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Self-similar process with long-range dependence (LRD), that is, fractional Gaussian noise (fGn)
with LRD is a widely used model of Internet traffic. It is indexed by its Hurst parameterHfGn that
linearly relates to its fractal dimensionDfGn. Note that, on the one hand, the fractal dimensionD of
traffic measures local self-similarity. On the other hand, LRD is a global property of traffic, which
is characterized by its Hurst parameterH. However, by using fGn, both the self-similarity and the
LRD of traffic are measured by HfGn . Therefore, there is a limitation for fGn to accurately model
traffic. Recently, the generalized Cauchy (GC) process was introduced to model traffic with the
flexibility to separately measure the fractal dimensionDGC and the Hurst parameterHGC of traffic.
However, there is a fundamental problem whether or not there exists the generality that the GC
model is more conformable with real traffic than single parameter models, such as fGn, irrelevant
of traffic traces used in experimental verification. The solution to that problem remains unknown but
is desired for model evaluation in traffic theory or for model selection against specific issues,
such as queuing analysis relating to the autocorrelation function (ACF) of arrival traffic. The key
contribution of this paper is our solution to that fundamental problem (see Theorem 3.17) with
the following features in analysis. (i) Set-valued analysis of the traffic of the fGn type. (ii) Set-
valued analysis of the traffic of the GC type. (iii) Revealing the generality previously mentioned
by comparing metrics of the traffic of the fGn type to that of the GC type.

1. Introduction

This paper explores the Internet traffic (traffic for short) modeling which plays a role in
telecommunications [1]. Let x[t(i)] be an arrival traffic function, implying the number of
bytes in the ith packet arriving at t(i) (i = 0, 1, 2, . . .), where t(i) is the timestamp of the
ith packet [2]. To avoid confusion, we use x(t) and x(i) to represent a traffic time series in
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the continuous case and the discrete one, respectively, where x(i) implies the size of the ith
packet. Note that traffic statistics for x(i) corresponds with the statistics of the traffic time
series represented by either byte count or packet size [3].

The pioneer in stochastic modeling of traffic refers to the Danish scientist A. K. Erlang,
see Bojkovic et al. [4]. As early as the 1920s, he contributed to his experimental work on the
statistics of the traffic in telephony networks and introduced the traffic models of the Poisson
type [5, 6]. Erlang’s work was so successful in characterizing the old telephony traffic such
that it was applied as a law in traffic engineering, see for example, Yue et al. [7], Papoulis
[8], Gibson [9], Cooper [10], Pitts and Schormans [11], and McDysan [12]. Note that the
autocorrelation function (ACF) of the traffic of the Poisson type, which is Markovian, is
exponentially decayed [13]. In fact, the ACF of a Markov process decays exponentially [14].
The Poisson-type models fit in with the traffic in old telephony networks, which are circuit-
switched, see for example, [9], Le Gall [15], Lin et al. [16], Manfield and Downs [17], Reiser
[18], and Lu [19]. Those types of models, however, fail to effectively characterize the traffic
in the Internet, which is packet switched. As a matter of fact, the ACF, the probability density
function (PDF), and the power spectrum density (PSD) function of traffic, follow power law,
see for example, Resnick [20], Csabai [21], Leland et al. [22], Beran et al. [23], López-Ardao
et al. [24], and Cleveland and Sun [25]. Therefore, system responses to the Internet have
to take into account the arrival traffic with long-range dependence (LRD), see for example,
Tsybakov and Georganas [26], Norros [27], Fishman and Adan [28], Li and Zhao [29], Dahl
and Willemain [30], and Kingman [31].

Theoretically, on one hand, Taqqu’s Theorem relates a heavy-tailed PDF in power law
to a hyperbolically decayed ACF, that is, power law-type ACF [3, 32]. On the other hand, the
Fourier transform connects a hyperbolically decayed ACF with 1/fα (α > 0) noise (power
law-type PSD), see for example, Li [33].

Note that, before the Internet’s worldwide prevalence, in the seventies of the last
century, Tobagi et al. [34] reported a noticeable behavior of traffic,which is called “burstiness”
[12]. It implies that there would be no packets transmitted for a while, then flurry of
transmission, no transmission for another long period of time, and so on if one observes
traffic over a long period of time. This also means that traffic has intermittency. In 1986, Jain
and Routhier [35] further described the intermittency or burstiness of traffic using the term
“packet trains.” They inferred that traffic is neither a Poisson process nor a compound Poisson
one [35]. The results in [34, 35] are quite qualitative but theymay be considered as early work
with respect to fractal-type traffic. The concept of packet train is interesting [36] but we utilize
the concept of fractal time series for traffic modeling in this paper.

The early literature quantitatively describing the statistical properties of traffic from a
view of fractals refers to Csabai [21], Leland et al. [22], Beran et al. [23], Paxson and Floyd
[37], and Crovella and Bestavros [38]. Those scientists revealed some of the main properties
of traffic, such as LRD and asymptotic self-similarity. The traffic model described in [22, 23,
37, 39–43], just citing a few, is the fGn that was introduced by Mandelbrot and Van Ness in
mathematics [44].

Themodel of fGn is characterized by a single parameterH , called theHurst parameter.
Its limitation in accurately modeling traffic was noticed by Paxson and Floyd [37], and
Tsybakov and Georganas [39]. Paxson and Floyd noted that “it might be difficult to
characterize the correlations over the entire traffic traces with a single Hurst parameter
[37, Section 7.4].” They suggested that “further work is required to fully understand the
correlational structure of wide-area traffic [37].” Tsybakov and Georganas remarked that
“the class of exactly self-similar processes, that is, fGn or fractional Brownian motion (fBm),
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is too narrow for modeling actual network traffic [39, Section II].” The authors of [37, 39]
qualitatively stated the limitation of fGn in traffic modeling without mentioning how to
release the limitation. In this regard, Beran [45, page 101-102] suggested to develop a suf-
ficiently flexible class of parametric correlation models. The key of the Beran’s idea implies
that the ACF of an LRD series may be fitted by a correlation model with several parameters
instead of one, but he did not mention what concrete parametric correlation models are.

Li and Lim recently reported a two-parameter traffic model called the GC process
with the demonstrations based on sets of real-traffic traces in [46, 47]. Li [48] discussed its
simulation. Nevertheless, whether or not it has the generality to be more agreement with
traffic than single parameter models, such as fGn, remains an unsolved problem. Therefore, it
may be useful, especially for traffic engineers, to exhibit that generality. Motivated by this, we,
in this paper, aim at presenting a solution to it based on the abstract analysis, more precisely,
the set-valued analysis in Hilbert spaces, to thoroughly reveal that generality, irrelevant of
traces used in experimental verification. To the best of our knowledge, the set-valued analysis
of traffic models is rarely seen.

The rest of paper is organized as follows. Related work is explained in Section 2. The
set-valued analysis is presented in Section 3. An application case is demonstrated in Section 4.
Discussions are provided in Section 5, followed by our conclusions.

2. Related Work

We first respectively brief the ACFs of the fGn and the GC process. Then, fractal dimension
and the Hurst parameter are discussed.

2.1. fGn

The continuous fGn is the derivative of the smoothed fractional Brownian motion (fBm)
in the sense of the generalized functions over the Schwartz space of test functions, refer to
Kanwal [49] for generalized functions.

Denote by rgGn(τ) the ACF of the fGn as the increment process of the fBm of the Weyl
type. Then, for time lag τ ∈ R, which is the set of real numbers,

rgGn(τ) =
σ2ε2H−2

2

[( |τ |
ε

+ 1
)2H

+
∣∣∣∣ |τ |ε − 1

∣∣∣∣
2H

− 2
∣∣∣∣τε

∣∣∣∣
2H

]
, (2.1)

where H ∈ (0, 1) is the Hurst parameter, ε > 0 is used by smoothing the fBm so that the
smoothed fBm is differentiable, and σ2 = (Hπ)−1Γ(1 − 2H) cos(Hπ) [44]. The PSD of fGn is
given by [50]

SfGn(ω) = σ2 sin(Hπ)Γ(2H + 1)|ω|1−2H, (2.2)

where ω is angular frequency.
FGn includes three classes of time series. When H ∈ (0.5, 1), rgGn(τ) is positive and

finite for all τ . It is nonintegrable and the corresponding series is LRD. For H ∈ (0, 0.5), the
integral of rgGn(τ) is zero, corresponding series with short-range dependence (SRD). Besides
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rgGn(τ) for 0 < H < 0.5 changes its sign and becomes negative for some τ proportional to ε. It
reduces to the white noise whenH = 0.5.

The ACF of fGn in the discrete case is given by

rfGn(k) = 0.5σ2
[
(|k| + 1)2H − 2|k|2H + (||k| − 1|)2H

]
, (2.3)

where k ∈ I, where I is the set of integers. To avoid confusion, we often consider ACFs for
k ≥ 0 in the normalized case in what follows as an ACF is an even function. Thus, for k ≥ 0,
one has

rfGn(k) = 0.5
[
(k + 1)2H − 2k2H + (k − 1)2H

]
. (2.4)

Considering the right side of (2.4) as the finite 2-order difference of 0.5(k)2H and approximat-
ing it with the 2-order differential of 0.5(k)2H yields the following equation. Its right side is
quite accurate to the left for k > 10 [51]:

0.5
[
(k + 1)2H − 2k2H + (k − 1)2H

]
≈ H(2H − 1)(k)2H−2. (2.5)

2.2. GC Process

A random function x(t) is called the GC process if it is stationary Gaussian with the ACF
given by

rGC(τ) = E[X(t + τ)X(t)] =
(
1 + |τ |α)−β/α, (2.6)

where 0 < α ≤ 2 and β > 0. When α = β = 2, one gets the usual Cauchy process the ACF of
which is expressed by

rC(τ) =
(
1 + |τ |2

)−1
, (2.7)

which is used in geostatistics, see Chilès and Delfiner [52].
The PSD of the GC process is given by (see [47])

SGC(ω) =
∞∑
k=0

(−1)kΓ((β/α) + k
)

πΓ
(
β/α

)
Γ(1 + k)

I1(ω) ∗ Sa(ω)

+
∞∑
k=0

(−1)kΓ((β/α) + k
)

πΓ
(
β/α

)
Γ(1 + k)

[πI2(ω) − I2(ω) ∗ Sa(ω)],

(2.8)
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where Sa(ω) = sin(ω)/ω and

I1(ω) = −2 sin
(
αkπ

2

)
Γ(αk + 1)|ω|−αk−1,

I2(ω) = 2 sin

[(
β + αk

)
π

2

]
Γ
[
1 − (

β + αk
)]|ω|(β+αk)−1.

(2.9)

The PSD of the GC process for ω → 0 is given by (see [53])

SGC(ω) ∼ 1
Γ
(
β
)
cos

(
βπ/2

) |ω|β−1, ω −→ 0. (2.10)

On the other hand, SGC(ω) for ω → ∞ is given by

SGC(ω) ∼ βΓ(1 + α) sin(απ/2)
πα

|ω|−(1+α), ω −→ ∞. (2.11)

The above exhibits the power law of SGC(ω). The GC process is LRD if 0 < β < 1 and is SRD
if 1 < β.

As noted in [53], “the GC process is non-Markovian since rGC(t1, t2) does not satisfy
the triangular relation given by

rGC(t1, t3) =
rGC(t1, t2)rGC(t2, t3)

rGC(t2, t2)
, t1 < t2 < t3, (2.12)

which is a necessary condition for a Gaussian process to be Markovian, see Todorovic [54].”
In fact, up to a multiplicative constant, the Ornstein-Uhlenbeck process is the only stationary
Gaussian Markov process, see Lim and Muniandy [55] and Wolpert and Taqqu [56].

2.3. Fractal Dimension and the Hurst Parameter

On the one hand, fractal dimension, denoted by D, of traffic x(t) is a measure to characterize
its local self-similarity or irregularity. On the other hand, the Hurst parameter H is used to
measure its statistical dependence, see Mandelbrot [57]. Thus, we respectively use D and H
to describe the local property and the global property of x(t), see Li and Lim [46, 47] and Li
and Zhao [58]. In fact, if the ACF rxx(τ) is sufficiently smooth on (0,∞) and if

rxx(0) − rxx(τ) ∼ c1|τ |α for |τ | −→ 0, (2.13)

where c1 is a constant and α is the fractal index of x(t), D of x(t) is expressed by

D = 2 − α

2
, (2.14)
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see, for example, Kent and Wood [59], Hall and Roy [60], Chan et al. [61], and Adler [62].
Applying the binomial series to rfGn(τ) yields

rfGn(0) − rfGn(τ) ∼ c|τ |2H for |τ | −→ 0. (2.15)

Therefore, one has

DfGn = 2 −HfGn. (2.16)

Consequently, the fGn, as the incremental process of the fBm of the Weyl type, is stationary.
Its D happens to linearly relate to its H , see [57, page 27] and Gneiting and Schlather [63].
Hence, a single parametermodel fails to separately capture the local irregularity and the LRD
of traffic.

Recall that a self-similar process x(t)with the self-similarity index κ requires for a > 0,

x(at)=da
κx(t), (2.17)

where =d denotes equality in joint finite distribution. It is known that a stationary Gaussian
random function x(t) that is not exactly self-similar may satisfy a weaker self-similar property
known as local self-similarity. Taking into account the definition of the local self-similarity
provided in [59–62], we say that a Gaussian stationary process is locally self-similar of order
α if its ACF satisfies for τ → 0,

rxx(τ) = 1 − β

α
|τ |α{1 +O

(|τ |α)}, α > 0. (2.18)

The fractal dimension D of a locally self-similar process of order α is given by (2.14).
Therefore, we have the asymptotic expressions given by

rGC(τ) ∼ |τ |α, τ −→ 0,

rGC(τ) ∼ |τ |−β, τ −→ ∞.
(2.19)

Note that traffic x(t) is LRD if its ACF rxx(τ) satisfies

rxx(τ) ∼ |τ |−b, τ −→ ∞, (2.20)

where 0 < b < 1. Denote by DGC and HGC the fractal dimension and the Hurst parameter of
traffic of the GC type, respectively. Then, according to (2.19), one has

DGC = 2 − α

2
,

HGC = 1 − β

2
.

(2.21)
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Replacing α and β, respectively, by DGC andHGC according to (2.21), we have

rGC(τ) =
(
1 + |τ |4−2DGC

)−(1−HGC)/(2−DGC)
, (2.22)

where DGC is independent of HGC. Thus,

DGC /=DfGn. (2.23)

3. Set-Valued Analysis

A physically measured traffic trace has single history with finite length. Without losing
generality, the maximum possible length of a traffic series is assumed as N ∈ I+(= 1, 2, . . .).
Let l2N be a space containing all ACFs, including ACFs of real traffic. Let r be an ACF of a
real-traffic series. Define the norm of r as an inner product given by

‖r‖ =
√
〈r, r〉 =

√√√√N−1∑
k=0

|r|2. (3.1)

Then, the inner space given by

l2N =

⎧⎨
⎩r;

√√√√N−1∑
k=0

|r|2 < ∞
⎫⎬
⎭ (3.2)

is a Hilbert space when all limits are included [64, 65].

Remark 3.1. l2N is a finite-dimensional normed space.

Now, we consider the following consequences of a linear normed space with finite
dimensions.

Lemma 3.2. In a linear finite-dimensional space, all norms are equivalent [66].

Lemma 3.3. Every finite-dimensional subspace of a linear normed space is closed [67].

Lemma 3.4. Let H be a Hilbert space and M be a closed subspace of H. Let x ∈ H, x /∈ M. Then
there exists a unique element x̂ ∈ M satisfying ‖x − x̂‖ = infy∈M‖x − y‖ [66, 67], Aubin [68].

From the above, we obtain the following theorem. Its proof is straightforward
according to Lemmas 3.2–3.4.

Theorem 3.5. Let r ∈ l2N be an ACF of a real-traffic series. Let S be a closed subspace of l2N . Then,
there exists a unique R ∈ S such that ‖r − R‖ = infs∈S‖r − s‖ [64, 65].
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Let e = R − r be the error. Its norm is defined by

‖e‖ =
√
〈e, e〉 =

1
N

N−1∑
k=0

|e|2. (3.3)

Let the functional of e be F(e) = ‖e‖. Then, F(e) is convex. Thus, the optimal approximation
of r in S can be expressed by

R = arg minF(e), r ∈ l2N, R ∈ S. (3.4)

Suppose R has m parameters such that

R(k) = R(k; a1, a2, . . . , am). (3.5)

Then, the error by taking the approximation (3.5) as a traffic model is a function of aj (j =
1, 2, . . . , m). To clarify this point, we utilize the cost function of m dimensions expressed by

J(a1, a2, . . . , am) =
1
N

∑
k

[R(k) − r(k)]2. (3.6)

The partial derivative of J with respect tom parameters, whichwill be zero at the J minimum,
yields [69]

∂J

∂aj
=

2
N

∑
k

(R − r)
∂R

∂aj
, j = 1, 2, . . . , m. (3.7)

Let (a10, a20, . . . , am0) be the solution of ∂J/∂aj = 0. Then, R(k; a10, a20, . . . , am0) is the optimal
approximation of r in S.

The above discussions draw attention to the fact that an optimal approximation of r
in S may havem parameters. Obviously, an approximation of r is related to a subspace of l2N
as can be seen from Theorem 3.5. For this reason, we, below, consider the extensions of the
fGn’s ACF towards constructing the ACF of the GC process.

Definition 3.6. LetH be a Hilbert space equipped with a distance d. WhenK is a subset ofH,
the distance from r to K is denoted by d(r, K) = infs∈Kd(r, s) [70, 71].

Definition 3.7 (see [70]). Let {Kn}(n ∈ I+) be a sequence of subspaces of a Hilbert space H.
Then, the subset

lim sup
n→∞

Kn =
{
r ∈ H : lim inf

n→∞
d(r,Kn) = 0

}
(3.8)

is the upper limit of the sequence Kn. Besides, the subset

lim inf
n→∞

Kn =
{
r ∈ H : lim

n→∞
d(r,Kn) = 0

}
(3.9)
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is the lower limit of Kn. A subset K is said to be the limit or the set limit ofKn if

K = lim inf
n→∞

Kn = lim sup
n→∞

Kn = lim
n→∞

Kn. (3.10)

Considering the above terms, one has the lemma below.

Lemma 3.8. Any monotone sequence of subsets Kn has a limit [70].

According to Lemma 3.8, therefore, the following holds.

Corollary 3.9 (see [70, 71]). Let {Kn} (n ∈ I+) be a family of increasing closed subspaces of a
Hilbert spaceH : K0 ⊂ K1 ⊂ K2 ⊂ · · · . Then,

d(r;K0) ≥ d(r;K1) ≥ d(r;K2) ≥ · · · ,
lim
n→∞

d(r,Kn) = 0.
(3.11)

We now turn to constructing the ACF of the GC process.

Corollary 3.10. (c/2H(2H − 1))[(τ + 1)2H − 2τ2H + (τ − 1)2H] ≈ c(τ + 1)2H−2.

Proof. According to (2.5), this corollary results.

Let

G =

⎧⎨
⎩r; r = rfGn, ‖r‖ =

√√√√N−1∑
k=0

|r|2 < ∞
⎫⎬
⎭, c > 0. (3.12)

Then, G is the set containing the ACF of fGn. Therefore, we have the following remark.

Remark 3.11. G ⊂ l2N . Besides, it is closed according to Lemma 3.3.

We now construct the second space. Let GA be the set containing ACFs of traffic in the
form c(|τ | + 1)2H−2 for c > 0. Then,

GA =

⎧⎨
⎩r; r = c(|τ | + 1)2H−2, ‖r‖ =

√√√√N−1∑
k=0

|r|2 < ∞
⎫⎬
⎭. (3.13)

According to Corollary 3.10, element in GA is an approximation of the ACF of fGn. Hence,
we have d(r;GA) ≈ d(r;G). Based on GA, we further construct a space as follows.

Proposition 3.12. The following Ga1 is an extension of GA, where c > 0;

Ga1 =

⎧⎨
⎩r; r = c

(|τ |a2 + 1
)2H−2

, a2 ∈ (0, 1), ‖r‖ =

√√√√N−1∑
k=0

|r|2 < ∞
⎫⎬
⎭. (3.14)



10 Mathematical Problems in Engineering

Proof. (|τ |a2+1)2H−2 equals to (|τ |+1)2H−2 for a2 = 1, meaningGa1 ⊃ GA. Thus, this proposition
results.

Remark 3.13. (|τ |a2 + 1)2H−2 is nonintegrable for a2(2 − 2H) ∈ (0, 1) because (|τ |a2 + 1)2H−2 ∼
|τ |a2(2H−2)(τ → ∞). Clearly, Ga1 ⊂ l2N . In addition, it is closed according to Lemma 3.3.

The space Ga1 can be further extended into the following.

Proposition 3.14. The following Ga2 is an extension of Ga1 ;

Ga2 =

⎧⎨
⎩r; r = rGC, ‖r‖ =

√√√√N−1∑
k=0

|r|2 < ∞
⎫⎬
⎭, (3.15)

where rGC = (|τ |a2 + 1)−a1 , a1 > 0, a2 ∈ (0, 1), a1a2 ∈ (0, 1).

Proof. (|τ |a2 + 1)2H−2 is a special case of (|τ |a2 + 1)−a1 for a1 = 2− 2H , implying Ga2 ⊃ Ga1 . Thus,
Proposition 3.14 holds.

According to Proposition 3.14, therefore, we have the remarks below.

Remark 3.15. (|τ |a2 +1)−a1 is nonintegrable for a1a2 ∈ (0, 1) because (|τ |a2 +1)−a1 ∼ |τ |a1a2 (τ →
∞). Clearly, Ga2 ⊂ l2N . It is closed according to Lemma 3.3.

Remark 3.16. Proposition 3.14 presents a class of parametric ACF structures.

From the above, we have the theorem below.

Theorem 3.17. Let r ∈ l2N be an ACF of real traffic. Then,

d(r;Ga2) ≤ d(r;Ga1) ≤ d(r;GA). (3.16)

Proof. Because Ga2 ⊃ Ga1 ⊃ GA, Theorem 3.17 holds according to Corollary 3.9.

Theorem 3.17 exhibits the generality of the GC process in accurate modeling of traffic.
In what follows, we let a2 = α and a1 = β/α so as to be consistent with (2.6) in computations.

In the end of this section, we note that the purpose for using the abstract expression
of m-parameter model (3.5) as well as (3.6) and (3.7) is simply to mention the concept of
multiparameter model of ACF. For traffic, the GC model equipped with two parameters can
be well explained because one parameter is the fractal index for local property and the other
the LRD index for global one.

4. Application of Theorem 3.17 to Traffic Modeling

As an application of Theorem 3.17, we show the ACF modeling of x(i) of real-traffic trace
named by AMP-1131669938-1.psize, which was collected by the US National Laboratory for
Applied Network Research (NLANR) in November 2005 [73]. We first model it in Ga2 . Then,
we compare it with that in G (i.e., fGn model). Because d(r;GA) ≈ d(r;G), we use d(r; G) in
this section.
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Denote the measured ACF of x(i) by r(k). Denote by Rgc(k) and Rfgn(k) the modeled
ACFs in Ga2 and G, respectively. LetM2(Rgc) = E[(Rgc−r)2] be the mean square error (MSE)
by using Rgc(k) and M2(Rfgn) = E[(Rfgn − r)2] be the MSE by using Rfgn(k). For the sake
of demonstration, we use (4.1) for the MSE in Ga2 and (4.2) for that in G;

J1
(
α, β

)
=

1
N

∑
k

[
Rgc(k) − r(k)

]2
, (4.1)

J2(H) =
1
N

∑
k

[
Rfgn(k) − r(k)

]2
. (4.2)

Figure 1(a) shows the first 2048 points of AMP-1131669938-1.psize. Figure 1(b) is the
right part, that is, the part for k ≥ 0, of the measured ACF r(k) with the block size L = 2048
and average count = 30. By least squares fitting, we obtain the estimates (α0, β0) = (0.020,
0.028). Thus, we have

Rgc(k) =
(
k0.020 + 1

)−0.028/0.020
, (4.3)

withM2(Rgc) = 5.157× 10−5. Figure 1(c) shows Rgc(k) and Figure 1(d) indicates that Rgc(k)
fits well with r(k). Figure 2 illustrates the estimates of α and β. According to (2.21),HGC and
DGC of that series equal to 0.986 and 1.990, respectively.

With least squares fitting in G, however, we have

Rfgn(k) = 0.5
[
(k + 1)2H − 2k2H + (k − 1)2H

]
H=0.930

, (4.4)

with M2(Rfgn) = 1.347 × 10−3. Figure 3(a) plots the Rfgn(k) and Figure 3(b) shows the data
fitting in G. Figures 1(d) and 3(b) exhibit an application case of (3.16) in Theorem 3.17.
Judging from them, it is obvious that the GC process is more effective with that trace for
both short-term and long-term lags.

Purely from a view of curve fitting, the fitting accuracy of 10−3 in G may not be too
large. The unsatisfactory point of the modeling inG is in two aspects. One is thatRfgn(k)may
overestimate autocorrelations of traffic for small lags (around the knee of the ACF curve). The
other is that it may underestimate autocorrelations for large lags as evidenced by Figure 3(b),
refer to Li and Lim [46] for more cases regarding modeling real-traffic traces in Ga2 .

5. Discussion

A conventional method to assess whether a model is appropriate is goodness-of-fit test in
statistics ([3, 69], Press et al. [74]). However, it still needs sets of traffic data involved in the
test. In fact, experimental processing of specific sets of real traffic, no matter howmany traces
are involved in experimental verification or goodness-of-fit test, may not deterministically
infer the generality of the GC process expressed by Theorem 3.17, theoretically speaking.

Recall that an ACF of arrival traffic has a considerable impact on queuing systems,
see, for example, Hajek and He [75], Livny et al. [72], Li and Hwang [76, 77], Wittevrongel
and Bruneel [78], and Geist and Westall [79]. Therefore, using the ACF of the arrival traffic
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Figure 1: Modeling procedure using the GC process. (a) Traffic series: AMP-1131669938-1.psize. (b) Mea-
sured ACF r(k). (c)Modeled ACF Rgc(k). (d) Fitting the data: dot line, r(k); solid line, Rgc(k).
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Figure 2: Estimations of α and β for Rgc(k) of AMP-1131669938-1.psize.

of the GC type may bring in considerable advances in practice, such as system analysis or
evaluation, which we will work on in the future.

The GC model has one significance to separately characterize the local self-similarity
and the LRD. In the case study in the previous section, we have HGC = 0.986 and DGC =
1.990 for AMP-1131669938-1.psize. Both HGC and DGC are of large value for this trace since
HGC ∈ (0.5, 1) for LRD and DGC ∈ (1, 2). Note that a large value of H corresponds to strong
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Figure 3: Modeling ACF of AMP-1131669938-1.psize in G. (a) Modeled ACF in G. (b) Fitting the data: dot
line, r(k); solid line, Rfgn(k).

LRD while a large value of D implies highly local irregularity. The phenomenon of traffic
like this was demonstrated with more real-traffic traces in [46]. This phenomenon may not
be satisfactorily observed using single parameter models, that is, fGn due to the restrictive
relationship DfGn = 2 −HfGn.

The GC model has another significance to explain the complicated phenomenon
of traffic, which was observed by Paxosn and Floyd [37] and Feldmann et al. [80], and
which was stated like this. Traffic has robust long-term persistence at large time scales but
high irregularity at small time scales. This phenomenon may be described by Var[D(n)] >
Var[H(n)], where D(n) and H(n) are the fractal dimension and the Hurst parameter of
traffic in the nth interval on an interval-by-interval basis for n = 1, 2, . . ., respectively. This
complicated phenomenon of traffic can be well characterized by the GC model because HGC

is independent of DGC, refer to [46] for the demonstrations of this phenomenon with real
traffic. Again, we note that it may not be described by single parameter models, such as
fGn. In fact, Var[HfGn(n)] = Var[DfGn(n)] because DfGn and HfGn are restricted by DfGn =
2 −HfGn.

The third significance of the traffic model of the GC type can be briefed as follows. It
is well known that the amount of traffic accumulated in the interval [0, t] is upper bounded
by

∫ t

0
x(u)du ≤ σ + ρt, (5.1)

where σ and ρ are constants and t > 0, see Cruz [81]. It is obviously that a tightened bound
of

∫ t
0 x(u)du is particularly desired in practice, such as delay computations. By applying the

GC model to the traffic bound, we have the tightened bound expressed by

∫ t

0
x(u)du ≤ r2D−5σ[u(t) − u(t − ε)] + a−Hρu(t − ε)t, (5.2)
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where r > 0 is a small-scale factor, a > 0 is a large-scale factor, and ε > 0, u(t) is the unit step
function, see Li and Zhao [58] for details. For instance, if we let D = 1.8,H = 0.9, r = 1.5, and
a = 10, then we have a tightened bound given by

∫ t

0
x(u)du ≤ 0.567σ[u(t) − u(t − ε)] + 0.126ρu(t − ε)t. (5.3)

The conventional traffic bound, that is, the right side of (5.1), is a special case of (5.2) for
r = a = 1. We should emphasize that the fractal dimension D and the Hurst parameter H in
(5.2) have to be considered in the sense of the GC model of traffic [58].

Our future work is in two ways. One is to explore more specific significances of the GC
model of traffic in practical issues, for example, queuing. The other is to study whether the
GC model of random processes may provide new explanation for the random phenomena
in nonlinear time-varying systems or complex systems discussed by Dong et al. [82–84], and
Shen et al. [85–87], Chen et al. [88], and Sheng et al. [89, 90].

6. Conclusions

FGn, which is a self-similar process with LRD for H ∈ (0.5, 1) and a widely used model
in traffic engineering, was proposed as a traffic model by Leland et al. [22], Beran et al. [23],
and Paxson and Floyd [37], based on their data processing of sets of real-traffic traces. The GC
process, which is a locally self-similar process with LRD for β ∈ (0, 1), was recently reported
by Li and Lim [46], also based on their processing the same sets of traffic traces as those in
[22, 37]. However, experimental processing of real traffic relying on selected sample records
of traffic may be limited, in methodology, to be used to abstractly evaluate which is more
conformable with real traffic without relating to the selected sample records of traffic. The
theoretical significance of this paper is to provide us with the abstract assessment in terms of
the generality described by (3.16) in Theorem 3.17 that the GC model is more conformable
with real traffic than single parameter models, for example, fGn, regardless of any sample
records of traffic, which may yet be a theoretical supplement with respect to the traffic model
of the GC type. In addition, we have given our construction procedure of the ACF of the GC
process in Hilbert spaces with the technique of extensions based on fGn.
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