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The paper discusses the combined effect of slip velocity and heat and mass transfer on peristaltic
flow of a viscoelastic fluid in a uniform tube. This study has numerous applications. It serves as a
model for the chyme movement in the small intestine, by considering the chyme as a viscoelastic
fluid. The problem is formulated and analysed using perturbation expansion in terms of the wave
number as a parameter. Analytic solutions for the axial velocity component, pressure gradient,
temperature distribution, and fluid concentration are derived. Also, the effects of the emerging
parameters on pressure gradient, temperature distribution, concentration profiles, and trapping
phenomenon are illustrated graphically and discussed in detail.

1. Introduction

Peristalsis is an important mechanism for mixing and transporting fluid which is generated
by a progressive wave of contraction or expansion moving on the wall of the tube. It occurs
widely in many biological and biomedical systems. In physiology, it plays an indispensable
role in various situations. For examples, the transport of urine from kidney to the bladder,
the movement of chyme in the gastrointestinal tract, transport of spermatozoa in the ducts
efferentes of the male reproductive tracts, movement of ovum in the female fallopian tube,
transport of lymph in the lymphatic vessels, vasomotion of small blood vessels such as
arterioles, venules, and capillaries, and so on.

The peristaltic flow of non-Newtonian fluids has gained considerable interest during
the recent years because of its applications in industry and biology. In biology, it is well
known that most physiological fluids behave like non-Newtonian fluids. Hence, the study
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of peristaltic transport of non-Newtonian fluids may help to get a better understanding for
some biological systems. Now, several theoretical and numerical investigations have been
carried out to understand the peristaltic mechanism in different situations. Some of the recent
studies on peristaltic flow of non-Newtonian Fluids can be seen through references [1–10].

Recently, investigations of heat and mass transfer in peristalsis have been considered
by some researchers due to its applications in the biomedical sciences. Srinivas and
Kothandapani [11] investigated the influence of heat and mass transfer on MHD peristaltic
flow through a porous space with compliant walls. Eldabe et al. [12] studied the mixed
convective heat and mass transfer in a non-Newtonian fluid at a peristaltic surface with
temperature-dependent viscosity. The influence of radially varying MHD on the peristaltic
flow in an annulus with heat and mass transfer has been studied by Nadeem and Akbar [13].
Moreover, Akbar et al. [14] investigated the effect of heat and mass transfer on the peristaltic
flow of hyperbolic tangent fluid in an annulus. Moreover, Hayat et al. [15] investigated the
peristaltic flow of pseudoplastic fluid under the effects of an induced magnetic field and heat
and mass transfer in a channel. Furthermore, Hayat et al. [16] studied the heat and mass
transfer effects on the peristaltic flow of Johnson-Segalman fluid in a curved channel with
compliant walls.

Problems that involve slip boundary conditions may be useful models for flows
through pipes in which chemical reactions occur at the walls, flows with laminar film
condensation, and certain two phase flows. Motivated by this, several studies were made
to investigate the effect of slip velocity on peristaltic transport. Some of these studies have
been done by Sobh [17], Hayat and Mehmood [18], Noreen et al. [19], Hayat et al. [20], and
Saleem et al. [21].

It is noticed from the available literature that no analysis has been made yet for the
peristaltic flow of a viscoelastic fluid with heat and mass transfer in a tube in the presence
of slip conditions on the tube wall. For this purpose, the peristaltic slip flow of an Oldroyd
fluid, as a viscoelastic fluid, in a uniform tube is considered here in the presence of heat
and mass transfer. This analysis can model movement of the chyme in the small intestine
by considering chyme as an Oldroyd fluid. The flow analysis is developed in a wave frame
of reference moving with the same velocity of the wave travelling down the tube wall. The
perturbation technique is used to obtain an analytic solution for the governing equations in
terms of the wave, Reynolds, and Weissenberg numbers. The derived solutions for pressure
gradient, temperature field, and concentration profiles are plotted and analyzed in detail. The
trapping phenomenon is also discussed.

2. Mathematical Modeling

The continuity and momentum equations for an incompressible fluid, in the absence of body
forces, are given by

divV = 0,

ρ
dV
dt

= −∇p + div τ ,
(2.1)
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Figure 1: Geometry of the problem.

where ρ is the density of the fluid, V is the velocity vector, p is the pressure, τ is the extra
stress tensor, and d/dt is the material time derivative. The constitutive equation for Oldroyd
fluid is given by [22]

τij + Γ

[
∂τij

∂t
+
√(

gkkgiigjj
)
vk

∂

∂xk

(√
giigjjτij

)

−
√
gkkgjjτkj

∂

∂xk

(√
giivi

)
−
√
gkkgiiτik

∂

∂xk

(√
gjjvj

)]
= −μγ̇ij ,

(2.2)

in which τij , i, j, k = 1, 2, 3 are the components of the extra stress tensor, gii and gjj are
respectively the diagonal components of covariant and contravariant metric tensor, vi are the
velocity components, μ is the fluid viscosity, Γ is relaxation time, and γ̇ij are the components
of strain-rate tensor.

3. Formulation of the Problem

Consider the peristaltic flow of an incompressible Oldroyd fluid in an axisymmetric tube of a
sinusoidal wave travelling down its wall. The wall of the tube is maintained at temperature
T0 and concentration C0. In the fixed cylindrical coordinate system (R,Z), the geometry of
the problem, as can be seen in Figure 1, is

h
(
Z, t

)
= a + b sin

[
2π
λ

(
Z − ct

)]
, (3.1)

where Z is the axis lies along the centreline of the tube, R is the distance measured radially, a
is the radius of the tube, b is the wave amplitude, λ is the wavelength, and c is the propagation
velocity.
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Let us introduce a wave frame (r, z)moving with velocity c away from the fixed frame
(R,Z) by the transformation

r = R, z = Z − ct,

u = U, w = W − c,
(3.2)

where (U,W), (u,w) are the velocity components in the fixed and wave frames, respectively.
For the case of axisymmetric tube, the constitutive equations (2.2), in the wave frame, become

τ11 + Γ
(
u
∂τ11
∂r

+w
∂τ11
∂z

− 2τ11
∂u

∂r
− 2τ13

∂u

∂z

)
= −μγ̇11,

τ13 + Γ
(
u
∂τ13
∂r

+w
∂τ13
∂z

− τ33
∂u

∂z
− τ11

∂w

∂r
+
u

r
τ13

)
= −μγ̇13,

τ22 + Γ
(
u
∂τ22
∂r

+w
∂τ22
∂z

− 2
u

r
τ22

)
= −μγ̇22,

τ33 + Γ
(
u
∂τ33
∂r

+w
∂τ33
∂z

− 2τ33
∂w

∂z
− 2τ13

∂w

∂r

)
= −μγ̇33,

(3.3)

where the components of the strain-rate tensor are given by

γ̇11 = 2
∂u

∂r
, γ̇22 = 2

u

r
, γ̇33 = 2

∂w

∂z
, γ̇13 =

(
∂u

∂z
+
∂w

∂r

)
. (3.4)

Using the following non-dimensional variables and parameters:

r =
r

a
, z =

z

λ
, w =

w

c
, u =

λu

ac
,

γ̇ij =
a

c
γ̇ ij , p =

a2p

cλμ
, t =

ct

λ
, δ =

a

λ
,

Re =
ρca

μ
, τij =

aτij

cμ
, Wi =

cΓ
a
, T =

T

T0

,

C =
C

C0

, Pr =
μcp

k
, E =

c2

T0cp
,

Sr =
ρDmKTT0

μTmC0

, Sc =
μ

ρDm
, h =

h

a
= 1 +

b

a
sin 2πz = 1 + ϕ sin 2πz,

(3.5)
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we obtain the non-dimensional continuity equation, momentum equations, constitutive
equations, energy equation, and concentration equation as follows:

1
r

∂

∂r
(ru) +

∂w

∂z
= 0,

Re δ3
(
u
∂u

∂r
+w

∂u

∂z

)
= −∂p

∂z
− δ

(
1
r

∂

∂r
(rτ11) + δ

∂τ13
∂z

− τ22
r

)
,

Re δ
(
u
∂w

∂r
+w

∂w

∂z

)
= −∂p

∂z
−
(
1
r

∂

∂r
(rτ13) + δ

∂τ33
∂z

)
,

τ11 + δWi
[
u
∂τ11
∂r

+w
∂τ11
∂z

− 2τ11
∂u

∂r
− 2δτ13

∂u

∂z

]
= −2δ

(
∂u

∂r

)
,

τ13 +Wi
[
δ

(
u
∂τ13
∂r

+w
∂τ13
∂z

− δτ33
∂u

∂z
+
u

r
τ13

)
− τ11

∂w

∂r

]
= −

(
δ2 ∂u

∂z
+
∂w

∂r

)
,

τ22 + δWi
[
u
∂τ22
∂r

+w
∂τ22
∂z

− 2u
r
τ22

]
= −2δu

r
,

τ33 +Wi

[
δ

(
u
∂τ33
∂r

+w
∂τ33
∂z

− 2τ33
∂w

∂z

)
− 2τ13

∂w
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]
= −2δ

(
∂w

∂z

)
,

δPr
(
u
∂T

∂r
+w

∂T

∂z

)
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(
1
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(
r
∂T

∂r

)
+ δ2 ∂

2T
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)
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(
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)
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u
∂C

∂r
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)
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1
r

∂

∂r

(
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2T
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,

(3.6)

where C is the concentration of the fluid, T is the temperature, Tm is the temperature of
the medium, Dm is the coefficient of mass diffusivity, KT is the thermal diffusion ratio, μ
is the viscosity, cp is the specific heat at constant volume, k is the thermal conductivity, δ is
the dimensionless wave number assumed to be small, Re is the Reynolds number, Wi is the
Weissenberg number, Pr is the Prandtl number, E is the Eckert number, Sr is the Soret number,
Sc is the Schmidt number, and Br = E Pr is the Brinkman number.

The dimensionless boundary conditions are

u = 0,
∂w

∂r
= 0,

∂T

∂r
= 0,

∂C

∂r
= 0, at r = 0,

w = −1 +Knτ13, u =
dh

dz
, T = 1, C = 1, at r = h,

(3.7)

where Kn = Kn/a, is the dimensionless slip parameter.
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4. Perturbation Solution

We begin the construction of the solution by expanding the following quantities as power
series in the small parameter δ as follows:

w = w0 + δw1 + δ2w2 +O
(
δ3
)
,

u = u0 + δu1 + δ2u2 +O
(
δ3
)
,

p = p0 + δp1 + δ2p2 +O
(
δ3
)
,

f = f0 + δf1 + δ2f2 +O
(
δ3
)
,

τij = τ
(0)
ij + δτ

(1)
ij + δ2τ

(2)
ij +O

(
δ3
)
, i, j = 1, 2, 3,

T = T0 + δT1 + δ2T2 +O
(
δ3
)
,

C = C0 + δC1 + δ2C2 +O
(
δ3
)
,

(4.1)

where f = 2
∫h
0 rwdr is the dimensionless mean flow rate in the wave frame which is related

with the mean flow rate in the fixed frame θ by the relation [4]

θ = f +

(
1 +

ϕ2

2

)
. (4.2)

Substituting the expansions (4.1) into (3.6) and (3.7) and collecting terms of like powers of δ
we obtain the following systems of coupled differential equations.

4.1. Zero Order System

Consider

1
r

∂

∂r
(ru0) +

∂w0

∂z
= 0,

∂p0
∂r

= 0,

∂p0
∂z

=
1
r

∂

∂r

(
r
∂w0

∂r

)
,

1
r

∂

∂r

(
r
∂T0
∂r

)
= −Br

(
∂w0

∂r

)2

,

0 =
1
Sc

(
1
r

∂

∂r

(
r
∂C0

∂r

))
+ Sr

(
1
r

∂

∂r

(
r
∂T0
∂r

))
,

(4.3)
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with the boundary conditions

∂w0

∂r
= 0,

∂T0
∂r

= 0,
∂C0

∂r
= 0, at r = 0,

w0 = −1 −Kn

(
∂w0

∂r

)
, T0 = 1, C0 = 1, at r = h(z).

(4.4)

The solution of (4.3), subject to the boundary conditions (4.4), is

w0(r, z) = a1r
2 + a2,

u0(r, z) = a3r
3 + a4r,

dp0
dz

= − 8
(
f0 + h2)(

h4 + 4h3Kn

) .

T0(r, z) = −Br
[
1
64

(
dp0
dz

)2(
r4 − h4

)]
+ 1,

C0(r, z) = Sr Sc Br

[
1
64

(
dp0
dz

)2(
r4 − h4

)]
+ 1,

(4.5)

where a1, a2, a3, anda4 are stated in the appendix.

4.2. First Order System

Consider

1
r

∂

∂r
(ru1) +

∂w1

∂z
= 0, (4.6)

∂p1
∂r

= 0, (4.7)

Re
(
u0

∂w0

∂r
+w0

∂w0

∂z

)
= −∂p1

∂z
− 1
r

∂

∂r

(
rτ

(1)
13

)
+ 2Wi

∂

∂z

[(
∂w0

∂r

)2
]
, (4.8)

τ
(1)
13 = −

(
∂w1

∂r

)
+Wi

[
u0

∂2w0

∂r2
+w0

∂2w0

∂r∂z
+
u0

r

∂w0

∂r
− 2

(
∂u0

∂r

)(
∂w0

∂r

)]
, (4.9)

1
r

∂

∂r

(
r
∂T1
∂r

)
= Re Pr

(
u0

∂T0
∂r

+w0
∂T0
∂z

)

+ Br

[
τ
(1)
13

∂w0

∂r
−
(
∂w0

∂r

)(
∂w1

∂r

)
− 2Wi

(
∂w0

∂r

)2(∂w0

∂z

)]
,

(4.10)

Re
(
u0

∂C0

∂r
+w0

∂C0

∂z

)
=

1
Sc

(
1
r

∂

∂r

(
r
∂C1

∂r

))
+ Sr

(
1
r

∂

∂r

(
r
∂T1
∂r

))
. (4.11)
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The boundary conditions are

∂w1

∂r
= 0,

∂T1
∂r

= 0,
∂C1

∂r
= 0, at r = 0, (4.12)

w1 = Knτ
(1)
13 , T1 = 0, C1 = 0 at r = h(z). (4.13)

Substituting the zero order solution into (4.9), we obtain τ
(1)
13 in the form

τ
(1)
13 = −

(
∂w1

∂r

)
+Wi

[(
2a1a

′
1 − 8a1a3

)
r3 +

(
2a2a

′
1

)
r
]
. (4.14)

Substituting (4.14) together with the zero order solution into (4.8) and integrating
subject to the boundary condition (4.12), taking into account that ∂p1/∂r = 0, we obtain a
differential equation for w1(r, z) in the form

∂w1

∂r
=

1
2

(
dp1
dz

)
r +Wi

[
−2(4a1a3 + a1a

′
1

)
r3 + 2a2a

′
1r
]

+ Re

[(
2a1a3 + a1a

′
1

)
6

r5 +

(
2a1a4 + a1a

′
2 + a2a

′
1

)
4

r3 +
a2a

′
2

2
r

]
.

(4.15)

The solution of (4.15), subject to the boundary condition (4.13) is given by

w1(r, z) =
1
4

(
dp1
dz

)(
r2 − h2 − 2Knh

)
+ Re

(
a5r

6 + a6r
4 + a7r

2 + a8

)

+Wi
(
a9r

4 + a10r
2 + a11

)
,

(4.16)

where a5, . . . a11 are stated in the appendix.
The dimensionless mean flow rate in the wave frame f1 is given by

f1 = 2
∫h

0
rw1dr = − 1

8

(
dp1
dz

)
h4 + Re

[
a5

4
h8 +

a6

3
h6 +

a7

2
h4 + a8h

2
]

+Wi
[
a9

3
h6 +

a10

2
h4 + a11h

2
]
.

(4.17)

On solving (4.17) for dp1/dz, one finds

dp1
dz

= − 8f1(
h4 + 4Knh3

) − Re(
h4 + 4Knh3

)(2a5h
8 +

8
3
a6h

6 + 4a7h
4 + 8a8h

2
)

− Wi(
h4 + 4Knh3

)(8
3
a9h

6 + 4a10h
4 + 8a11h

2
)
.

(4.18)
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Using zero order solution together with the first order solution of w1(r, z), (4.16), into
(4.10), (4.11) and applying the boundary conditions, we get

T1(r, z) = − Br
32

(
dp0
dz

)(
dp1
dz

)(
r4 − h4

)

− Br Re
[
a12

(
r8 − h8

)
+ a13

(
r6 − h6

)
+ a14

(
r4 − h4

)
+ a15

(
r2 − h2

)]

− Br Wi
[
a16

(
r6 − h6

)
+ a17

(
r5 − h5

)
+ a18

(
r4 − h4

)
+ a19

(
r3 − h3

)]
,

(4.19)

C1(r, z) =
Br Sr Sc

32

(
dp0
dz

)(
dp1
dz

)(
r4 − h4

)

+ Br Sr ScRe
[
a20

(
r8 − h8

)
+ a21

(
r6 − h6

)
+ a22

(
r4 − h4

)
+ a23

(
r2 − h2

)]

+ Br Sr Sc Wi
[
a16

(
r6 − h6

)
+ a17

(
r5 − h5

)
+ a18

(
r4 − h4

)
+ a19

(
r3 − h3

)]
,

(4.20)

where a12, . . . a19 are defined in the appendix.
The results of our analysis can be expressed to first order by defining

f = f + δf1, (4.21)

then substituting into zero and first order solutions and neglecting all terms of higher than
O(δ), we find

w(r, z) =
1
4

(
dp

dz

)(
r2 − h2 − 2Knh

)
− 1 + δRe

(
b5r

6 + b6r
4 + b7r

2 + b8
)

+ δWi
(
b9r

4 + b10r
2 + b11

)
,

dp

dz
= −

(
8f + h2)(

h4 + 4Knh3
) − δRe(

h4 + 4Knh3
)(2b5h8 +

8
3
b6h

6 + 4b7h4 + 8b8h2
)

− δWi(
h4 + 4Knh3

)(8
3
b9h

6 + 4b10h4 + 8b11h2
)
,

T(r, z) = − Br
64

(
dp

dz

)2(
r4 − h4

)
+ 1

− δBr
[
Re

{
b12

(
r8 − h8

)
+ b13

(
r6 − h6

)
+ b14

(
r4 − h4

)
+ b15

(
r2 − h2

)}

+ Wi
{
b16

(
r6 − h6

)
+ b17

(
r5 − h5

)
+ b18

(
r4 − h4

)
+ b19

(
r3 − h3

)}]
,
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Figure 2: Pressure gradient versus z for φ = 0.6, Wi = 0, Re = 0, δ = 0, θ = 0.1.

C(r, z) =
Br Sr Sc

64

(
dp

dz

)2(
r4 − h4

)
+ 1

+ δBr Sr Sc
[
Re

{
b20

(
r8 − h8

)
+ b21

(
r6 − h6

)
+ b22

(
r4 − h4

)
+ b23

(
r2 − h2

)}

+Wi
{
b16

(
r6 − h6

)
+ b17

(
r5 − h5

)
+ b18

(
r4 − h4

)
+ b19

(
r3 − h3

)}]
,

(4.22)

where b5, . . . b23 are defined in the appendix.

5. Discussion of Results

It is clear that our results allow calculation of the velocity, the pressure gradient, the
temperature, and the concentration field without any restrictions on the Reynolds and
Weissenberg numbers but we have used a small wave number. Moreover, we note that the
approximation we have used (small wave number, δ < 1) holds for our application as the
values of various parameters for transporting the chyme in the small intestine are [23].

a = 1.25 cm, λ = 8.01 cm, δ = a/λ = 0.156. (5.1)

This agrees with the small wave number approximation. In order to have an estimate
of the quantitative effects of the various parameters involved in the results of the present
analysis, Figures 2–23 are prepared using the MATHEMATICA package.
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Figure 3: Pressure gradient versus z for ϕ = 0.6, Wi = 0.04, Re = 10, δ = 0.02, θ = 0.1.
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Figure 4: Pressure gradient versus z for ϕ = 0.6, Wi = 0.04, Re = 10, θ = 0.1, Kn = 0.05.

5.1. Pumping Characteristics

The effect of the slip parameterKn on the pressure gradient for both Newtonian and Oldroyd
fluids is shown in Figures 2 and 3, respectively. It is evident that the pressure gradient
decreases by increasing the slip parameter Kn. Furthermore, from the two figures it can
be noticed that in the wider part of the tube z ∈ [0, 0.3] and [0.6, 1], the pressure gradient
is small. This means that the flow can easily pass without imposition of a large pressure
gradient. On the other hand, in the narrow part of the tube z ∈ [0.3, 0.6], a large pressure
gradient is required to maintain the flow to pass it.

Figures 4 and 5 illustrate the effect of wave number and Reynolds number on the
pressure gradient of the Oldroyd fluid at θ = 0.1, ϕ = 0.6, Kn = 0.05, Re = 10, Wi = 0.04,



12 Mathematical Problems in Engineering

0

Re = 0
Re = 15
Re = 30

0.2 0.4 0.6 0.8 1

0

50

100

150

200

z

d
p

d
z

Figure 5: Pressure gradient versus z for ϕ = 0.6, Wi = 0.04, δ = 0.01, θ = 0.1, Kn = 0.05.
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Figure 6: Pressure gradient versus z for ϕ = 0.6, Re = 10, δ = 0.02, θ = 0.1, Kn = 0.05.

(δ = 0, 0.02, 0.04) and θ = 0.1, ϕ = 0.6, Kn = 0.05, Wi = 0.04, δ = 0.01, (Re = 0, 15, 30),
respectively. The figures reveal that the pressure gradient increases by increasing both wave
number and Reynolds number.

Figure 6 depicts the effect of the Weissenberg number Wi on the pressure gradient of
the viscoelastic fluid at θ = 0.1, ϕ = 0.6, Kn = 0.05, Re = 10, and δ = 0.02. We can conclude
that an increase in the Weissenberg number decreases the pressure gradient.
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Figure 7: Temperature distribution for z = 0.2, Br = 1, Pr = 1, δ = 0, Re = 0, Wi = 0, θ = 0.5, φ = 0.2.
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Figure 8: Temperature distribution for z = 0.2 , Br = 1, Pr = 1, δ = 0.02, Re = 10, Wi = 0.03, θ = 0.5, ϕ =
0.2.

5.2. Temperature Distribution

Figures 7–12 are devoted to explain the effect of emerging parameters on the temperature
distribution. The effect of slip parameterKn on the temperature distribution T at z = 0.2, Br =
1, Pr = 1, θ = 0.5, ϕ = 0.2 is shown in Figures 7 and 8 for both Newtonian and Oldroyd
fluid, respectively. As shown, the temperature decreases as the slip parameter increases. The
two figures also reveal that the behaviour of the temperature profiles is the same for both
Newtonian and Oldroyd fluids.
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Figure 9: Temperature distribution for z = 0.2, Br = 1, Pr = 1, δ = 0.156, Re = 10, Kn = 0.02, θ = 0.5, ϕ =
0.4.
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Figure 10: Temperature distribution for z = 0.2, Br = 1, Kn = 0.02, Pr = 1, Re = 10, Wi = 0.04, θ = 0.5, ϕ =
0.4.

In Figure 9, we consider the variation of the temperature with r for z = 0.2, Br = 1, Pr =
1, θ = 0.5, ϕ = 0.4, Kn = 0.02, δ = 0.156, Re = 10, and (Wi = 0, 0.04, 0.08). The figure shows
that an increase of the Weissenberg number lowers the temperature.

The effects of the wave and Reynolds numbers on temperature distribution are shown
in Figures 10 and 11, respectively. One can observe that the temperature profiles increase with
increasing both wave and Reynolds numbers.
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Figure 11: Temperature distribution for z = 0.2, Br = 1, Kn = 0.02, Pr = 1, δ = 0.02, Wi = 0.04, θ = 0.5, ϕ =
0.4.
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Figure 12: Temperature distribution for z = 0.2, Re = 10, Kn = 0.02, Pr = 1, δ = 0.02, Wi = 0.04, θ =
0.5, ϕ = 0.4.

In Figure 12, the temperature distribution is graphed versus r for z = 0.2, Re = 10, Pr =
1, θ = 0.5, ϕ = 0.4, Kn = 0.02, Wi = 0.04, and (Br = 0.5, 0.7, 1). We notice that the temperature
profile increases with increasing Brinkman number Br.

5.3. Concentration Profiles

Figures 13–19 illustrate the behaviour of the fluid concentration for different values of the
physical parameters. Figure 3 depicts the concentration field with the variation of r for
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Figure 13: Concentration profiles for z = 0.2, Br = 1, Pr = 1, Sr = 0.3, Sc = 0.3,δ = 0.02, Re = 10, Wi =
0.03, θ = 0.5, ϕ = 0.4.

−0.5 0 0.5

r

C

0.935

0.94

0.945

0.95

0.955

0.96

Wi = 0

Wi = 0.08
Wi = 0.04

Figure 14: Concentration profiles for z = 0.2, Br = 1, Pr = 1, Sr = 0.3, Sc = 0.3, δ = 0.156, Re = 20, Kn =
0.02, θ = 0.5, ϕ = 0.4.

z = 0.2, Br = 1, Pr = 1, θ = 0.5, ϕ = 0.4, Re = 10, δ = 0.02, Wi = 0.03, Sr = 0.3, Sc = 0.3,
and (Kn = 0, 0.02, 0.04). It is observed that the concentration profiles are increasing with
increasing slip parameter Kn. This means that the concentration for slip flow is greater than
for no-slip flow.

Figures 14, 15, and 16 show the effects of the Weissenberg, the wave, and the Reynolds
numbers on the concentration profiles. It is seen that the concentration profiles increase as the
Weissenberg number increases while it decreases by increasing the wave and the Reynolds
numbers.
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Figure 15: Concentration profiles for z = 0.2, Br = 1, Pr = 1, Sr = 0.3, Sc = 0.3, Re = 10, Wi = 0.04, Kn =
0.02, θ = 0.5, ϕ = 0.4.

−1 −0.5 0 10.5

r

C

0.975

0.98

0.985

0.99

0.995

1

Re = 0
Re = 10
Re = 20

Figure 16: Concentration profiles for z = 0.2, Br = 1, Pr = 1, Sr = 0.3, Sc = 0.3, δ = 0.02, Wi = 0.04, Kn =
0.02, θ = 0.5, ϕ = 0.4.

The effects of the Brinkman, Soret, and Schmidt numbers on concentration field are
shown in Figures 17, 18, and 19 for different values of other physical parameters. The figures
reveal that the concentration field decreases with increasing Br, Sr, and Sc.

5.4. Streamlines and Trapping Phenomenon

The phenomenon of trapping is another interesting topic in peristaltic transport. The
formulation of an internally circulating bolus of the fluid by closed streamline is called
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Figure 18: Concentration profiles for z = 0.2, Re = 10, Pr = 1, Br = 1, Sc = 0.3, δ = 0.02, Wi = 0.04, Kn =
0.02, θ = 0.5, ϕ = 0.4.

trapping. This trapped bolus is pulled ahead along with the peristaltic wave. The effect of slip
parameter on trapping can be seen in Figure 20. It is observed that the trapping is symmetric
about the centre line and the volume of the trapped bolus decreases with increasing Kn.

Figures 21 and 22 illustrate the effects of the wave and Reynolds numbers on the
streamline at fixed values of other parameters. It is evident that the volume of the trapped
bolus increases by increasing δ and Re. Moreover, we notice from the two figures that when
δ andRe increase, another trapped bolus arises.
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Figure 20: Streamlines for Wi = 0.03, Re = 10, δ = 0.02, θ = 0.3, ϕ = 0.4, Kn = (0, 0.05, 0.1).
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Figure 21: Streamlines for Wi = 0.03, Re = 10, Kn = 0.05, θ = 0.3, ϕ = 0.3, δ = (0, 0.03, 0.05).
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Figure 22: Streamlines for Wi = 0.03, Kn = 0.05, δ = 0.03, θ = 0.3, ϕ = 0.3, Re = (0, 10, 20).
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Figure 23: Streamlines for Re = 1, δ = 0.05, ϕ = 0.3, θ = 0.3, Kn = 0.05, Wi = (0, 0.04, 0.08).

Finally, Figure 23 shows the graph of streamlines for θ = 0.3, ϕ = 0.3, δ = 0.05, Re =
1, Kn = 0.05, and (Wi = 0, 0.04, 0.08). As shown, there is no effect of the Weissenberg number
on the behaviour of streamlines.

6. Conclusion

The study examines the combined effect of slip velocity and heat and mass transfer on
peristaltic transport of a viscoelastic fluid (Oldroyd fluid) in uniform tube. The problem
can be considered as an application to the movement of chyme in small intestine. Using
perturbation technique, analytical solutions for velocity, pressure gradient, temperature, and
concentration fields have been derived without any restrictions on Reynolds number and
Weissenberg number. The main results are summarized as follows.

(1) The pressure gradient decreases by increasing the slip parameter Kn.

(2) The pressure gradient increases with increasing the wave and Reynolds numbers
while it decreases with increasing the Weissenberg number.

(3) The temperature profiles decrease as the slip parameter Kn increases.

(4) The temperature profiles decrease by increasing the Weissenberg number.

(5) The temperature profiles increase with increasing the wave, the Reynolds, and the
Brinkman numbers.
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(6) The concentration profiles are increasing when the slip parameter andWeissenberg
number increase while it is decreasing when the wave, the Reynolds, the Brinkman,
the Eckert, and the Soret numbers are increasing.

(7) The trapped bolus decreases with increasing slip parameter and increases with
increasing wave number and Reynolds number.
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