
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 810626, 16 pages
doi:10.1155/2012/810626

Research Article
Adaptive Modified Function Projective
Synchronization between Two Different
Hyperchaotic Dynamical Systems

M. M. El-Dessoky,1, 2 M. T. Yassen,2 and E. Saleh2

1 Department of Mathematics, Faculty of Science, King AbdulAziz University, P.O. Box 80203,
Jeddah 21589, Saudi Arabia

2 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

Correspondence should be addressed to M. T. Yassen, mtyassen@yahoo.com

Received 11 November 2011; Accepted 17 December 2011

Academic Editor: Jun-Juh Yan

Copyright q 2012 M. M. El-Dessoky et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

This work investigates modified function projective synchronization between two different hyper-
chaotic dynamical systems, namely, hyperchaotic Lorenz system and hyperchaotic Chen system
with fully unknown parameters. Based on Lyapunov stability theory, the adaptive control law
and the parameter update law are derived to achieve modified function projective synchronized
between two diffierent hyperchaotic dynamical systems. Numerical simulations are presented to
demonstrate the effectiveness of the proposed adaptive controllers.

1. Introduction

During the last three decades, synchronization of chaotic systems has attracted increasing
attention from scientists and engineers and has been explored intensively both theoretically
and experimentally. Since Pecora and Carrol [1] introduced a method to synchronize two
identical systems with different initial conditions, many approaches have been proposed for
the synchronization of chaotic or hyperchaotic systems such as complete synchronization
[1], phase synchronization [2], generalized synchronization [3], lag synchronization [4],
intermittent lag synchronization [5], time-scale synchronization [6], intermittent generalized
synchronization [7], projective synchronization [8], modified projective synchronization
[9, 10], and function projective synchronization [11, 12]. Most of them are based on exactly
knowing the system structure and parameters, but in practice, some or all of the system’s
parameters are unknown. Moreover, these parameters change from time to time. A lot of
works have been done to solve this problem using adaptive synchronization [13–16]. Most
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of the methods mentioned above synchronize two identical chaotic systems. Hyperchaotic
system is usually classified as a chaotic system with more than one positive Lyapunov
exponent, indicating that the chaotic dynamics of the system are expanded in more than
one direction giving rise to a more complex attractor. The method of the synchronization of
two different hyperchaotic systems is far from being straightforward. There is little work
about this challenging problem because it consists of different structures and parameter
mismatch of the two hyperchaotic systems. Complete synchronization is characterized by
the equality of state variables while evolving in time. Antisynchronization is characterized
by the vanishing of the sum of relevant variables. Projective synchronization occurs when the
drive and response system could be synchronized up to a scaling factor. Function projective
synchronization is the most general definition of projective synchronization. It means that the
derive and response systems could be synchronized up to a scaling function.

A focused problem in the study of chaos synchronization is how to design a physically
available and simple controller to guarantee the realization of high-quality synchronization
in coupled chaotic systems. Linear feedback is of course a practical technique, but the
shortcoming is that it needs to find the suitable feedback constant. Recently, Huang proposed
a simple adaptive feedback control method, which neednot to estimate or find feedback
constant, to effectively synchronize two almost arbitrary identical chaotic systems in his series
paper [17–19].

In this work, we investigate modified function projective synchronization (MFPS)
between hyperchaotic Lorenz system and hyperchaotic Chen system with fully unknown
parameters. This work is organized as follows. In Section 2 the modified function projective
synchronization (MFPS) scheme is presented. Section 3 briefly describes hyperchaotic
Lorenz system and hyperchaotic Chen system. Section 4 proposes adaptive control laws
and parameter update rules for the modified function projective synchronization between
hyperchaotic Lorenz system and hyperchaotic Chen system. In Section 5, numerical examples
are given to demonstrate the effectiveness of the proposed method. Finally, the conclusions
are given in Section 6.

2. Adaptive Modified Function Projective Synchronization
(MFPS) Scheme

Consider the following master and slave system:

ẋ = f(x, t), (2.1)

ẏ = g
(
y, t

)
+ u

(
x, y, t

)
, (2.2)

where x, y ∈ Rn are the state vector of the system (2.1) and (2.2), respectively; f, g : Rn → Rn

are two continuous nonlinear vector functions, u(x, y, t) is the vector controller. We define the
error dynamical system as

e(t) = y −Mh(t)x, (2.3)

where M is a constant diagonal matrix M = diag{m1, m2, . . . , mn} ∈ Rn×n and h(t) a contin-
uous differentiable function with h(t)/= 0 for all t.
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Figure 1: The attractor of hyperchaotic Lorenz dynamical system at α = 10, β = 28, γ = 8/3, and r = 0.1 in
x, y, z subspace.

The system (2.1) and (2.2) i said to be in modified function projective synchronization
if there exists a constant diagonal matrix M and function h(t), such that Limt→∞‖e(t)‖ = 0.

It is easy to see that the definition of modified function projective synchronization
encompasses function projective synchronization when the scaling matrixM equals I.

3. System Description

The hyperchaotic Lorenz system is described as follows [20–22]:

ẋ = α
(
y − x

)
,

ẏ = βx + y − xz −w,

ż = xy − bz,

ẇ = ryz,

(3.1)

where x, y, z, and w are state variables and α, β, γ , and r are real constant parameters. In
[21, 22], it has been shown that the system (3.1) has two positive Lyapunov exponents when
α = 10, β = 28, γ = 8/3, and r = 0.1, the system (3.1) exhibits hyperchaotic behavior, see
Figure 1.

Hyperchaotic Chen system is described as [23, 24]

ẋ = a
(
y − x

)
+w,

ẏ = dx + cy − xz,

ż = xy − bz,

ẇ = lw + yz,

(3.2)
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Figure 2: The attractor of hyperchaotic Chen dynamical system at a = 35, b = 3, c = 12, d = 7, and l = 0.5 in
x, y, z subspace.

where x, y, z andw are state variables and a, b, c, d and h are real constant parameters. When
a = 35, b = 3, c = 12, d = 7, 0.798 ≤ l ≤ 0.9, system (3.2) is periodic, when a = 35, b = 3, c =
12, d = 7, 0 ≤ l ≤ 0.085, system (3.2) is chaotic; when a = 35, b = 3, c = 12, d = 7, 0.085 ≤ l ≤
0.798, system (3.2) exhibits hyperchaotic behavior see Figure 2.

4. Adaptive MFPS between Hyperchaotic Lorenz System and
Chen System

In order to achieve the synchronization behavior between hyperchaotic Lorenz system and
hyperchaotic Chen system, we assume that hyperchaotic Lorenz system is the drive system
whose four variables are denoted by subscript 1 and hyperchaotic Chen system is the
response systemwhose variables are denoted by subscript 2. The drive and response systems
are described by the following equations, respectively,

ẋ1 = α
(
y1 − x1

)
,

ẏ1 = βx1 + y1 − x1z1 −w1,

ż1 = x1y1 − γz1,

ẇ1 = ry1z1,

(4.1)

ẋ2 = a
(
y2 − x2

)
+w2 + u1,

ẏ2 = dx2 + cy2 − x2z2 + u2,

ż2 = x2y2 − bz2 + u3,

ẇ2 = lw2 + y2z2 + u4,

(4.2)

where U = [u1, u2, u3, u4]
T is the nonlinear controller functions which are to be determined

later. The term “synchronization,” in general, means that the signal effect upon the synchro-
nized system is very small in comparison with the amplitude of proper oscillations of the
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system but, nevertheless, it is enough to change the system behavior and to “impose” the
rhythm of external influence to it. The two hyperchaotic dynamical systems can be synchro-
nized in the sense that

lim
t→∞

|x2 −m1h(t)x1| = 0,

lim
t→∞

∣
∣y2 −m2h(t)y1

∣
∣ = 0,

lim
t→∞

|z2 −m3h(t)z1| = 0,

lim
t→∞

|w2 −m4h(t)w1| = 0,

(4.3)

where mi, (i = 1, 2, 3, 4) is the scaling factor and h(t) the scaling function.
We have the following error dynamical system:

ėx = ẋ2 −m1h(t)ẋ1 −m1ḣ(t)x1,

ėy = ẏ2 −m2h(t)ẏ1 −m2 ḣ(t)y1,

ėz = ż2 −m3h(t)ż1 −m3ḣ(t)z1,

ėw = ẇ2 −m4h(t)ẇ1 −m4ḣ(t)w1,

(4.4)

where ex = x2 −m1h(t)x1, ey = y2 −m1h(t)y1, ez = z2 −m1h(t)z1, and ew = w2 −m1h(t)w1.
Substitution of (4.1) and (4.2) in (4.4) yields following error dynamical system

ėx = a
(
y2 − x2

)
+w2 + u1 −m1h(t)α

(
y1 − x1

) −m1ḣ(t)x1,

ėy = dx2 + cy2 − x2z2 + u2 −m2h(t)
(
βx1 + y1 − x1z1 −w1

) −m2ḣ(t)y1,

ėz = x2y2 − bz2 + u3 −m3h(t)
(
x1y1 − γz1

) −m3ḣ(t)z1,

ėw = lw2 + y2z2 + u4 −m4h(t)ry1z1 −m4ḣ(t)w1.

(4.5)

Our aim is to find control laws ui (i = 1, 2, 3, 4) for stabilizing the error variables of the
system at the origin. For this end, we propose following control law:

u1 = m1h(t)α1
(
y1 − x1

)
+m1ḣ(t)x1 − a1

(
x2 − y2

) −w2 − k1ex,

u2 = m2h(t)
(
y1 + β1x1 −w1 − x1z1

)
+ x2z2 +m2ḣ(t)y1 − d1x2 − c1y2 − k2ey,

u3 = m3h(t)
(
x1y1 − γ1z1

)
+m3ḣ(t)z1 + b1z2 − x2y2 − k3ez,

u4 = m4h(t)r1y1z1 +m4ḣ(t)w1 − l1w2 − y2z2 − k4ew,

(4.6)
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and the update laws for the unknown parameters α1, β1, γ1, r1, a1, b1, c1, d1, and l1 are

α̇1 =
(
x1 − y1

)
m1h(t)ex − k5(α1 − α),

β̇1 = −x1m2h(t)ey − k6
(
β1 − β

)
,

γ̇1 = z1m3h(t)ez − k7
(
γ1 − γ

)
,

ṙ1 = −y1z1m4h(t)ew − k8(r1 − r),

ȧ1 =
(
y2 − x2

)
ex − k9(a1 − a),

ḃ1 = −z2ez − k10(b1 − b),

ċ1 = y2ey − k11(c1 − c),

ḋ1 = x2ey − k12(d1 − d),

l̇1 = w2ew − k13(l1 − l),

(4.7)

where ki > 0 (i = 1, 2, 3, . . . , 13).

Theorem 4.1. For given constant scaling matrix M and scaling function h(t), the MFPS between
two systems (4.1) and (4.2) will occur by the control law (4.6) and update law (4.7), and satisfy

lim
t→∞

|α1 − α| = lim
t→∞

∣∣β1 − β
∣∣ = lim

t→∞
∣∣γ1 − γ

∣∣ = lim
t→∞

|r1 − r| = lim
t→∞

|a1 − a|

= lim
t→∞

|b1 − b| = lim
t→∞

|c1 − c| = lim
t→∞

|d1 − d| = lim
t→∞

|l1 − l| = 0.
(4.8)

Proof. Define a Lyapunov function,

V (e) =
1
2

(
e2x + e2y + e2z + e2w + e2α + e2β + e2γ + e2r + e2a + e2b + e2c + e2d + e2l

)
, (4.9)

where

eα = α1 − α, eβ = β1 − β, eγ = γ1 − γ, er = r1 − r, ea = a1 − a,

eb = b1 − b, ec = c1 − c, ed = d1 − d, el = l1 − l.
(4.10)

The time derivative of the Lyapunov function along the trajectory of error system (4.9)
is

dV (e)
dt

= exėx + eyėy + ezėz + ewėw + eαėα + eβėβ + eγ ėγ

+ erėr + eaėa + ebėb + ecėc + edėd + elėl

= exėx + eyėy + ezėz + ewėw + eαα̇1 + eββ̇1 + eγ γ̇1

+ er ṙ1 + eaȧ1 + ebḃ1 + ecċ1 + edḋ1 + ell̇1.

(4.11)
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Inserting (4.6) and (4.7) into (4.11) yields the following:

dV (e)
dt

= −k1e2x − k2e
2
y − k3e

2
z − k4e

2
w − k5e

2
α − k6e

2
β − k7e

2
γ − k8e

2
r

− k9e
2
a − k10e

2
b − k11e

2
c − k12e

2
d − k13e

2
l = −Ke2,

(4.12)

where e = (ex, ey, ez, ew, eα, eβ, eγ , er , ea, eb, ec, ed, el)
T and K = diag(k1, k2, k3, k4, k5, k6, k7, k8,

k9, k10, k11, k12, k13)
T .

Since dV (e)/dt ≤ 0, we have ex, ey, ez, ew, eα, eβ, eγ , er , ea, eb, ec, ed, el → 0 as t → ∞,
limt→∞‖e‖ = 0.

Therefore, the drive system (4.1) synchronizes the response system (4.2) in the sense
of MFPS.

Remark 4.2. Note that complete synchronization and antisynchronization between two dif-
ferent hyperchaotic dynamical systems are special cases of MFPS with the scaling function
h(t) = 1 and the scaling factors mi = 1 and mi = −1 (i = 1, 2, 3, 4), respectively.

Remark 4.3. Note that function projective synchronization (FPS) between two different hyper-
chaotic dynamical systems is special case of MFPS with the scaling factors mi = 1 (i = 1, 2,
3, 4), and the scaling function h(t) is chosen later.

Remark 4.4. Note that generalized projective synchronization (GPS) and modified gener-
alized projective synchronization (MGPS) between two different hyperchaotic dynamical
systems are special cases of MFPS with the scaling function h(t) = 1 and the scaling factors
mi are equal and mi are not equal (i = 1, 2, 3, 4), respectively.

By suitable choosing for h(t), we can achieve modified function projective synchro-
nization, complete synchronization, antisynchronization, function projective synchroniza-
tion, generalized projective synchronization, modified generalized projective synchroniza-
tion, between two different hyperchaotic systems (see Examples 5.1–5.6).

5. Numerical Results

In this section, numerical examples are used to demonstrate the effectiveness of the proposed
method. By usingMaple 12 to solve the systems of differential equations (4.1), (4.2), (4.6), and
(4.7), we assume that the initial conditions of the drive system are x1(0) = 2, y1(0) = 2, z1(0) =
3, and w1(0) = 1, and the initial conditions of the response system are x2(0) = 6, y2(0) = 5,
z2(0) = 3, and w2(0) = 3. The initial conditions of the estimated parameters are chosen as
α1(0) = 0, β1(0) = 0, γ1(0) = 0, r1(0) = 0, a1(0) = 0, b1(0) = 0, c1(0) = 0, d1(0) = 0 and l1(0) = 0.

Let the scaling function be h(t) = sin(0.1πt) and the scaling factors are chosen as m1 =
2,m2 = 3,m3 = 5, andm4 = 0.5. The simulation of the error dynamical system between hyper-
chaotic Lorenz system and hyperchaotic Chen system without control functions is shown
in Figure 3(a) displays the ex = x2 − m1h(t)x1, Figure 3(b) displays the ey = y2 − m1h(t)y1,
Figure 3(c) displays the ez = z2 −m1h(t)z1, and Figure 3(d) displays the ew = w2 −m1h(t)w1.

Example 5.1. Let the scaling function be h(t) = sin(0.1πt) and the scaling factors are chosen as
m1 = 2, m2 = 3, m3 = 5, and m4 = 0.5. Furthermore, the control gains are chosen as k1 = k2 =
k3 = k4 = 3, k5 = k6 = k7 = k8 = k9 = k10 = k11 = k12 = h13 = 2. Figure 4 displays the MFPS
between systems (4.1) and (4.2). Figure 5 show that the estimates α1(t),β1(t),γ1(t),r1(t) of the
unknown parameters converge to α = 10, β = 28, γ = 8/3, and r = 0.1 as t → ∞. Figure 6
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Figure 3: The behavior of the trajectories ex, ey , ez, and ew of the error system between hyperchaotic Lorenz
system and hyperchaotic Chen system without control functions.
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Figure 4: The behavior of the trajectories ex, ey , ez, and ew of the error system between hyperchaotic Lorenz
system and hyperchaotic Chen system for MFPS.
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Figure 5: The estimates α1(t), β1(t), γ1(t), r1(t) of the unknown parameters converges to α = 10, β = 28, γ =
8/3, and r = 0.1 as t tends to 3.
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Figure 6: The estimates a1(t), b1(t), c1(t), d1(t), l1(t) of the unknown parameters converge to a = 35, b =
3, c = 12, d = 7, and l = 0.5 as t tends to 3.
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Figure 7: (a) The behavior of the trajectories ex, ey , ez, and ew of the error system between hyperchaotic
Lorenz system and hyperchaotic Chen system for complete synchronization. (b) the estimates α1(t), β1(t),
γ1(t), r1(t) of the unknown parameters converge to α = 10, β = 28, γ = 8/3, and r = 0.1 as t tends to 3.
(c) the estimates a1(t), b1(t), c1(t), d1(t), l1(t) of the unknown parameters converges to a = 35, b = 3, c =
12, d = 7, and l = 0.5 as t tends to 3.

show that the estimates a1(t), b1(t), c1(t), d1(t), l1(t) of the unknown parameters converge to
a = 35, b = 3, c = 12, d = 7, and l = 0.5 as t → ∞.

Example 5.2. Let the scaling function be h(t) = 1 and the scaling factors are chosen as
m1 = m2 = m3 = m4 = 1. Furthermore, the control gains are chosen as k1 = k2 = k3 = k4 = 3,
k5 = k6 = k7 = k8 = k9 = k10 = k11 = k12 = h13 = 2. Figure 7(a) displays the complete syn-
chronization between systems (4.1) and (4.2). Figure 7(b) show that the estimates α1(t),
β1(t), γ1(t), r1(t) of the unknown parameters converge to α = 10, β = 28, γ = 8/3,
and r = 0.1 as t → ∞. Figure 7(c) show that the estimates a1(t), b1(t), c1(t), d1(t), l1(t) of
the unknown parameters converge to a = 35, b = 3, c = 12, d = 7, and l = 0.5 as t → ∞.
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Figure 8: (a) The behaviour of the trajectories ex, ey , ez and ew of the error system between hyperchaotic
Lorenz system and hyperchaotic Chen system for anti-synchronization. (b): Show the estimates α1(t), β1(t),
γ1(t), r1(t) of the unknown parameters converges to α = 10, β = 28, γ = 8/3 and r = 0.1 as t tends to 3.
(c): Show the estimates a1(t), b1(t), c1(t), d1(t), l1(t) of the unknown parameters converges to a = 35, b =
3, c = 12, d = 7 and l = 0.5 as t tends to 3.

Example 5.3. Let the scaling function be h(t) = 1 and the scaling factors are chosen as m1 =
m2 = m3 = m4 = −1. Furthermore, the control gains are chosen as k1 = k2 = k3 = k4 = 3, k5 =
k6 = k7 = k8 = k9 = k10 = k11 = k12 = h13 = 2. Figure 8(a) displays the anti-synchronization
between systems (4.1) and (4.2). Figure 8(b) shows the estimates α1(t), β1(t), γ1(t), r1(t) of the
unknown parameters converge to α = 10, β = 28, γ = 8/3, and r = 0.1 as t → ∞. Figure 8(c)
shows the estimates a1(t), b1(t), c1(t), d1(t), l1(t) of the unknown parameters converge to
a = 35, b = 3, c = 12, d = 7, and l = 0.5 as t → ∞.
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Figure 9: (a) The behavior of the trajectories ex, ey , ez, and ew of the error system between hyperchaotic
Lorenz system and hyperchaotic Chen system for FPS. (b) the estimates α1(t), β1(t), γ1(t), r1(t) of the
unknown parameters converge to α = 10, β = 28, γ = 8/3, and r = 0.1 as t tends to 3. (c) the estimates
a1(t), b1(t), c1(t), d1(t), l1(t) of the unknown parameters converge to a = 35, b = 3, c = 12, d = 7,
and l = 0.5 as t tends to 3.

Example 5.4. Let the scaling function be h(t) = sin(0.1πt) and the scaling factors are chosen
as m1 = m2 = m3 = m4 = 1. Furthermore, the control gains are chosen as k1 = k2 = k3 =
k4 = 3, k5 = k6 = k7 = k8 = k9 = k10 = k11 = k12 = h13 = 2. Figure 9(a) displays the FPS
between systems (4.1) and (4.2). Figure 9(b) shows the estimates α1(t), β1(t), γ1(t), r1(t) of the
unknown parameters converge to α = 10, β = 28, γ = 8/3, and r = 0.1 as t → ∞. Figure 9(c)
shows the estimates a1(t), b1(t), c1(t), d1(t), l1(t) of the unknown parameters converge to
a = 35, b = 3, c = 12, d = 7, and l = 0.5 as t → ∞.
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Figure 10: (a) The behavior of the trajectories ex, ey , ez, and ew of the error system between hyperchaotic
Lorenz system and hyperchaotic Chen system for GPS. (b) the estimates α1(t), β1(t), γ1(t), r1(t) of the
unknown parameters converges to α = 10, β = 28, γ = 8/3, and r = 0.1 as t tends to 3. (c) the estimates
a1(t), b1(t), c1(t), d1(t), l1(t) of the unknown parameters converges to a = 35, b = 3, c = 12, d = 7, and
l = 0.5 as t tends to 3.

Example 5.5. Let the scaling function be h(t) = 1 and the scaling factors are chosen as m1 =
m2 = m3 = m4 = 0.5. Furthermore, the control gains are chosen as k1 = k2 = k3 = k4 = 3, k5 =
k6 = k7 = k8 = k9 = k10 = k11 = k12 = h13 = 2. Figure 10(a) displays the GPS between systems
(4.1) and (4.2). Figure 10(b) shows the estimates α1(t), β1(t), γ1(t), r1(t) of the unknown
parameters converge to α = 10, β = 28, γ = 8/3, and r = 0.1 as t → ∞. Figure 10(c)
shows the estimates a1(t), b1(t), c1(t), d1(t), l1(t) of the unknown parameters converges to
a = 35, b = 3, c = 12, d = 7, and l = 0.5 as t → ∞.
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Figure 11: (a) The behaviour of the trajectories ex, ey , ez, and ew of the error system between hyperchaotic
Lorenz system and hyperchaotic Chen system for MGPS. (b) the estimates α1(t), β1(t), γ1(t), r1(t) of the
unknown parameters converge to α = 10, β = 28, γ = 8/3, and r = 0.1 as t tends to 3. (c) the estimates
a1(t), b1(t), c1(t), d1(t), l1(t) of the unknown parameters converge to a = 35, b = 3, c = 12, d = 7, and l =
0.5 as t tends to 3.

Example 5.6. Let the scaling function be h(t) = 1 and the scaling factors are chosen as m1 =
2, m2 = 3, m3 = −2, andm4 = 0.1. Furthermore, the control gains are chosen as k1 = k2 = k3 =
k4 = 3, k5 = k6 = k7 = k8 = k9 = k10 = k11 = k12 = h13 = 2. Figure 11(a) displays the MGPS
between systems (4.1) and (4.2). Figure 11(b) show that the estimates α1(t), β1(t), γ1(t), r1(t)
of the unknown parameters converge to α = 10, β = 28, γ = 8/3, and r = 0.1 as t → ∞.
Figure 11(c) show that the estimates a1(t), b1(t), c1(t), d1(t), l1(t) of the unknown parameters
converge to a = 35, b = 3, c = 12, d = 7, and l = 0.5 as t → ∞.
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6. Conclusions

This work investigated modified function projective synchronization between the hyper-
chaotic Lorenz system and hyperchaotic Chen system with fully unknown parameters.
Based on Lyapunov stability theory, we design adaptive synchronization controllers˜with
corresponding parameter update laws to synchronize the two systems. The MFPS includes
complete synchronization, antisynchronization, function projective synchronization (FPS),
generalized projective synchronization (GPS), and modified generalized projective synchro-
nization (MGPS). All the theoretical results are verified by numerical simulations to demon-
strate the effectiveness of the proposed synchronization schemes. Thus, our synchronization
method is successful for some systems with two positive Lyapunov exponents.
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