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The proportional loss rate differentiation (PLD) model was proposed to provide controllable
and predictable loss rate for different classes of wired network connections. However, these
algorithms cannot be directly applied to wireless networks, because of the location-dependent
and time-varying wireless channel capacity. This paper proposes a novel packet dropper for
fuzzy controlling of the proportional loss rate differentiation in a wireless network with multistate
channel. The proposed dropper, fuzzy proportional loss rate dropper (FPLR), prefers to drop the
small packets destined to a poor condition channel to improve the network performance. The loss
rate debts of the poor channel will be compensated later to keep PLD. From simulation results,
FPLR does achieve accurate loss rate proportion, lower queuing delay and loss rate, and higher
throughput, compared with other methods in the wireless environment.

1. Introduction

The Internet becomes an important infrastructure of global communication. However, many
multimedia applications require some guarantee of the quality of services (QoS). Thus
the best-effort service is not suitable to such applications because it cannot promise any
guarantee about packet loss, delay, or jitter. The Internet Engineering Task Force (IETF)
first proposed the Integrated Service (IntServ) as a QoS architecture for IP networks [1].
Because IntServ suffers from the scalability problem, the Differentiated Service (DiffServ)
[2] was then proposed. Diffserv has proceeded in two directions—absolute differentiated
service and relative differentiated service. The absolute differentiated service ensures that
an admitted user can enjoy certain and steady performance, while the relative differentiated
service ensures that users with a higher service class experience better performance than the
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users with a lower one. The proportional differentiation model, a branch of relative service
differentiation, has received a lot of attention because it can perform the controllable and
predictable differentiation [3, 4]. That is, the proportional differentiation model offers the
network manager a means of varying quality spacing between service classes according to
the given pricing or policy criteria and ensures that the differentiation between classes is
consistent in any measured timescale.

The proportional services can be differentiated according to different performance
metrics, such as throughput, delay, loss rate, or jitter. When adopting packet loss rate as the
performance metric, the proportional differentiation model is referred to as the proportional
loss rate differentiation (PLD) model. To provide PLD, some methods, such as Proportional
Loss Rate (PLR) [5], Average Drop Distance (ADD) [6], Debt Aware [7], Weighted Random
Early Detection (WRED) [8], Weight Simple Adaptive Proportion (WSAP) [9], Hop-count
Probabilistic Packet Dropper (HPPD) [10], and RED with maximum drop probability
adjustment, were proposed.

As wireless technologies rapidly advance and lightweight portable computing devices
become popular, wireless networks have become pervasive. Accordingly, the PLD model
is also urgently required for wireless environments, just as it was for wired networks.
However, the above approaches designed in a wired network are not applicable in a wireless
environment, which has some distinct characteristics, such as high error rate, location-
dependent and time-varying capacity, and scarce bandwidth [11].

In a wireless network with a multirate channel, when many packets encountering a
good channel are dropped and many packets encountering a poor channel are kept in the
buffer, the system performance becomes poor because most packets are transmitted in a
poor-capacity channel. Actually, dropping the packet having the poorest channel will cause
the optimal performance, but this behavior completely ignores to maintain the PLD model.
Therefore, how to keep the PLD model and raise the overall performance in a wireless
network with a multirate channel is a challenge and will be investigated in this paper.

This paper proposes a novel algorithm, named fuzzy proportional loss rate dropper
(FPLR). In the FPLR dropper, we utilize the concept of fuzzy control to make an optimal
decision for dropping the small packets destined to a poor channel and reserving the large
packets destined to a good channel, causing a lot of large packets to be transmitted via a good
channel. Therefore, FPLR can provide high performance and keep PLD in a wireless with a
multistate channel.

Organization of the remainder of the paper is as follows. Section 2 describes the
background, including the proportional differentiation model, some previous related works,
structure of fuzzy controller systems, andwhat problems occur when these works are directly
applied into a wireless network. Section 3 describes in more detail the FPLR and the design of
the fuzzy controller. In Section 4, some simulation results and their implications are exhibited.
The conclusion of this work is given in Section 5.

2. Background

2.1. Proportional Differentiation Model

The proportional differentiation model was proposed first by Dovrolis and Ramanathan [5]
and Bobin et al. [6], and its structure is shown as Figure 1. The arrival traffic is classified
into N service classes where each class has a dedicated queue. Let qi denote the measured
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Figure 1: The proportional differentiation model.

performance of class i. For proportional differentiation model, the following equation should
be satisfied for all pairs of classes, i and j,

qi
qj

=
ci
cj

(
1 ≤ i, j ≤ N

)
, (2.1)

where c1,c2,. . .,cN are the quality differentiation parameters (QDP). A network operator could
manipulate the service quality spacing between classes by adjusting QDPs.

Let Li be the average loss of the class-i packets with σi as the loss differentiation
parameters (LDPs). For all pairs of service classes, i and j, the proportional loss differentiation
model is specified by

Li

Lj

=
σi

σj

(
1 ≤ i, j ≤ N

)
. (2.2)

Let Di be the average queuing delay of the class-i packets with δi as the delay
differentiation parameters (DDPs). The proportional delay differentiation model has the
following constraint for any pair of classes:

Di

Dj

=
δi
δj

(
1 ≤ i, j ≤ N

)
. (2.3)

2.2. Proportional Loss Rate (PLR)

Dovrolis et al. proposed the proportional loss rate dropper (PLR) to offer the PLD model [5].
In order to determine which packet should be dropped, PLR uses a loss history table (LHT)
to record the loss rate of each class at present. Let Li(t) be the average loss rate and L̃i(t) be
the normalized average loss rate of class i at time t. Also Li(t) and Ai(t) denote the numbers
of dropped packets and arrived packets, respectively, of class i until time t. B(t) denotes the
set of backlogged classes. PLR chooses class J to drop its tail packet as follows:

Li(t) =
Li(t)
Ai(t)

(1 ≤ i ≤ N), (2.4)
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Figure 2: The proportional differentiation model in a wireless network.

L̃i(t) =
Li(t)
σi

(1 ≤ i ≤ N), (2.5)

J = arg min
i∈B(t)

L̃i(t) (1 ≤ i ≤ N). (2.6)

PLR aims to maintain a unanimous normalized average loss rate among all classes.
According to the number of packets that PLR estimates, the calculated average loss rate is
different; so there are two kinds of algorithms, namely, PLR with infinite memory, PLR (∞),
and PLR with memory M, PLR(M). When calculating the average loss rate, PLR(∞) counts
packets from initial to present, while PLR(M) observes the last M packets of every class at
present. From the long-term observation, the result of PLR(∞) is closer to targeted proportion
than that of PLR(M). However, when the class load significantly oscillates, adopting PLR(M)
is preferred because of its adaptation, but determining an optimal M is difficult.

2.3. The Problem of Achieving PLD in a Wireless Network

Previous studies on achieving the PLD model focused on increasing the accuracy of the
achieved loss proportion between classes in wired networks. These proposed algorithms did
not consider any characteristics in a wireless network.

Figure 2 depicts the PLDmodel applied in a wireless network. In this environment, all
mobile hosts share one wireless link. Since each host could be located at different places,
different capacities exist when the scheduler transmits data to different mobile hosts via
this wireless link. Also as the mobile host moves, the capacity to this destined host varies.
Thus a wireless link has a location-dependent and time-varying capacity, and it is called
as a multistate link herein. For simplicity, the term channel j means the wireless link at
transmitting the packet to the mobile host j. Let Cj(t) denote the encountered capacity when
the scheduler transmits packets via channel j at time t.

In a wireless network with a multirate link, when many packets encountering a
good channel are dropped and many packets encountering a poor channel are kept in the
buffer, the system performance becomes bad because most packets will be transmitted via a
poor-capacity channel. Actually, dropping the packet having the poorest channel will cause
the optimal performance, but this behavior completely ignores keeping the PLD model.
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Therefore, designing a dropper to simultaneously keep the PLD model and raise the overall
performance in a wireless network with a multirate link is a challenge.

2.4. The Fuzzy Controller

The fuzzy controller that is a nonlinear mapping system developed by Mamdani [12, 13]
consists of four main components: fuzzification, fuzzy inference engine, rule base, and
defuzzification, as shown in Figure 3.

The fuzzification (or fuzzifier) calculates suitable sets of degree of membership, called
“fuzzy sets,” for crisp inputs. The fuzzy inference engine performs inference procedure for
given inputs according to the fuzzy rules to derive proper actions. The rule base consists of
a set of linguistic rules, as well as a set of membership functions for linguistic values. The
defuzzification (or defuzzifier) converts the fuzzy output to crisp values.

3. Fuzzy Proportional Loss Rate Dropper (FPLR)

FPLR uses three processes to decide how to drop packets, as shown in Figure 4. A fuzzy
controller system on the first process takes advantage of fuzzy theory to PLD. The debt
decision module in the second process is to compensate for the loss rate debts. The third
process is to determine an appropriate packet to drop.
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Figure 5: The membership functions.

3.1. Fuzzification

In this paper, most of the membership functions for the fuzzy sets are chosen to be triangular,
because triangular membership functions are the most economic. All membership functions
are defined on common interval [0, 1]. With fuzzy logic, we assign grade values to our two
variables, which are packet sizes and channel states. Thus the fuzzy set A consists of two
fuzzy variables, PS, C(H), where PS is the fuzzy variable term for the packet size and
C(H) is the channel capacity encountered when the scheduler transmits the HOL packet.
The membership functions of PS and C(H) are shown in Figures 5(a) and 5(b), respectively,
and they are the input of the FCS. The fuzzification component translates the inputs into
corresponding fuzzy values.

In Figure 5(a), VS, S, MS, L, and VL denote very small, small, medium small, large,
and very large, respectively. In Figure 5(b), VB, B, MC, G, and VG indicate very bad channel,
bad channel, medium channel, good channel, and very good channel, respectively.

Let the fuzzified output of the fuzzy inference engine be P , which uses singleton fuzzy
sets representing the drop probability of the packet, as shown in Figure 5(c). In Figure 5(c),
nd, pnd, m, pd, and d denote not drop, probably not drop, maybe drop, probably drop, and
drop, respectively.
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Table 1: The rule base.

Packet sizes
VS S MS L VL

Channel capacity

VB d d d d d
B pd pd pd m m

MC pd pd m pnd pnd
G m m pnd pnd pnd
VG nd nd nd nd nd

3.2. Rule Establishment

Fuzzy rules can effectively treat the nonlinearity, and the whole fuzzy rules are shown in
Table 1. Each rule performs the mapping process from the fuzzy input to fuzzy out. These
rules are intuitive. For example, when channel state is very bad and no matter a packet is big
or small, an incoming packet must be dropped.

3.3. Defuzzification

The center of gravity (CoG) technique, which computes the weighted average of the center
of gravity of each membership function, is used to compute the defuzzified output, Pout,
of the FCS. That is Pouti =

∑n
f=1 μi,f(Pi,f)Pi,f/

∑n
f=1 μi,f(Pi,f), where Pi,f is the center of the

membership function recommended by the consequence of rule f of class i, and the height
is cut by the minimum vale after MAX-MIN inference engine [14]. ui,f(Pi,f) is the degree of
membership of input variables, packet size and channel states, of class i. The n is number of
rules.

3.4. Debt Decision

The debt decision is adopted because, in this work, maintaining the loss rate differentiation
is considered to be more important than achieving high throughput. A debt value debt is
used to record the “drop debt” carried by class i. debti having the positive value represents
that the number of loss happening is less than the expectation in class i. That is, some other
classes instead of class i drop the packets. Similarly, the value of debti being negative and zero
means that class i has more and equal number of losses than its expectation, respectively. debt
is specified by

If L̃J(t) >

(∑N
i=1 L̃i(t)
N

)

then debtJ = −0.25,

If L̃J(t) <

(∑N
i=1 L̃i(t)
N

)

then debtJ = 0.25,

(3.1)

where L̃J(t) is the normalized average loss rate of class J at time t and N is the number of
service classes.
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We would like to use the decision function of FPLR to decide that the packet should
be dropped and need not be dropped. We use a threshold θ to compare with Pout. Thus the
condition of dropping the packet of the candidate class J is as follows:

(
PoutJ + debtJ

)
> θ. (3.2)

3.5. Algorithm

Algorithm1 presents the pseudocode of the FPLR. When the buffer has empty space, the
dropper simply inserts the packet into a proper queue. When buffer overflow occurs, the
dropper selects an appropriate packet to drop. Let Li(t) and Ai(t) be the number of dropped
packets and the number of arrived packets of class i at time t, respectively.

When an arriving packet encounters a full buffer, the dropper selects a proper packet,
which may be this arriving packet or a packet in the buffer to be dropped for keeping
the proportional loss rate among classes. At determining which packet to be dropped, the
dropper first calculates the normalized average loss rate L̃i(t) = Li(t)/Ai(t)σi for each class i.
Then the class with the smallest normalized average loss rate, that is, J = arg mini∈B(t)L̃i(t),
is regarded as the candidate class.

The dropper considers three important factors, including channel state, packet size,
and debt degree, to determine whether the packet of the class J should be dropped.

Note the dropper drops the HOL packet, rather than the tail packet or arriving packet,
because using this method can reduce the queuing delay of queued packets.

If the candidate class J does not satisfy the above condition, the dropper will choose
the candidate class K, which has the next smallest normalized average loss rate. Judging
whether the HOL packet of candidate class K will be dropped is similar to (3.2), that is,
(PoutK + debtK) > θ.

Some noticeable points about the FPLR are explained as follows.

(1) FPLR drops the HOL packet, rather than the tail packet, of the selected class,
because using this method can reduce the queuing delay of queued packets. Also
the HOL packet will actually experience the current channel capacity, but the
tail packet may not be transmitted at this capacity because of the time-varying
bandwidth.

(2) For FPLR, because the packets destined to a low-capacity channel are easily
dropped and the packets destined to a high-capacity channel are easily kept
in the buffer, most packets are transmitted in a good channel, generating high
performance.

(3) The fuzzy logic is an effective tool for efficient buffer management. It can
easily handle several nonlinear factors and does not need detailed mathematic
descriptions for the system.

4. Simulation and Discussion

The simulations compare the performance of FPLR and WPLR in terms of loss rate ratio, loss
improvement, throughput improvement, and delay improvement. The simulations are conducted to
investigate the effects of packet arrival rate, number of mobile hosts, and state transition rate
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Li: the number of lost packets of class i
Ai: the number of arrived packets of class i
σi: the loss differentiation parameter of class i
C(Hi): the channel capacity encountered when the scheduler transmits the HOL packet of class i
B(t): the set of backlogged classes at present t
PSi: the size of the HOL packet in class i
Pi,f : the center of the membership function recommended by the consequence of rule f of class i
μi,f (Pi,f ): the degree of membership of input variables, packet size and

channel states, of class i
Pouti: the defuzzified output of FCS of class i
θ: drop threshold
debti: lost debt of class i
FPLR Dropper
{

a class-i packet arrives at time t, Ai(t) + +;
if (buffer overflow){

calculate L̃i(t) = Li(t)/Ai(t)σi, i = 1, 2, . . . ,N;
calculate Pouti =

∑n
f=1 μi,f (Pi,f )Pi,f/

∑n
f=1 μi,f (Pi,f ), i = 1, 2,. . .,N; f = 1, 2, 3, 4, 5;

J=arg mini∈B(t)L̃i(t);
debti = 0;
if (L̃J(t) > (

∑N
i=1 L̃i(t)/N)) then debtJ = −0.25, i = 1, 2, . . . ,N;

else if (L̃J(t) < (
∑N

i=1 L̃i(t)/N)) then debtJ = 0.25, i = 1, 2, . . . ,N;
if ((PoutJ+debtJ)> θ) {

drop the HOL packet from class J;
LJ(t) + +;}

else{
do {

findK = arg nextmini∈B(t)L̃i;
if ((PoutK+debtK)> θ) {

drop the HOL packet from class K;
LK(t) + +;}

}while(one packet is dropped or all classes have been visited)
if (no packet is dropped){

drop the HOL packet from class J;
LJ(t) + +;}

}
accept the incoming packet;

}

Algorithm 1: The FPLR algorithm.

upon WPLR and FPLR. Also, the behaviors of these two droppers under different timescales
are explored. First, the average loss rate of each class i, Li, is obtained by using (2.4), and the
loss rate ratio of class i over class j is defined as Rij=Li/Lj . The loss improvement of class i is

defined as (L
P

i − L
F

i )/L
P

i where L
P

i and L
F

i are the loss rates of class i made by WPLR and
FPLR, respectively. Similarly, the throughput improvement and delay improvement of class i

are defined as (TF
i −TP

i )/T
P
i and (D

P

i −D
F

i )/D
P

i , respectively, where Ti denotes the throughput
of class i and Di denotes the average queuing delay of class i.
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4.1. Simulation Models

The model we simulated is depicted in Figure 2, and the scheduler is using the First-Come
First-Served (FCFS) scheduler. In all simulations, three service classes (N = 3) are assumed,
and the corresponding loss rate differentiation parameters are set as σ1 = 1, σ2 = 2, and
σ3 = 4. Packet arrival follows a Poisson process, and its mean overall arrival rate is λ = 120
packets/sec. The distribution of packet sizes for all classes is such that 40% of packets are 40
bytes, 50% packets are 550 bytes, and 10% packets are 1500 bytes. Thus, the mean packet size
is 441 bytes. The threshold θ is set as 0.5. The total buffer size is 10,000 bytes, and the number
of hosts is five, that is, M = 5. The wireless channel is simulated by a multistate Markov
process, which has five states with the values of capacities varying among 0 (purely bad),
1Mbps, 2Mbps, 5.5Mbps, and 11Mbps (purely good). The transition rate matrix of channel
capacity is set as

1 2 3 4 5

1

2

3

4

5

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−a ap1 ap21 ap31 ap41

ap2 −a ap2 ap22 ap32

ap23 ap3 −a ap3 ap23

ap34 ap24 ap4 −a ap4

ap45 ap35 ap25 ap5 −a

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (4.1)

where a is the state transition rate to other states and pi is the probability of state i being
translated to its neighbor states when the transition occurs. The default value of a is 30, and
the values of p1, p2, p3, p4, and p5 can be calculated by letting the sum of each row equal
to 0. In each simulation, at least 500,000 packets for each class are generated for the sake of
stability.

4.2. Packet Arrival Rate

To observe the influence of different packet arrival rates on achieved loss rate ratios, loss
improvement, delay improvements and throughput improvement, the arrival rate (λ) is
varied from 100 to 150 packets/sec. The target loss rate ratios are 4 (σ3/σ1 = 4/1) for class 3
over class 1 and 2 (σ2/σ1 = 2/1) for class 2 over class 1. Figure 6(a) shows that WPLR and
FPLR can achieve the accurate loss rate ratios. For the FPLR dropper, because the class with a
larger debt has a higher probability to be dropped, the target loss rate proportions can be still
maintained.

Observed from Figure 6(b), the loss improvements attained by FPLR increase as
arrival rate increases, and three classes have the same loss improvement. At a low packet
arrival rate, the packet losses seldom happen, causing that the fuzzy mechanism has minor
influence. As the arrival rate increases, since the opportunity of using the fuzzy mechanism
becomes large, more small packets transmitted via low-capacity channels are dropped,
and more large packets transmitted via high-capacity channels are kept. Thus the loss
improvements made by FPLR increase.



Mathematical Problems in Engineering 11

100 110 120 130 140 150
0

1

2

3

4

5
L

os
s 

ra
te

 r
at

io

Arrival rate (packets/s)

PLR : R 31

PLR : R 21

FPLR : R 31

FPLR : R 21

(a)

100 110 120 130 140 150
0

10

20

30

40

Arrival rate (packets/s)

FPLR (total)
FPLR (class-1)

FPLR (class-2)
FPLR (class-3)

L
os

s 
im

pr
ov

em
en

t(
%
)

(b)

100 110 120 130 140 150
0

5

10

15

20

Arrival rate (packets/s)

FPLR (total)
FPLR (class-1)

FPLR (class-2)
FPLR (class-3)

T
hr

ou
gh

pu
t i

m
pr

ov
em

en
t(

%
)

(c)

100 110 120 130 140 150
0

10

20

30

40

Arrival rate (packets/s)

FPLR (total)
FPLR (class-1)

FPLR (class-2)
FPLR (class-3)

D
el

ay
 im

pr
ov

em
en

t(
%
)

(d)

Figure 6: The effect of packet arrival rate.

From Figure 6(c), two phenomena are observed. First, the throughputs improved by
FPLR increase as arrival rate increases. Second, the throughput improvements of all classes
are in the order class 3 > class 2 > class 1. The first phenomena is because the more loss
improvement, the more throughput improvement. The second phenomenon is not trivial and
explained in the following.

Let λi be the packet arrival rate of class i. Thus for WPLR, the throughput of class i,

TP
i , can be expressed as TP

i = λi(1 − L
P

i ). Also let the loss improvement of class i, made by the

dropper FPLR, be denoted as fF
i , which is equal to (L

P

i − L
F

i )/L
P

i . Therefore, the throughput
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of class i can be easily obtained as TF
i = λi(1−L

F

i ) = λi(1− (1− fF
i )L

P

i ). Hence, the throughput
improvement of class i is

TF
i

TP
i

− 1 =
1 − (1 − fF

i

)
L
P

i

1 − L
P

i

− 1. (4.2)

From this equation, we can prove the more loss improvement, the more throughput
improvement.

For different classes, observed from Figure 6(b), the loss improvements, fF
i , of all

classes are the same. Also Figure 6(a) shows that L
P

3 > L
P

2 > L
P

1 . Under these conditions,
from (4.2), the throughput improvements of all classes are in the order class 3 > class 2 >
class 1. For example, all λi = 120 packets/sec, loss rates of classes 1, 2, and 3 for WPLR are
20%, 40%, and 80%, respectively, that is, their throughputs are 100, 80, and 40. When the
loss improvement is 50% for all classes, the loss rates of classes 1, 2, and 3 for our proposed
dropper reduce to 10%, 20%, and 40%, respectively, that is, their throughputs are 110, 100,
and 80. In this example, the throughput improvements for classes 1, 2, and 3 are 10%, 25%,
and 100%, respectively.

Figure 6(d) shows the delay improvements achieved by FPLR. The delay improve-
ments are caused by two reasons. First, because the packet destined to a poor channel is easier
to be dropped than that destined to a good channel, nondropped packets usually encounter a
good channel, causing that they have short transmission time and thus short queuing delay.
Second, FPLR dropping the HOL packet, rather than dropping the tail packet, reduces the
queuing delay of the queued packets. Also the delay improvements enhance as the arrival
rate increases because the opportunity of using the fuzzy mechanism becomes large. Finally,
the delay improvements of all classes are in the order class 1 > class 2 > class 3 since the more
throughput improvement, the less delay improvement.

4.3. Timescale

In this simulation, the loss rate ratios between successive classes are measured over five
time intervals—100, 500, 1000, 5000, and 10000 p-units, where a p-unit is the average packet
transmission time. During each time interval, the loss rate ratios of class 2 over class 1 and
class 3 over class 2 are measured and averaged.

Figure 7 shows five percentiles, 5%, 25%, 50% (median), 75%, and 95%, of the average
loss rate ratio. FPLR has the broader ranges on short timescales thanWPLR and similar ranges
on long timescales. The reason is that although using the fuzzy mechanism will achieve the
loss rate ratio temporarily away from target loss rate proportion in the short term, they will
let the opportunity of using the debt decision mechanism keep PLD on the long term.

4.4. Number of Mobile Hosts

The number of mobile hosts is varied from 5 to 25 to observe the influence on achieved loss
rate ratios, loss improvement, delay improvement, and throughput improvement. Packets of
each class are evenly distributed to each mobile host. Since below all simulation results for
different classes have the similar treads as Figure 6. Therefore we will only show the total
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Figure 8: The effect of the number of mobile hosts.
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Figure 9: The effect of the state transition rate.

loss improvement, total throughput improvement, and total delay improvement. Figure 8(a)
shows that the number of mobile hosts does not affect the loss rate ratios achieved by
two droppers. Figure 8(b) reveals that the loss improvement, throughput improvement, and
delay improvement made by FPLR increase as the number of mobile hosts increases. When
there are only a few mobile hosts, for FPLR, few HOL packets destined to poor channels can
be selected as a substitution, so that the improvements are not high. As the number of mobile
hosts increases, since more small packets transmitted via poor channels can be chosen, the
improvements made by FPLR raise.

4.5. State Transition Rate

Given that a channel varies among the five states, 0, 1Mbps, 2Mbps, 5.5Mbps, and 11Mbps,
the transition rate, a, is varied from 20 to 40 to observe its effect upon loss rate ratios and
all improvements. Figure 9(a) shows that the state transition rate does not affect the loss rate
ratios. From Figure 9(b), as state transition rate changes faster, all improvements of FPLR
become smaller. When the state transition rate is small, the bad channel will lasts long,
causing that the HOL blocking also last long. Many packets will be accumulated in the buffer,
and packet losses usually occur, leading FPLR to have high opportunities to adopt the fuzzy
mechanism. When the state transition rate becomes larger, the packets caused by the HOL
blocking can be absorbed in the buffer, implying a smaller loss rate. Thus, the improvements
made by FPLR also become smaller.
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Figure 10: The effect of threshold θ.

4.6. Threshold θ

Herein we investigate the effects of the parameter θ for FPLR. Figure 10(a) reveals that loss
improvement, throughput improvement, and delay improvement made by FPLR increase
as threshold θ increases. As the threshold θ increases, since the opportunity of considering
packet size and channel states becomes large, smaller packets transmitted via low-capacity
channels are dropped, and more large packets transmitted via high-capacity channels are
kept. Thus the improvements made by FPLR increase. However, Figure 10(b) shows when
threshold θ exceeds 0.5, the target loss rate ratios slide down as threshold θ increases. The
reason is that in this case the loss rate proportions have minor influence, so the target loss
rate proportions cannot be maintained.

5. Conclusions

This paper proposed a high-performance algorithm, FPLR, which can be used to provide
proportional loss differentiation in a wireless network with multi-state channel. FPLR uses
three processes to decide how to drop packets. A fuzzy controller system on the first process
takes advantage of fuzzy theory to PLD. The debt decision module in the second process is
to compensate for the loss rate debts. The third process is to determine an appropriate packet
to drop. FPLR not only considers the normalized average loss rate, but also considers the
channel state and packet sizes, in order to improve the performance of dropping.
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From the simulation results, FPLR is examined to deal with location-dependent
channel capacity well and does provide more accurate proportional loss rate differentiation
than WPLR. Compared with WPLR, FPLR indeed provides better throughput and lower
queuing delay and loss in the wireless network with a multistate channel.

Our future works include developing a wireless proportional scheduler to provide
both proportional loss differentiation and delay differentiation.
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