(ζ) =

∫

Γ
ψ(x)

∂G(x, ζ)
∂νx

dσx. (3.19)
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Remark 3.14. From these formulas, we can deduce that, for a fixed f ∈ L2(Ω), the operator

Λf
g(x) −Λ0

g(x) = F
[
f
]
(x), x ∈ Γ, (3.20)

for any g ∈ H2(Γ), we will call this operator Extended Dirichlet to Neumann map.

Remark 3.15. Once we know the integral formulation to F, we can determine the integral
formulation to F∗. In fact,

〈
F
[
f
]
, ψ

〉
H1/2×H−1/2 =

〈
f, F∗[ψ

]〉
L2×L2 , (3.21)

and from

F
[
f
]
(x) =

∫

Ω
(ζ)

∂G(x, ζ)
∂νx

dζ, x ∈ Γ, (3.22)

it follows that

F∗[ψ
]
(ζ) =

∫

Ω
ψ(x)

∂G(x, ζ)
∂νx

dσ(x), x ∈ Γ. (3.23)

Remark 3.16. Consider the following direct problem

−Δw + k2w = 0 in Ω,

γ0w = ψ on Γ,
(3.24)

with ψ ∈ H−1/2(Γ). This problem has a unique solution w ∈ L2(Ω). Let

w(ζ) = S1,ψ(ζ) =
∫

Ω
ψ(x)

∂G(x, ζ)
∂νx

dσ(x) = F∗[ψ
]
(ζ), (3.25)

whereG is the associated Green function. This happens for each ψ ∈ H−1/2(Γ) since F∗[ψ](ζ) =
S1,ψ(ζ). From this we deduce that the integral S1,ψ inherits all good properties from F∗.

4. Integral and Variational Solutions: The Equivalence Theorem

4.1. Integral Formulation

With the integral formulas (3.8), (3.2), Definition (2.2), and supposing that the compatibility
condition has been verified, we obtain that

F
[
f
]
(x) = Λf

g(x) −Λ0[g
]
(x) (4.1)
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is the integral equation

∫

Ω
f(ζ)

∂G(x, ζ)
∂νx

dζ = gνx(x) −
∫

Γ
g(ζ)

∂G(x, ζ)
∂η(x)∂η(ζ)

dσ(ζ). (4.2)

4.2. Variational Formulation

Definition 4.1 (reciprocity gap functional problem). One may use the second Green theorem

∫

Ω
(uΔv − vΔu)dx =

∫

Γ

(
u
∂v

∂νx
− v ∂u

∂νx

)
dσx, (4.3)

valid for all u, v ∈ H2(Ω) with u a solution of problem (1.1) to formulate the reciprocity gap
functional inverse problem: to find f ∈ L2(Ω)

∫

Ω
fv dx =

∫

Γ

(
gνxv − g ∂v

∂νx

)
dσx, (4.4)

for all v ∈ H−Δ−κ2(Ω).
Note that the Lax-Milgram theorem assures the existence of a solution in this case.

4.3. The Equivalence Theorem

Theorem 4.2. Let one consider the two inverse source problems related with problem (1.1) with
relative Dirichlet to Newman map Λ ∈ L2(Ω):

(i) integral equation problem given by (3.12);

(ii) reciprocity gap functional problem given by (4.4).

Then (i) ⇒ (ii). Suppose additionally that the relative Dirichlet to Newman data Λ ∈ H1/2(Γ). Then
(ii) ⇒ (i).

Proof. Let us consider the inverse source problem: to find (u, f) ∈ H1(Ω) × L2(Ω) such that

−Δu − k2u = f in Ω,

γ0u = g on Γ,

γ1u = gνx on Γ,

(4.5)

where g ∈ H1/2(Γ), gνx ∈ H−1/2(Γ)with compatibility condition gν = ∂g/∂ν.
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(i)⇒ (ii).
We start the demonstration by supposing that (i) is true; that is, there exists f ∈ L2(Ω)

such that

∫

Ω
f(ζ)

∂G(x, ζ)
∂νx

dζ = gνx −
∫

Γ
g(ζ)

∂2G(x, ζ)
∂νx∂νζ

dσ(ζ), (4.6)

where G is the Green function associated with the Helmholtz operator in Ω.
Let v ∈ HΔ−κ2(Ω) be extended to the boundary of Ω. We then have the following

integral representation for v:

v(ζ) =
∫

Γ
v(x)

∂G(x, ζ)
∂νx

(ζ)dσ(x), ζ ∈ Γ. (4.7)

By taking the normal trace

∂v

∂νζ
(ζ) =

∫

Γ
v(x)

∂2G(x, ζ)
∂νx∂νζ

dσ(x), ζ ∈ Γ. (4.8)

We now multiply (4.2) by v and integrate on Γ to obtain

∫

Γ
v(x)

[∫

Ω
f(ζ)

∂G

∂νx
(x, ζ)dζ

]
dσ(x)

=
∫

Γ
v(x)

[

ϕ(x) −
∫

Γ
g(ζ)

∂2G(x, ζ)
∂νx∂νζ

dσ(ζ)

]

dσ(x)

=
∫

Γ
v(x)ϕ(x)dσ(x)−

∫

Γ
v(x)

[∫

Γ
g(ζ)

∂2G(x, ζ)
∂νx∂νζ

dσ(ζ)

]

dσ(x).

(4.9)

Now applying the Fubini theorem, we obtain

∫

Ω
f(ζ)

v(x)
︷ ︸︸ ︷[∫

Γ
v(x)

∂G(x, ζ)
∂νx

dσ(x)
]
dζ

=
∫

Γ
v(x)

∂g(x)/∂νx
︷︸︸︷
ϕ(x) dσ(x) −

∫

Γ
g(ζ)

∂v(ζ)/∂νζ
︷ ︸︸ ︷[∫

Γ
v(x)

∂2G(x, ζ)
∂νx∂η(ζ)

dσ(x)

]

dσ(ζ),

(4.10)

which implies

∫

Ω
f(ζ)v(ζ)dζ =

∫

Γ

(
v(ζ)

∂g(ζ)
∂η(ζ)

− g(ζ)∂v(ζ)
∂η(ζ)

)
dσ(ζ). (4.11)
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Since v ∈ H−Δ+κ2(Ω) is arbitrary, we obtain the weak formulation. Note that this is almost
expected, since the integral formulation is stronger than the variational, and, as usual, strong
⇒weak.

(ii)⇒ (i).
Let us now suppose that for all test functions v ∈ H−Δ+κ2(Ω) we have the weak

reciprocity integral equation (4.4)

∫

Ω
f(x)v(x)dx =

∫

Γ
gν(x)v(x)dσ(x) −

∫

Γ
g(x)

∂v(x)
∂ν

dσ(x). (4.12)

Consider the substitution of the Green function integral representation

v(ζ) =
∫

Γ
v(x)

∂G(x, ζ)
∂νx

dσ(x), (4.13)

whose normal derivative is

∂v(ζ)
∂νζ

=
∫

Γ
v(x)

∂2G(x, ζ)
∂νζ∂νx

dσ(x), (4.14)

in (4.4) and apply Fubini’s theorem to obtain

∫

Γ
v(x)

∫

Ω
f(ζ)

∂G(x, ζ)
∂νx

dζ dσ(x)

=
∫

Γ
v(x)

[∫

Γ
gν(ζ)

∂G(x, ζ)
∂νx

dσ(x) −
∫

Γ
g(ζ)

∂2G(x, ζ)
∂νx∂νζ

dσ(ζ)

]

dσ(x).

(4.15)

Note that since

(i)

∫

Γ
g(ζ)

∂2G(x, ζ)
∂νx∂νζ

dσ(ζ) = Λ0[g
]
, (4.16)

is the Dirichlet to Neumann map,

(ii) and

∫

Γ
gν(ζ)

∂G(x, ζ)
∂νx

dσ(x) = gν(ζ), (4.17)

we obtain
∫

Γ
v(x)

[∫

Ω
f(ζ)

∂G(x, ζ)
νx

dζ − gν + Λ0[g
]
]
dσ(x) = 0, (4.18)

for all v ∈ H1/2(Γ) ∼= H−Δ+κ2(Ω). By property of the integral, we obtain (3.12).
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5. Examples on the Unitary Disk

5.1. The Green Function for the Helmholtz Equation Dirichlet Problem in
Circular Domains

In this section we will consider the Green function determination when the domain Ω ⊂ R
2

in problem (1.1) is circular with respect to the polar coordinate system.
A Green function to problem (1.1) is a solution of

−ΔG(ζ, x) − κ2G(ζ, x) = δ(ζ − x), ζ ∈ Ω,

G(ζ, x) = 0, ζ ∈ ∂Ω,
(5.1)

where x ∈ Ω is the localization of the delta Dirac source. We may use the linearity of the
problem for decomposing the solution in two additive parts

G(ζ, x) = F(ζ, x) +
1
2
(GF(ζ, x) +GF(x, ζ)). (5.2)

Here F is the fundamental solution for the free space Helmholtz equation

−ΔF(ζ, x) − κ2F(ζ, x) = δ(ζ − x), (5.3)

and GF is a homogeneous source regular solution of the Helmholtz equation

−ΔGF(ζ, x) − κ2GF(ζ, x) = 0, ζ ∈ Ω,

G(ζ, x) = −F(ζ, x), ζ ∈ ∂Ω,
(5.4)

and x ∈ Ω. In polar coordinates with r = |ζ − x|

−1
r

∂

∂r

(
r
∂F(r)
∂r

)
− κ2F(r) = δ(r) for r ≥ 0, (5.5)

has at r = 0 singular behavior solution

F(κr) = −1
4
Y0(κr), (5.6)

which is a Bessel function of second kind.

Remark 5.1. When κ is small, this solution has a singularity that has the same behavior of the
logarithmic function, that is,

Y0(κr) ≈ − 2
π

log r,

lim
κ→ 0+

(
Δ + κ2

)
= Δ =⇒ lim

κ→ 0+

1
4
Y0(κr) = −1

2
log r.

(5.7)
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Remark 5.2 (addition theorem). Let x = (ρ cos(θ), ρ sin(θ)) and ζ = (σ cos(β), σ sin(β)). Then

r =
√
σ2 + ρ2 − 2 σρ cos

(
β − θ), (5.8)

Y0(κr) =
+∞∑

n=−∞
Yn(κσ)Jn

(
κρ

)
cos

(
n
(
β − θ)),

0 =
+∞∑

n=−∞
Yn(κσ)Jn

(
κρ

)
sin

(
n
(
β − θ)),

Y0(κr) =
+∞∑

n=−∞
Yn(κσ)Jn

(
κρ

)
ein(β−θ).

(5.9)

The nonhomogeneous Dirichlet boundary condition in (5.4) is

G(ζ, x) =
1
4
Y0

(
κ
√
1 + ρ2 − 2ρ cos

(
β − θ)

)
, ζ ∈ ∂Ω. (5.10)

The regular solution of (5.4) is

GF

(
σ, β; ρ, θ

)
=

+∞∑

n=−∞
cn

(
ρ, θ

)
Jn(κσ)einβ, (5.11)

where the coefficients cn = −c−n are determined by the Dirichlet boundary condition:

GF

(
1, β; ρ, θ

)
=

1
4
Y0

(
κ
√
1 + ρ2 − 2ρ cos

(
β − θ)

)
=

1
4

+∞∑

n=−∞
Yn(κ)Jn

(
κρ

)
ein(β−θ)

=
1
4

+∞∑

n=−∞
Yn

(
κρ

)
Jn(κ)ein(β−θ) =

+∞∑

n=−∞
cn

(
ρ, θ

)
Jn(κ)einβ.

(5.12)

Since the solutions {einβ, n = −∞,+∞} are linearly independent, we obtain

Jn(κ)cn =
1
4
Yn(κ)Jn

(
κρ

)
e−inθ =

1
4
Yn

(
κρ

)
Jn(κ)e−inθ, (5.13)



Mathematical Problems in Engineering 21

and when κ is not a root of the Bessel function Jn,

cn
(
ρ, θ

)
=

1
4
Yn(κ)Jn

(
κρ

)

Jn(κ)
e−inθ =

1
4
Yn

(
κρ

)
Jn(κ)

Jn(κ)
e−inθ, (5.14)

GF

(
σ, β; ρ, θ

)
=

1
4

+∞∑

n=−∞

Yn(κ)Jn
(
κρ

)

Jn(κ)
Jn(κσ)ein(β−θ) =

1
4

+∞∑

n=−∞

Yn
(
κρ

)
Jn(κ)

Jn(κ)
Jn(κσ)ein(β−θ),

(5.15)

GF

(
ρ, θ;σ, β

)
=

1
4

+∞∑

n=−∞

Yn(κ)Jn(κσ)
Jn(κ)

Jn
(
κρ

)
ein(β−θ) =

1
4

+∞∑

n=−∞

Yn(κσ)Jn(κ)
Jn(κ)

Jn
(
κρ

)
ein(β−θ),

(5.16)

by noting that by addition theorem

F(ζ, x) = −1
4

+∞∑

n=−∞
Yn(κσ)Jn

(
κρ

)
ein(β−θ) = −1

4

+∞∑

n=−∞
Yn

(
κρ

)
Jn(κσ)ein(β−θ). (5.17)

By substituting (5.6) and (5.15) and using the addition theorem (5.9) in (5.4), we finally
obtain the Green function for the circular domain Helmholtz equation problem (5.1)

G
(
σ, β; ρ, θ

)
= −1

8

+∞∑

n=−∞

Jn(κ)Yn(κσ) − Yn(κ)Jn(κσ)
Jn(κ)

Jn
(
κρ

)
ein(β−θ)

− 1
8

+∞∑

n=−∞

Jn(κ)Yn
(
κρ

) − Yn(κ)Jn
(
κρ

)

Jn(κ)
Jn(κσ)ein(θ−β),

(5.18)

if we define r >= maxσ, ρ and r <= minσ, ρ, which can also be rewritten as

G
(
σ, β; ρ, θ

)
= −1

4

+∞∑

n=−∞

Jn(κ)Yn(κr >) − Yn(κ)Jn(κr >)
Jn(κ)

Jn(κr <)ein(β−θ). (5.19)

5.2. The Integral Equation Kernel for the Unitary Disk

The kernel of the integral equation is obtain by taking the normal derivative trace of the Green
function (5.18). By using the Wronskian identity for the Bessel functions

Jn(z)Y ′
n(z) − J ′n(z)Yn(z) =

2
πz

, (5.20)

we obtain

Pκ
(
ρ, β − θ) =

∂G(x, ζ)
∂νx

=
∂G

(
σ, β; ρ, θ

)

∂σ
|σ=1 =

1
2π

+∞∑

n=−∞

Jn
(
κρ

)

Jn(κ)
ein(β−θ), (5.21)
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which is the modified Poisson kernel for Dirichlet Helmholtz equation problem in the disk.
Note that, when κ → 0, it tends to the classical Poisson kernel for the disk.

Note that, when κ ≡ iκ is substitute in (1.1), it becomes a modified Helmholtz equation
for which extensions of the Maximum Modulo Principle and the Strong Maximum Principle
for metaharmonics functions are applicable. In this case the Poisson Kernel may be rewrit
with modified Bessel function of first kind

In(r) = e−in(π/2)Jn(ir), (5.22)

Piκ
(
ρ, β − θ) =

1
2π

+∞∑

n=−∞

I|n|
(
κρ

)

I|n|(κ)
ein(β−θ). (5.23)

Remark 5.3. Substituting the kernel (5.23) in (3.12), we obtain the strong inverse source
equation (3.12) for unitary disk

∫2π

0

∫1

0

(
1
2π

+∞∑

n=−∞

I|n|
(
κρ

)

I|n|(κ)
ein(β−θ)

)

f
(
ρ, θ

)
ρ dρ dθ = Λ

(
β
)
, β ∈ [0, 2π). (5.24)

Remark 5.4. Another important class of sources to be reconstructed is the characteristic source
with star-shaped boundary with parametrization given by (x, y) = (r(θ) cos(θ), r(θ) sin(θ)),
with r ∈ H1(0, 2π). The strong inverse star-shaped characteristic source equation (3.12) for
unitary disk is

∫2π

0

∫ r(θ)

0

(
1
2π

+∞∑

n=−∞

I|n|
(
κρ

)

I|n|(κ)
ein(β−θ)

)

ρ dρ dθ = Λ
(
β
)
, β ∈ [0, 2π). (5.25)

Remark 5.5. Note that the kernel with finite sum

PNiκ
(
ρ, β − θ) =

1
2π

+N∑

n=−N

I|n|
(
κρ

)

I|n|(κ)
ein(β−θ), (5.26)

converges with respect to (ρ, θ) pointwise to Piκ(ρ, β − θ). Since

∣∣Piκ
(
ρ, β − θ)∣∣ = 1

2π

+N∑

n=−N

I|n|
(
κρ

)

I|n|(κ)
=

1
2π

+N∑

n=−N
ρ|n|

1 +
∑∞

m=1

((
κ2/4

)m|n|!ρ2m/m!(|n| +m)!
)

1 +
∑∞

m=1
(
(κ2/4)m|n|!/m!(|n| +m)!

)

≤ 1
2π

+N∑

n=−N
ρ|n|,

(5.27)

it is bounded by the function ρdρ integrable 2/(1 − ρ), in such a way that the limit and the
integral can be transposed.
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Remark 5.6. The transposed equation

1
2π

+∞∑

n=−∞

(∫2π

0

∫ r(θ)

0

I|n|
(
κρ

)

I|n|(κ)
e−inθρ dρ dθ

)

einβ = Λ
(
β
)
, β ∈ [0, 2π), (5.28)

can be Fourier transformed giving

∫2π

0

∫ r(θ)

0

I|n|
(
κρ

)

I|n|(κ)
e−inθρ dρ dθ = Λ̂(n), n ∈ Z. (5.29)

5.3. The Variational Formulation for the Unitary Disk

Take Ω = D as the unitary disk. The weak equation (4.4) can also be specialized for the
characteristic star-shaped source χω = χr inside the unitary disk Modified Helmholtz
problem

∫

D

v
(
ρ, θ

)
χω

(
ρ, θ

)
ρ dρ dθ =

∫2π

0

∫ r(θ)

0
v
(
ρ, θ

)
dρ dθ

=
∫2π

0

(
gνx(θ)v(1, θ) − g(θ)

∂v

∂νx
(θ)

)
dθ,

(5.30)

for all v ∈ H−Δ+κ2(D). As we have proved in Lemma 3.5, without loss of generality we can
consider the data from the homogeneous Dirichlet problem g = 0. Note that the Modified
Poisson Dirichlet kernel

Piκ
(
ρ, β − θ) =

1
2π

+∞∑

n=−∞

I|n|
(
κρ

)

I|n|(κ)
ein(β−θ), (5.31)

is a function insideH−Δ+κ2(D) and can be substituted in this equation giving

∫2π

0

∫ r(θ)

0

1
2π

+∞∑

n=−∞

I|n|
(
κρ

)

I|n|(κ)
ein(β−θ)ρ dρ dθ =

∫2π

0
gνx(θ)

1
2π

+∞∑

n=−∞
ein(β−θ)dθ. (5.32)

Proposition 5.7. If gνx ∈ Hl(0, 2π) for l ≥ 1/2, then

∫2π

0
gνx(θ)

1
2π

+∞∑

n=−∞
ein(β−θ)dθ = gνx

(
β
)
. (5.33)

Proof. This is consequence from the fact that DN =
∑+N

n=−N ein(β−θ) is the Dirichlet kernel of
orderN. When it acts on a continuous function, the fast oscillations of DN far from θ = β do
not contribute toN-truncated Fourier series

gNνx
(
β
)
=

1
2π

∫2π

0
gνx(θ)DN

(
θ − β)dθ. (5.34)
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As N grows, the dominant contribution to this integral comes from an arbitrarily small
neighborhood of θ − β. This behavior gives the Dirac delta distribution character to the series

δ
(
θ − β) = limN −→ ∞DN

(
θ − β), (5.35)

and the integral is well defined only when gνx is a continuous function. By Sobolev embed-
ding, the minimal admissible index is 1/2.

Remark 5.8. Note that this result is in agreement with the sufficient condition for (ii) ⇒ (i) in
the equivalence theorem Section 4.3.

5.4. The Integral Operator for Star-Shaped Characteristic Source

Let us consider the nonlinear mapping

F[r] = F[
χr

]
, (5.36)

where F is the function in the formulation of problem given by (3.12). Note that the strong
integral equation (5.25) can be formally stated as the nonlinear problem: to find r(θ) such
that

F[r] = Λ. (5.37)

We can investigate the operator F : H1(0, 2π) → Hl(0, 2π) with respect to a possible set of
values l ∈ R for which the regularity of the source boundary r influences the regularity in the
range of the functional.

Proposition 5.9. One considers two possible cases for the star-shaped source inside the unitary disk
in which the source boundary can do or do not touch the disk border

(i) if r(θ) ≤ 1, then F[r] ∈ Hl(0, 2π) with l < 1/2;

(ii) when r(θ) < 1, F[r] ∈ C∞(0, 2π).

Proof. Wewill estimate the functional norm inHl(0, 2π) by using its Fourier transform (5.29).
Note that

I|n|
(
κρ

)

I|n|(κ)
= ρ|n|

1 +
∑∞

m=1

((
κ2/4

)m|n|!ρ2m/m!(|n| +m)!
)

1 +
∑∞

m=1
(
(κ2/4)m|n|!/m!(|n| +m)!

) ≤ ρ|n|,

∫ r(θ)

0

I|n|
(
κρ

)

I|n|(κ)
ρdρ ≤ r(θ)|n|+2

|n| + 2
.

(5.38)
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Since, for r ≤ 1,
∫ r(θ)
0 (I|n|(κρ)/I|n|(κ))ρ dρ ≤ 1/(|n| + 2) and (1 + n2)l/(|n| + 2)2 ≤ 2l|n|2l−2, we

obtain that

‖F[r]‖Hl(0,2π) =
1
2π

∞∑

−∞

(
1 + n2

)l
∣∣
∣
∣
∣

∫2π

0

(∫ r(θ)

0

I|n|
(
κρ

)

I|n|(κ)
ρ dρ

)

e−inθdθ

∣∣
∣
∣
∣

2

≤
∞∑

−∞

(
1 + n2

)l
∣
∣
∣
∣
∣

∫ r(θ)

0

I|n|
(
κρ

)

I|n|(κ)
ρ dρ

∣
∣
∣
∣
∣

2

≤
∞∑

−∞

(
1 + n2

)l

(|n| + 2)2
≤

∞∑

−∞
2l|n|2l−2,

(5.39)

converges when 2l − 2 < −1, which proves (i). If 2l − 2 = −1, that is, l = 1/2, the upper bound
series results in the divergent harmonic series. Note that the result (i) in the proposition gives
only a sufficient condition, since

‖F[r]‖Hl(0,2π)

=
1
2π

∞∑

−∞

(
1 + n2

)l
∣∣∣∣∣∣∣

∫2π

0

⎛

⎜
⎝

∫ r(θ)

0
ρ|n|

1 +
∑∞

m=1

((
κ2/4

)m|n|!ρ2m/m!(|n| +m)!
)

1 +
∑∞

m=1
(
(κ2/4)m|n|!/m!(|n| +m)!

) ρ dρ

⎞

⎟
⎠e−inθdθ

∣∣∣∣∣∣∣

2

=
∞∑

−∞

(
1 + n2

)l

×

∣∣∣∣∣∣∣∣

∫2π

0

r(θ)|n|+2

|n| + 2

1+
∑∞

m=1((|n|+2)/(|n|+2m+2))
((
κ2/4

)m|n|!r(θ)2m)/m!(|n|+m)!
)

1+
∞∑

m=1

(
(κ2/4)m|n|!/m!(|n|+m)!

) e−inθdθ

∣∣∣∣∣∣∣∣

2

,

(5.40)

if r(θ) = 1 for all θ ∈ [0, 2π), then

‖F[r]‖Hl(0,2π) = 1 ∀l ∈ R. (5.41)

For (ii) we note that r ∈ H1(0, 2π) ⊂ C(0, 2π) and that supθr(θ) = ‖r‖∞ < 1. In this case, for
eachm ∈ N, we have

lim
n→∞

(
|n|m

∣∣∣F̂[r](n)
∣∣∣
)
= lim

n→∞

(
|n|m | ‖r‖|n|+2∞

|n| + 2

)

= 0, (5.42)

which proves that F[r] ∈ C∞(0, 2π).

Proposition 5.10. Suppose that the source star-shaped boundaries do not touch the unitary circum-
ference. Then

F : N[r] ⊂ H1(0, 2π) −→ Hl(0, 2π), (5.43)



26 Mathematical Problems in Engineering

is locally Lipschitz continuous for every l ∈ R; that is, for all r, there exists a neighborhood N(r) of r
inH1(0, 2π) such that F is Lipschitz.

Proof. Let r1 and r2 be two star-shaped boundaries in the same neighborhood. Then

‖F[r1] − F[r2]‖Hl(0,2π) =

⎛

⎝ 1
2π

∞∑

−∞

(
1 + n2

)l
∣
∣
∣
∣
∣

∫2π

0
(F[r1] − F[r2])e−inθdθ

∣
∣
∣
∣
∣

2
⎞

⎠

1/2

, (5.44)

where

F[r1] − F[r2]

=

(
r1(θ)

|n|+2 − r2(θ)|n|+2
)
/(|n| + 2)

1 +
∑∞

m=1
(
(κ2/4)m|n|!/m!(|n| +m)!

)

+

∑∞
m=1(1/(|n| + 2m + 2))

((
κ2/4

)m|n|!
(
r1(θ)

|n|+2+2m − r2(θ)|n|+2+2m
)
/m!(|n| +m)!

)

1 +
∑∞

m=1
(
(κ2/4)m|n|!/m!(|n| +m)!

) ,

(5.45)

can be factored in (r1(θ) − r2(θ))

F[r1] − F[r2] = (r1(θ) − r2(θ)) × f|n|(θ, r1(θ), r2(θ)), (5.46)

where the factor function

f|n|(θ, r1(θ), r2(θ))

:=
∑|n|+1

t=0 r1(θ)
|n|+1−tr2(θ)

t

(|n| + 2)
(
1 +

∑∞
m=1

(
(κ2/4)m|n|!/m!(|n| +m)!

))

+

∑∞
m=1((|n|+2)/(|n|+2m+2))

((
κ2/4

)m|n|!/m!(|n|+m)!
)∑|n|+1+2m

t=0 r1(θ)
|n|+1+2m−tr2(θ)

t

(|n| + 2)
(
1 +

∑∞
m=1

(
(κ2/4)m|n|!/m!(|n| +m)!

))

≥ 0
(5.47)
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is nonnegative. So

‖F[r1] − F[r2]‖Hl(0,2π) =

⎛

⎝ 1
2π

∞∑

−∞

(
1+n2

)l
∣
∣
∣
∣
∣

∫2π

0
(r1(θ)−r2(θ))×f |n|(θ, r1(θ), r2(θ))e

−inθdθ

∣
∣
∣
∣
∣

2
⎞

⎠

1/2

‖F[r1] − F[r2]‖Hl(0,2π) ≤
(

1
2π

∞∑

−∞

(
1 + n2

)l ∫2π

0
|r1(θ) − r2(θ)|2f|n|(θ, r1(θ), r2(θ))2dθ

)1/2

,

(5.48)

or

‖F[r1] − F[r2]‖Hl(0,2π) ≤ C0‖r1(θ) − r2(θ)‖C(0,2π), (5.49)

where

C0 ≥
( ∞∑

−∞

(
1 + n2

)l ∫2π

0

(
f|n|(θ, r1(θ), r2(θ))

)2
dθ

)1/2

(5.50)

is the Lipschitz constant. By denoting r0 = maxθ∈(0,2π){r1(θ), r2(θ)}, we have the following
estimate:

f|n|(θ, r0, r0) = r
|n|+1
0

1 +
∑∞

m=1((|n| + 2)/(|n| + 2m + 2))
((
κ2/4

)m|n|!/m!(|n| +m)!
)
r2m0

1 +
∑∞

m=1 (κ2/4)
m|n|!/m!(|n| +m)!

≤ r |n|+10

(5.51)

which gives

C0 =

( ∞∑

−∞

(
1 + n2

)l
r
2(|n|+1)
0

)1/2

<∞ ∀l ∈ R. (5.52)

Note that we have used the boundedness of the embedding of H1(0, 2π) in C(0, 2π) to find
a neighborhood N[r1] of r1 < 1 ∈ H1(0, 2π) such that sup{‖r2‖∞ : r2 ∈ N[r1]} < 1. This
embedding says that there also exists a neighborhood in H1(0, 2π) such that the nonlinear
mapping F[r] is Lipschitz continuous, as enunciated in the proposition.

6. Conclusions

The central question investigated in this paper is nonuniqueness of the inverse source
problem, which is related with nonobservability of the source by using only boundary data.
The Hilbert space framework constrains the class of functions that can be reconstructed
and may be considered a kind of a priory information about the source. For more generic
Banach spaces and other optimal formulations, different sources may be obtained. The
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demonstrated equivalence Theorem 4.2 can be used to investigate questions such as stability
and regularization. Further numerical studies for the unitary disk based on the equations
presented in Section 5 remain as future work.
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