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A model for a class of age-dependent population dynamic system of fractional version with
Hurst parameter h ∈ (1/2, 1] is established. We prove the existence and uniqueness of a mild
solution under some regularity and boundedness conditions on the coefficients. The proofs of our
results combine techniques of fractional Brownian motion calculus. Ideas of the finite-dimensional
approximation by the Galerkin method are used.

1. Introduction

Stochastic differential equations have been found in many applications in areas such as
economics, biology, finance, ecology, and other sciences [1–3]. In recent years, existence,
uniqueness, stability, invariant measures, and other quantitative and qualitative properties
of solutions to stochastic partial differential equations have been extensively investigated
by many authors. For example, it is well known that these topics have been developed
mainly by using two different methods, that is, the semigroup approach [4, 5] (e.g., Taniguchi
et al. [4] using semigroup methods discussed existence, uniqueness, pth moment, and
almost sure Lyapunov exponents of mild solutions to a class of stochastic partial functional
differential equations with finite delays) and the variational one (e.g., Krylov and Rozovskii
[6] and Pardoux [7]). On the other hand, although stochastic partial functional differential
equations also seem very important as stochastic models of biological, chemical, physical,
and economical systems, the corresponding properties of these systems have not been
studied in great detail (cf. [8, 9]). As a matter of fact, there exists extensive literature on the
related topics for deterministic age-dependent population dynamic system. There has been
much recent interest in application of deterministic age-structures mathematical models with
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diffusion. For example, Cushing [10] investigated hierarchical age-dependent populations
with intraspecific competition or predation.

There has been much recent interest in application of stochastic population dynamics.
For example, Qimin and Chongzhao gave a numerical scheme and showed the convergence
of the numerical approximation solution to the true solution to stochastic age-structured
population system with diffusion [11]. In papers [12, 13], Qi-Min et al. discussed the
existence and uniqueness for stochastic age-dependent population equation, when diffusion
coefficient k = 0 and k /= 0, respectively. Numerical analysis for stochastic age-dependent
population equation has been studied by Zhang and Han [14]. In papers [11–14], the random
disturbances are described by stochastic integrals with respect to Wiener processes.

However, the Wiener process is not suitable to replace a noise process if long-rang
dependence is modeled. It is then desirable to replace the Wiener process by fractional
Brownian motion. But this process is not a semimartingale, so that it is not possible to apply
the Itô calculus. A stochastic analysis with respect to fractional Brownianmotion is facedwith
difficulties.

Next, the stochastic continuous time age-dependent model is derived. In [12], the
nonlinear age-dependent population dynamic with diffusion can be written in the following
form:

∂P(r, t, x)
∂t

+
∂P(r, t, x)

∂r
− k1(r, t)ΔP(r, t, x)

= −μ1(r, t, x)P(r, t, x) + f1(r, t, x) + g1(r, t, x)
dw(t)
dt

, in QA = (0, A) ×Q,

P(0, t, x) =
∫A

0
β1(r, t, x)P(r, t, x)dr, in (0, T) × Γ,

P(r, 0, x) = P0(r, x), in (0, A) × Γ,

P(r, t, x) = 0, on ΣA = (0, A) × (0, T) × ∂Γ,

y(t, x) =
∫A

0
P(r, t, x)dr, in Q,

(1.1)

where t ∈ (0, T), r ∈ (0, A), x ∈ Γ ⊂ RN (1 ≤ N ≤ 3), Q = (0, T) × Γ, P(r, t, x) denotes the
population density of age r at time t in spatial position, x, β1(r, t, x) denotes the fertility rate
of females of age r at time t, in spatial position x, μ1(r, t, x) denotes the mortality rate of age
r at time t, in spatial position x, Δ denotes the Laplace operator with respect to the space
variable, and k1(r, t) > 0 is the diffusion coefficient. f1(r, t, x) + g1(r, t, x)(dw(t)/dt) denotes
effects of external environment for population system, such as emigration and earthquake
have. The effects of external environment the deterministic and random parts which depend
on r, t, and x. w(t) is a standard Wiener process.

In this paper, suppose that f1(r, t, x) is stochastically perturbed, with

f1(r, t, x) −→ f1(r, t, x) + g1(r, t, x)dBh(t), (1.2)
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where Bh(t) is fractional Brownian motions with the Hurst constant h. Then this
environmentally perturbed system may be described by the Itô equation

∂P(r, t, x)
∂t

+
∂P(r, t, x)

∂r
− k1(r, t)ΔP(r, t, x)

= −μ1(r, t, x)P(r, t, x) + f1(r, t, x) + g1(r, t, x)dBh(t), in QA = (0, A) ×Q,
(1.3)

P(0, t, x) =
∫A

0
β1(r, t, x)P(r, t, x)dr, in (0, T) × Γ, (1.4)

P(r, 0, x) = P0(r, x), in (0, A) × Γ, (1.5)

P(r, t, x) = 0, on ΣA = (0, A) × (0, T) × ∂Γ, (1.6)

y(t, x) =
∫A

0
P(r, t, x)dr, in Q, (1.7)

new stochastic differential equations (1.3)-(1.7) for an age-dependent population are derived.
It is an extension of (1.1).

Our work differs from these references [11–14]. In papers [11–14], the random
disturbances are described by stochastic integrals with respect to Wiener processes. In this
paper, we study a stochastic age-dependent population dynamic system with an additive
noise in the form of a stochastic integral with respect to a Hilbert space-valued fractional
Borwnianmotion. It is well known that a fractional BrownianmotionBh is a semimartingale if
and only if h = 1/2, that is, in the case of a classical Brownian motion. For h = 1/2, Qimin and
Chongzhao discussed the existence and uniqueness for stochastic age-dependent population
equation [12]. In this paper, we shall discuss the existence and uniqueness for a stochastic
age-dependent population equation with fractional Brownian motions with h ∈ [1/2, 1]. The
discussion uses ideas of the finite-dimensional approximation by the Galerkin method.

In Section 2, we begin with some preliminary results which are essential for our
analysis and introduce the definition of a solution with respect to stochastic age-dependent
populations. In Section 3, we shall prove existence and uniqueness of solution for stochastic
age-dependent population equation (1.3).

2. Preliminaries

Consider stochastic age-structured population system with diffusion (1.3). A is the maximal
age of the population species, so

P(r, t, x) = 0, ∀r ≥ A. (2.1)
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By (1.7), integrating on [0, A] to (1.3) and (1.5) with respect to r, we obtain the following
system

∂y

∂t
− k(t)Δy + μ(t, x)y − β(t, x)y

= f(t, x) + g(t, x)
dBh(t)
dt

, in Q = (0, T) × Γ,

y(0, x) = y0(x), in Γ,

y(t, x) = 0, on Σ = (0, T) × ∂Γ,

(2.2)

where

β(t, x) ≡
(

∫A

0
β1(r, t, x)P(r, t, x)dr

)(

∫A

0
P(r, t, x)dr

)−1
, (2.3)

where
∫A

0 P(r, t, x)dr = y(t, x) is the total population, and the birth process is described by the
nonlocal boundary conditions

∫A

0 β1(r, t, x)P(r, t, x)dr clearly, β(t, x) denotes the fertility rate
of total population at time t and in spatial position x.

μ(t, x) ≡
(

∫A

0
μ1(r, t, x)P(r, t, x)dr

)(

∫A

0
P(r, t, x)dr

)−1
, (2.4)

where μ(t, x) denotes the mortality rate at time t and in spatial position x

f(t, x) ≡
∫A

0
f1(r, t, x)dr,

g(t, x) ≡
∫A

0
g1(r, t, x)dr.

(2.5)

Let

V = H1(Γ)≡
{

ϕ | ϕ ∈ L2(Γ),
∂ϕ

∂xi
∈ L2(Γ), where

∂ϕ

∂xi
are generalized partial derivatives

}

.

(2.6)

Then V ′ = H−1(Γ) the dual space of V . We denote by | · | and ‖ · ‖ the norms in V and V ′

respectively, by 〈·, ·〉 the duality product between V , V ′, and by (·, ·) the scalar product in H.
We consider stochastic age-structured population system with diffusion of the form

dty(t) − kΔy(t)dt + μ(t, x)y(t)dt − β(t, x)y(t)dt
= f(t, x)dt + g(t, x)dBh(t), in Q = (0, T) × Γ,

y(0, x) = y0(x), in Γ,

y(t, x) = 0, on Σ = (0, T) × ∂Γ,

(2.7)
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where dty(t) is the differential of y(t, x) relative to t, that is, (dty(t) = ∂y(t)/∂t)dt, y(t) :=
y(t, x). T > 0, A > 0.

The integral version of (2.7) is given by the equation

y(t) − y(0) −
∫ t

0
kΔy(s)ds −

∫ t

0

(

β(s, x) − μ(s, x)
)

y(s)ds =
∫ t

0
f(s, x)ds +

∫ t

0
g(s, x)dBh(s),

(2.8)

here y(t, x) = 0, on Σ = (0, T) × ∂Γ.
Let Bh

j (t)t≥0 (j = 1, 2, . . .) be independent centered Gaussian processes with Bh
j (0) = 0

on a given probability space (Ω,F, P), where we assume that

E
(

Bh
j (t) − Bh

j (s)
)2

= |t − s|2hμj

(

j = 1, 2, . . .
)

,

μj > 0,
∞
∑

j=1

μj < ∞,
(2.9)

and h ∈ [1/2, 1].
The processes Bh

j (t)t≥0 are independent fractional Brownian motions with the Hurst

constant h and E(Bh
j (1))

2
= μj (j = 1, 2, . . .).

It follows from Kleptsyna et al. (cf. [15]) that

Bh
j (t) =

(

∫0

−∞

(

|t − r|h−1/2 − |r|h−1/2
)

dWj(r) +
∫ t

0
|t − r|h−1/2dWj(r)

)

, (2.10)

where (Wj(t))t≥0 (j = 1, 2, . . .) are real independent Wiener processes with EW2
j (t) = μjt.

LetK be a separable Hilbert space with the scalar product (·, ·)K, and (ej)j=1,2,... denotes
a complete orthogonal system in K, Then

∞
∑

j=1

E‖Bh
j (t)ej‖

2

K
= t2h

∞
∑

j=1

μj < ∞, (2.11)

and Bh(t) =
∑∞

j=1 B
h
j (t)ej is called a K-valued fractional Brownian motion where the sum is

defined mean square.

Definition 2.1. A H-valued continuous stochastic process (y(t))t∈[0,T] with y(t) ∈ V (P -a.s) is
a solution of (2.7) if it holds for v ∈ V and all t ∈ [0, T] that

(

y(t), v
)

H =
(

y(0), v
)

H +
∫ t

0

〈

kΔy(s), v
〉

ds +
∫ t

0

(

β(s, x)y(s) − μ(s, x)y(s), v
)

Hds

+
∫ t

0

(

f(s, x), v
)

Hds +
∫ t

0

(

g(s, x)dBh(s), v
)

H

, P -a.s.
(2.12)
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The objective in this paper is that we hopefully find a unique process y(t) such that
(2.7) holds For this objective, we assume that the following conditions are satisfied:

(1) μ(t, x), β(t, x) and k(r, t) are nonnegative measurable, and

0 ≤ k0 ≤ k(t) < ∞ in (0, A) × (0, T),

0 ≤ μ0 ≤ μ(t, x) < ∞ in (0, A) × Γ,

0 ≤ β(t, x) ≤ β0 < ∞ in (0, A) × Γ.

(2.13)

(2) Let f(t, x) and g(t, x) be measurable functions which are defined on Q with

∣

∣f(t, x)
∣

∣

∨
∣

∣g(t, x)
∣

∣ ≤ K, (2.14)

where K is a positive constant.

3. Existence and Uniqueness of Solutions

Consider also theK-valued fractional Brownian motion Bh,n(t) =
∑n

i=1 B
h
i (t)ei. Obviously, the

following lemma holds.
If the process (y(t))t∈[0,T] is a solution of (2.7), then the process Z(t) = y(t) −

∫ t

0 g(s)dB
h(s) solves

dtZ(t) − kΔZ(t)dt + μ(t, x)

(

Z(t) +
∫ t

0
g(s)Bh(s)

)

ds − β(t, x)

(

Z(t) +
∫ t

0
g(s)dBh(s)

)

dt

= f(t, x)dt + kΔ
∫ t

0
g(s)dBh(s)dt, in Q = (0, T) × Γ,

Z(0, x) = Z0(x), in Γ,

Z(t, x) = 0, on Σ = (0, T) × ∂Γ,
(3.1)

where Z(t) := Z(t, x). If Z(t) is a solution of (3.1), then exists a process y(t)t∈[0,T] so that Z(t)
can be written as Z(t) = y(t) − ∫ t

0 g(s, x)dB
h(s), and consequently y(t) solves (2.7).

As a result, we shall consider (3.1) instead of (2.7). It is noted that, for fixed ω ∈ Ω,
(3.1) is a deterministic problem.

Lemma 3.1. Problem (3.1) has, for fixed ω ∈ Ω, a unique solution Z(t), and there exists a
nonnegative random variable η with finite expectation such that

sup
0≤s≤T

|Z(s)|2 + k0

∫T

0
‖Z(s)‖2ds ≤ η, (3.2)

where for fixed ω ∈ Ω, Z(t) is continuous with respect to t inH.
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Proof. The Galerkin approximations are defined by Zn(t) =
∑n

i=1 Zn,i(t)vi, where Zn,i(t) solves
the stochastic equations

Zn,i(t) =
(

y(0), vi

)

H +
∫ t

0

〈

kΔ

(

n
∑

k=1

Zn,k(s)vk

)

, vi

〉

ds

+
∫ t

0

〈

(

β(s, x) − μ(s, x)
)

n
∑

k=1

Zn,k(s)vk, vi

〉

ds

+
∫ t

0

(

f(s, x), vi

)

Hds +
∫ t

0

〈

(

β(s, x) − μ(s, x)
)

∫s

0
g(u, x)dBh,n(u), vi

〉

ds

+
∫ t

0

〈

kΔ
(∫s

0
g(u, x)dBh,n(u)

)

, vi

〉

ds. (i = 1, 2, . . . , n).

(3.3)

It follows from the assumption (2) that (3.3) can be solved for every ω by the method of
successive approximation, and the iterates are measurable with respect to ω. Consequently,
(Zn,i(t))t∈[0,T] (i = 1, 2, . . . , n) are stochastic processes since y0 is a random H-valued variable
and (Bh,n(t))t∈[0,T] is a stochastic process. It follows from (3.3) that

Zn(t) =
n
∑

i=1

(

y(0), vi

)

Hvi +
∫ t

0

n
∑

i=1

〈kΔZn(s), vi〉vids

+
∫ t

0

n
∑

i=1

(

(

β(s, x) − μ(s, x)
)

n
∑

i=1

Zn(s), vi

)

vids

+
∫ t

0

(

f(s, x), vi

)

Hvids +
∫ t

0

〈

(

β(s, x) − μ(s, x)
)

∫s

0
g(u, x)dBh,n(u), vi

〉

vids

+
∫ t

0

〈

kΔ
(∫s

0
g(u, x)dBh,n(u)

)

, vi

〉

vids.

(3.4)

Using the chain rule, we get the following

|Zn(t)|2 =
n
∑

j=1

(

y(0), vj

)2
H
+ 2

∫ t

0
k〈ΔZn(s), Zn(s)〉ds

+ 2
∫ t

0

〈(

β(s, x) − μ(s, x)
)

Zn(s), Zn(s)
〉

ds + 2
∫ t

0

(

f(s, x), Zn(s)
)

ds

+ 2
∫ t

0

(

(

β(s, x) − μ(s, x)
)

∫s

0
g(u, x)dBh,n(u)ds,Zn(s)

)

ds

+ 2
∫ t

0
k

〈

Δ
(∫s

0
g(u, x)dBh,n(u)

)

, Zn(s)
〉

ds.

(3.5)

If we set B(t) ≡ 0 in of Qimin and Chongzhao [11], under assumptions (1)-(2), then this result
implies that

sup
0≤s≤T

|Zn(s)|2 + k0

∫ t

0
‖Zn(s)‖2ds ≤ η. (3.6)
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The following result is an analogous to that of Theorem 4 in [1]. In the Galerkin
approximation, we have

E|Zn(t) − Z(t)|2 + E

∫ t

0
‖Zn(s) − Z(s)‖2ds −→ 0 (3.7)

for all t ∈ [0, T] and for n → ∞. Z(t) is a H-valued continuous process with Z(t) ∈ V for all
t ∈ [0, T]P -a.s., and Z(t) is a P -a.s. unique solution.

Now let (Bh(t))t∈[0,T] be a H-valued fractional Brownian motion with
∑∞

j=1 λjμj < ∞
and

∑∞
j=1 λjμ

1/2
j < ∞. We consider the finite-dimensional approximation

n
∑

j=1

∫ t

0
g(s, x)dBh

j (s)vjds (3.8)

in mean square of the stochastic integral
∫ t

0 g(u, x)dB
h(u). Obviously this is a stochastic

integral with respect to the V -valued Brownain motion Bh,n(u) =
n
∑

j=1
Bh
j (u)vj . Consequently,

the corresponding Galerkin equations for (2.7) are given by

dty
m(t) − kΔym(t)dt + μ(t, x)ym(t)dt − β(t, x)ym(t)dt

= f(t, x)dt + g(t, x)dBh,m(t), in (0, T) × Γ,

ym(0) =
m
∑

j=1

(

y0, vj

)

vj , in Γ,

ym(t, x) = 0, on Σ = (0, T) × ∂Γ,

(3.9)

dty
n(t) − kΔyndt + μ(t, x)yn(t)dt − β(t, x)yn(t)dt

= f(t, x)dt + g(t, x)dBh,n(t), in (0, T) × Γ,

yn(0) =
n
∑

j=1

(

y0, vj

)

vj , in Γ,

yn(t, x) = 0, on Σ = (0, T) × ∂Γ.

(3.10)

Lemma 3.1 shows that these problems have solutions.

Theorem 3.2. If
∑∞

j=1 λjμj < ∞ and
∑∞

j=1 λjμ
1/2
j < ∞, then there exists a P -a.s unique solution

(y(t))t∈[0,T] of (2.7) with

E
∣

∣y(t)
∣

∣

2 + k0E

∫ t

0
‖Z(s)‖2ds ≤ Mt,h, ∀t ∈ [0, T], (3.11)

whereMt,h is a positive constant.
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Proof. We choose n > mwith n = m + p and define

Zm,p(t) = ym+p(t) − ym(t) −
∫ t

0
g(u, x)dBh,m(u) +

∫ t

0
g(u, x)dBh,m+p(u). (3.12)

Then

|Zm,p(t)|2 ≤ ∣

∣ym+p(0) − ym(0)
∣

∣

2 + 2
∫ t

0
k〈ΔZm,p(s), Zm,p(s)〉ds

+ 2
∫ t

0

∣

∣

((

β(s, x) − μ(s, x)
)(

ym+p(s) − ym(s)
)

, Zm,p(s)
)∣

∣ds

+ 2
∫ t

0

∣

∣

(

f(s, x), Zm,p)(s)
∣

∣ds

+ 2
∫ t

0

∣

∣

∣

∣

(

kΔ
∫ s

0
g(u, x)d

(

Bh,m+p(u) − Bh,m(u)
)

, Zm,p(s)
)∣

∣

∣

∣

ds.

(3.13)

However, by Lemma 2.2 [14] and assumptions (1)-(2), we have

∫ t

0

∣

∣

∣

∣

(

kΔ
∫ s

0
g(u, x)d

(

Bh,m+p(u) − Bh,n(u)
)

, Zm,p

)∣

∣

∣

∣

ds

≤ k0
n
∑

j=m+1

λjE

∫ t

0

∣

∣

∣

∣

∫ s

0
g(u, x)dBh

j (u)
(

vj , Z
m,p(s)

)

∣

∣

∣

∣

ds

≤ 1
2
k0

n
∑

j=m+1

λj

∫ t

0
E

∥

∥

∥

∥

∫ s

0
g(u, x)vjdB

h
j (u)

∥

∥

∥

∥

2

ds +
1
2

∫ t

0
E|Zm,p(s)|2ds

≤ 1
2
k0T

2hK2T
n
∑

j=m+1

λjμj +
1
2

∫ t

0
E|Zm,p(s)|2ds.

(3.14)

Further,

E
((

β(s, x) − μ(s, x)
)(

ym+p(s) − ym(s)
)

, Zm,p(s)
)

ds

≤ E

(

∣

∣β0 − μ0
∣

∣|Zm,p(s)|2 + ∣

∣β0 − μ0
∣

∣

∣

∣

∣

∣

∫ s

0
g(u, x)d

(

Bh,m+p(u) − Bh,n(u)
)

∣

∣

∣

∣

|Zm,p(s)|
)

≤ 2
∣

∣β0 − μ0
∣

∣E|Zm,p(s)|2 + ∣

∣β0 − μ0
∣

∣K2T
m+p
∑

j=m+1

μj.

(3.15)

Consequently, in view of (3.13),

E|Zn(s)|2 + 2k0E
∫ t

0
‖Zn(s)‖2ds ≤

(

2
∣

∣β0 − μ0
∣

∣ +K2 + 1
)

∫ t

0
E|Zn(s)|2ds

+ k0ChK
2T

m+p
∑

j=m+1

λjμj + 2
∣

∣β0 − μ0
∣

∣TK2
m+p
∑

j=m+1

μj.

(3.16)
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Then, the Gronwall’s lemma implies that

E|Zm,p(s)|2 −→ 0, E

∫ t

0
‖Zm,p(s)‖2 −→ 0 (3.17)

for m, p → ∞ for all t ∈ [0, T]. In particular, there exists a process (Z(t))t∈[0,T] with E|Zm(t) −
Z(t)|2 → 0 form → ∞, and consequently, there exists a process y(t)withE|ym(t)−y(t)|2 → 0
for m → ∞. We must now show that (y(t))t∈[0,T] is solution of (2.7). We have

E

∣

∣

∣

∣

yn(t) − ym(t) +
∫s

0
g(u, a)d

(

B
h,m+p

(u) − B
h,n

(u)
)∣

∣

∣

∣

2

+ 2k0E
∫ t

0

∥

∥yn(s) − ym(s)
∥

∥

2
ds

≤ 2E
∫ t

0
k

〈

Δ
(

yn(s) − ym(s)
)

,

∫s

0
g(u, x)d

(

Bh,n(u) − Bh,m(u)
)

〉

ds

+ 2E
∫ t

0

(

(

β(s, x) − μ(s, x)
)

yn − ym(s), yn(s) − ym(s) +
∫s

0
g(u, x)d

(

Bh,n(u) − Bh,m(u)
)

ds

+ 2E
∫ t

0

(

f(s, x), yn(s) − ym(s) +
∫s

0
g(u, x)d

(

Bh,m+p(u) − Bh,n(u)
)

)

ds.

(3.18)

Let ε > 0 be chosen arbitrary. Then there exists p0 > 0 so that
∑m+p

j=p+1 λjμ
1/2
j < ε for all p > p0.

Let yn,r(t) =
∑r

j=1 y
n,r
j (t)vj and ym,r(t) =

∑r
j=1 y

m,r
j (t)vj be the rth Galerkin approximation of

yn(t) and ym(t), respectively. For r = m + p, we have

∣

∣

∣

∣

∣

E

∫ t

0
k

〈

Δ
(

yn,r(s) − ym,r(s)
)

,

∫ s

0
g(u, x)d

(

Bh,n(u) − Bh,m(u)
)

〉

ds

∣

∣

∣

∣

∣

≤ k0

∣

∣

∣

∣

∣

∣

E
m+p
∑

i=p+1

∫ t

0
λi
(

yn,r
i (s) − ym,r

i (s)
)

∫s

0
g(u, x)dBh

i (u)ds

∣

∣

∣

∣

∣

∣

≤ k0E
m+p
∑

i=p+1

(

∫ t

0

∣

∣yn,r
i (s) − ym,r

i (s)
∣

∣

2
ds

)1/2

λi

(

E

∫ t

0

∣

∣

∣

∣

∫ s

0
g(u, x)dBh

i (u)
∣

∣

∣

∣

2

ds

)1/2

≤ const. k0E
m+p
∑

i=p+1

λiμ
1/2
i

< const. × ε.

(3.19)

Consequently, the first term on the right-hand side of (3.10) is also less than const. × ε. It is
clear that the second term and third term on the right-hang side of (3.18) tends to zero. Then
(3.18) gives

E

∫ t

0
‖ym+p(s) − yp(s)‖2 −→ 0 (3.20)
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for m, p → ∞, there is (ym(t)) is also a Cauchy sequence in L2
V (Ω × [0, T]) for all t ∈ [0, T].

Let y be the limit a of this sequence. Then it follows from the properties of a Gelfand triple
that

E

∫ t

0

∣

∣yn(s) − y(s)
∣

∣

2 ≤ ME

∫ t

0

∥

∥yn(s) − y(s)
∥

∥

2 −→ 0 (3.21)

for n → ∞, where M is a positive constant. Consequently, y(s) = y(s)(a.s) and it follows
from (3.9) that

dty(t) − kΔy(t)ds − (

β(s, x) − μ(s, x)
)

y(t)ds = f(s, x)ds + g(s, x)dBh(t), (3.22)

hence, we have proved Theorem 3.2.
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