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Together with Lyapunov-Krasovskii functional theory and reciprocal convex technique, a new
sufficient condition is derived to guarantee the global stability for recurrent neural networks with
both time-varying and continuously distributed delays, in which one improved delay-partitioning
technique is employed. The LMI-based criterion heavily depends on both the upper and lower
bounds on state delay and its derivative, which is different from the existent ones and has more
application areas as the lower bound of delay derivative is available. Finally, some numerical
examples can illustrate the reduced conservatism of the derived results by thinning the delay
interval.

1. Introduction

Recently, various classes of neural networks have been increasingly studied in the past few
decades, due to their practical importance and successful applications in many areas such
as optimization, image processing, and associative memory design. In those applications,
the key feature of the designed neural network is to be convergent. Meanwhile, since there
inevitably exist communication delay which is themain source of oscillation and instability in
various dynamical systems, great efforts have been made to analyze the dynamical behaviors
of time-delay systems including delayed neural networks (DNNs), and many elegant results
have been reported; see [1–31] and the references therein. In practical application, though it
is difficult to describe the form of delay precisely, the ranges of time delay and its variation
rate can be measured. Since Lyapunov functional approach imposed no restriction on delay
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and its derivative and presented the simple stability results, Lyapunov-Krasovskii functional
(LKF) one has been widely utilized due to that it can fully utilize the information on time-
delay system. Thus recently, the delay-dependent stability or delay-derivative-dependent one
for DNNs has become an important topic of primary significance, in which its main purpose
was to derive the maximum allowable upper bound on time delay such that the system can
be convergent [7–9, 11–16]. Meanwhile, since a neural network usually has a spatial nature
due to the presence of an amount of parallel pathways of a variety of axon sizes and lengths,
it is desired to model them by introducing a distributed delay over a certain duration of time
such that the distant past has less influence compared to the recent behavior of the state. In
other words, when studying stability for DNNs, the distributed delay should be taken into
consideration simultaneously [18–26].

Presently, during tackling the effect of time delay, the delay-partitioning idea has been
verified to be more effective in reducing the conservatism and widely employed [10–17]. In
[11], one delay-partitioning idea has been used to tackle time-varying delay of DNNs based
on the improved idea in [10] and in [12, 13], and some researchers also put forward the
other novel delay-partitioning idea to tackle constant delay, which can be more evident and
concise than the idea based on the one in [10]. Later, though the idea was extended to time-
varying delay case [14, 15, 17], the improved idea cannot deal with the interval varying delay
efficiently, especially as the lower bound of delay is greater than 0. Meanwhile, as for time-
varying delay, because convex combination technique can play an important role in reducing
the conservatism, it has received much attention and achieved some great improvements in
studying the stability for time-delay systems including DNNs [15–18, 28–30]. Its basic idea
is to approximate the integral terms of quadratic quantities into a convex combination of
quadratic terms of the LMIs. However, owing to the inversely weighted nature of coefficients
in Jensen inequality approach or the limitation of free-weighting matrix method, when
estimating the derivative of Lyapunov-Krasovskii functional, some important terms still have
been ignored based on the convex combination technique [15–18]. In [31], together with
integral inequality lemma, the authors put forward the reciprocal convex technique, which
can consider these previously ignorant terms. Yet, we have noticed that the reciprocal convex
technique could not tackle the case that the lower and upper bound of time delay can be
measured simultaneously, which still needs the convex technique. Now, together with the
improved delay-partitioning idea in [17] and combining reciprocal convex technique with
convex combination one, no researcher has investigated the stability for DNNs as the lower
bound of delay derivative is available, which motivates the focus of this presented work.

In the paper, we make some great efforts to investigate asymptotical stability for
recurrent neural networks with both time-varying and continuously distributed delay, in
which both the upper and lower bounds of time delay and its derivative are treated. Through
applying an improved delay-partitioning idea, one LMI-based condition is derived based on
combination of reciprocal convex technique and convex one, which can present the pretty
delay dependence and computational efficiency. Finally, we give three numerical examples
to illustrate the reduced conservatism.

Notations

For symmetric matrices X,Y,X > Y (resp., X ≥ Y ) means that X − Y > 0 (X − Y ≥ 0) is a
positive-definite (resp., positive-semidefinite) matrix; Tr(A) denotes the trace of the matrix
A;
[

X Y
YT Z

]
=
[
X Y
∗ Z

]
with ∗ denotes the symmetric term in a symmetric matrix.
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2. Problem Formulations

Consider the DNNs with continuously distributed delay of the following form:

ż(t) = −Cz(t) +Ag(z(t)) + Bg(z(t − τ(t))) +D

∫ t

−∞
K(t − s)g(z(s))ds + J, (2.1)

where z(t) = [z1(t) · · · zn(t)]T ∈ Rn is the neuron state vector; C = diag{c1, . . . , cn} > 0 and
A,B,D are n × n known constant matrices; g(z(·)) = [g1(z1(·)) · · · gn(zn(·))]T ∈ Rn stands
for the neuron activation function, J ∈ Rn is a constant input vector, and K(t − s) = [kij(t −
s)]n×n; here the delay kernel kij(·) is a real-valued nonnegative continuous function defined
on [0,+∞) and satisfies

∫∞
0 kij(θ)dθ = 1 for i, j = 1, 2, . . . , n.

The following assumptions on system (2.1) are utilized throughout this paper.

(H1) The delay τ(t) denotes one continuous function satisfying

0 ≤ τ0 ≤ τ(t) ≤ τm, μ0 ≤ τ̇(t) ≤ μm, (2.2)

in which τ0, τm, μ0, μm are constants. Herewe denote τm = τm−τ0 and μm = μm−μ0.

(H2) For the constants δ+
j , δ

−
j , the functions gj(·) in (2.1) are bounded and satisfy the

following condition:

δ−
j ≤ gj(x) − gj

(
y
)

x − y
≤ δ+

j , ∀x, y ∈ R, x /=y, j = 1, 2, . . . , n. (2.3)

In what follows, we denote Σ = diag{δ−
1 , . . . , δ

−
n}, Σ = diag{δ+

1 , . . . , δ
+
n} and set Σ1 =

ΣΣ, Σ2 = (Σ + Σ)/2, respectively.

Remark 2.1. As pointed out in [22], the constants δ+
i , δ

−
i in (H2) are allowed to be positive,

negative, or zero. Thus, some previously used Lipschitz conditions are just special cases of
(H2), which means that the activation functions are of more general descriptions than these
previous ones.

Suppose z∗ = [z∗1 · · · z∗n]T is the equilibrium point of the system (2.1). In order to prove
the result, we will shift the equilibrium to the origin by changing the variable x(·) = z(·) − z∗.
Then the system (2.1) can be transformed into

ẋ(t) = −Cx(t) +Af(x(t)) + Bf(x(t − τ(t))) +D

∫ t

−∞
K(t − s)f(x(s))ds, (2.4)

where x(t) = [x1(t), . . . , xn(t)]
T , and f(x) = [f1(x1), . . . , fn(xn)]

T with fj(xj) = gj(xj + z∗j ) −
gj(z∗j ), j = 1, 2, . . . , n. Note that the function fj(·) satisfies fj(0) = 0, and

δ−
j ≤ fj(x)

x
≤ δ+

j , ∀x ∈ R, x /= 0. (2.5)

In order to establish the stability criterion, firstly, the following lemmas are introduced.
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Lemma 2.2 (see [27]). For any constant matrix W ∈ Rn×n,W = WT > 0, scalar functional 0 ≤
r(t) ≤ rM, and a vector function ė : [−rM, 0] → Rn such that the following integration is well
defined, then −rM

∫0
−r(t) ė

T (t + s)Wė(t + s)ds ≤ [e(t) − e(t − r(t))]TW[e(t) − e(t − r(t))].

Lemma 2.3 (see [31]). Let the functions f1(t), f2(t), . . . , fN(t) : Rm → R have the positive values
in an open subsetD of Rm and satisfy

1
α1

f1(t) +
1
α2

f2(t) + · · · + 1
αN

fN(t) : D −→ Rn (2.6)

with αi > 0 and
∑

i αi = 1, then the reciprocal convex technique of fi(t) over the setD satisfies

∑

i

1
αi
fi(t) ≥

∑

i

fi(t) +
∑

i /= j

gi,j(t) ∀gi,j(t) : Rm −→ Rn, gi,j(t)=̇ gj,i(t),

[
fi(t) gi,j(t)

gj,i(t) fj(t)

]

≥ 0.

(2.7)

Then the problem to be addressed in next section can be formulated as developing a
condition ensuring that the DNNs (2.4) are asymptotically stable.

3. Delay-Derivative-Dependent Stability

In the section, through utilizing the reciprocal convex technique idea in [31], we present one
novel delay-derivative-dependent stability criterion for the system (2.4) in terms of LMIs.

Theorem 3.1. Given a positive integer l and setting δ = τm/l, Σ̃1 = diag {Σ1, . . . ,Σ1}l×l,
Σ̃2 =diag {Σ2, . . . ,Σ2}l×l, then the system (2.4) satisfying (2.2) and (2.5) is globally asymptotically
stable if there exist n× n matrices P > 0, P1 > 0, H1, Q1 > 0, V > 0, Wj > 0(j =1, . . . , l), Sj(j =1,
. . . , l), Ei(i = 1, 2), n × n diagonal matrices K > 0, L > 0, T > 0, Ui > 0(i = 1, 2, 3), Vj > 0, Rj > 0
(j = 1, . . . , l), n × n matrices Xij > 0, Yij , Zij > 0(i = 1, 2; j = 1, . . . , l), and ln× ln constant matrices
P̃ > 0, Q̃ > 0, H̃ such that the LMIs in (3.1)-(3.2) hold:

[
P1 H1

∗ Q1

]

> 0,

⎡

⎣
P̃ H̃

∗ Q̃

⎤

⎦ > 0,

[
Xij Yij

∗ Zij

]

> 0,

[
Wj Sj

∗ Wj

]

≥ 0,

i = 1, 2; j = 1, . . . , l,

(3.1)

Υ1ΘΥT
1 + Υ2ΞΥT

2 +
μm

l

l∑

i=1

IT1i

[
Xki Yki

∗ Zki

]

I1i < 0, k = 1, 2, (3.2)
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where I1i =
[
0n·(l+1+i)n −In0n·(2l+1)n −In0n·(l−i+4)n
0n·(l+1+i)n In0n·(2l+1)n In0n·(l−i+4)n

]
, and

Θ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Θ11 V 0 Θ14 0 0 Θ17 0 ET
1B ET

1D

∗ Θ22 0 0 −H1 0 0 0 0 0

∗ ∗ −U2Σ1 0 0 U2Σ2 0 0 0 0

∗ ∗ ∗ Θ44 0 0 Θ47 0 0 0

∗ ∗ ∗ ∗ −Q1 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −U2 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Θ77 0 ET
2B ET

2D

∗ ∗ ∗ ∗ ∗ ∗ ∗ −U3Σ1 U3Σ2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −U3 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1
n
T

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Υ1=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

In ∗
0n·n In ∗

0n·(l+1)n In ∗
0n·(2l+2)n In ∗
0n·(2l+3)n In ∗
0n·(3l+3)n In ∗
0n·(4l+3)n In ∗
0n·(4l+4)n In ∗
0n·(4l+5)n In ∗
0n·(4l+6)n In ∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, Ξ=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ξ11 S̃ W̃1 − S̃ Ξ14 0 0

∗ Ξ22 W̃ − S̃ 0 0 −H̃
∗ ∗ Ξ33 0 0 Ξ36

∗ ∗ ∗ Ξ44 0 0

∗ ∗ ∗ ∗ −Q̃ 0

∗ ∗ ∗ ∗ ∗ Ξ66

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, Υ2=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0ln ·n Iln ∗
0ln ·2n Iln ∗

0ln ·(l+2)n Iln ∗
0ln ·(2l+3)n Iln ∗
0ln ·(2l+4)n Iln ∗
0ln ·(3l+4)n Iln ∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(3.3)

with ∗ representing the appropriately dimensional 0 matrix making Υi(i = 1, 2) of (4l + 8)n
columns, X̃i = diag{Xi1, . . . , Xil}, Ỹi = diag{Yi1 . . . Yil}, Z̃i = diag{Zi1, . . . , Zil}, i = 1, 2,
W̃ = diag{W1, . . . ,Wl}, S̃ = diag{S1, . . . , Sl}, Ṽ = diag{V1, . . . , Vl}, R̃ = diag{R1, . . . , Rl}, and

Θ11 = −ET
1C − CTE1 + P1 − V −U1Σ1, Θ14 = ET

1A +H1 +U1Σ2,

Θ17 = P − ΣK + ΣL − ET
1 − CTE2, Θ22 = −P1 − V,

Θ44 = −U1 +Q1 + Tr(T)In, Θ47 = K − L +ATE2,

Θ77 = −ET
2 − E2 + τ20V +

l∑

i=1

δ2Wi, Ξ11 = P̃ + X̃1 − W̃ − Ṽ Σ̃1,
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Ξ14 = H̃ + Ṽ Σ̃2 + Ỹ1, Ξ22 = −P̃ − W̃, Ξ33 = −2W̃ + S̃ + S̃T − R̃Σ̃1,

Ξ36 =
(
1 − μm

l

)
Ỹ2 −

(
1 − μ0

l

)
Ỹ1 − R̃Σ̃2, Ξ44 = Q̃ + Z̃1 − Ṽ ,

Ξ66 =
(
1 − μm

l

)
Z̃2 −

(
1 − μ0

l

)
Z̃1 − R̃.

(3.4)

Proof. Based on (2.5) and denoting ρ(t) = (τ(t)−τ0)/l, we construct the Lyapunov-Krasovskii
functional candidate as

V (x(t)) = V1(x(t)) + V2(x(t)) + V3(x(t)) + V4(x(t)), (3.5)

where

V1(x(t)) = xT (t)Px(t) + 2
n∑

i=1

ki

∫xi

0

[
fi(s) − δ−

i s
]
ds + 2

n∑

i=1

li

∫xi

0

[
δ+
i s − fi(s)

]
ds,

V2(x(t)) =
∫ t

t−τ0

[
x(s)

f(x(s))

]T[
P1 H1

∗ Q1

][
x(s)

f(x(s))

]

ds +
∫ t−τ0

t−τ0−δ

[
σ(s)

h(σ(s))

]T⎡

⎣
P̃ H̃

∗ Q̃

⎤

⎦
[

σ(s)

h(σ(s))

]

ds

+
l∑

i=1

∫ t−τ0−(i−1)δ

t−τ0−(i−1)δ−ρ(t)

[
x(s)

f(x(s))

]T[
X1i Y1i

∗ Z1i

][
x(s)

f(x(s))

]

ds

+
l∑

i=1

∫ t−τ0−(i−1)δ−ρ(t)

t−τ0−iδ

[
x(s)

f(x(s))

]T[
X2i Y2i

∗ Z2i

][
x(s)

f(x(s))

]

ds,

V3(x(t)) =
n∑

i=1

n∑

j=1

ti

∫∞

0
kij(θ)

∫ t

t−θ
f2
j

(
xj(s)

)
dsdθ,

V4(x(t)) =
∫0

−τ0

∫ t

t+θ
τ0ẋ

T (s)V ẋ(s)dsdθ +
l∑

i=1

∫−τ0−(i−1)δ

−τ0−iδ

∫ t

t+θ
δẋT (s)Wiẋ(s)dsdθ

(3.6)

with K = diag{k1, . . . , kn} > 0, L = diag{l1, . . . , ln} > 0, T = diag{t1, . . . , tn} > 0 waiting to be
determined, and

σT (s) =
[
xT (s) · · ·xT (s − (l − 1)δ)

]
, hT (σ(s)) =

[
fT (x(s)) · · · fT (x(s − (l − 1)δ))

]
. (3.7)
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Through directly calculating and using any n × n constant matrices Ei(i = 1, 2), the time
derivative of functional (3.5) along the trajectories of system (2.4) yields

V̇1(x(t)) = 2xT (t)Pẋ(t) + 2
[
fT (x(t))(K − L) + xT (t)

(
ΣL − ΣK

)]
ẋ(t)

+ 2
[
xT (t)ET

1 + ẋT (t)ET
2

][

− ẋ(t) − Cx(t) +Af(x(t)) + Bf(x(t − τ(t)))

+D
∫ t

−∞
K(t − s)f(x(s))ds

]

,

(3.8)

V̇2(x(t)) =
[
xT (t)P1x(t) + 2xT (t)H1f(x(t)) + fT (x(t))Q1f(x(t))

]

−
[
xT (t − τ0)P1x(t − τ0) + 2xT (t − τ0)H1f(x(t − τ0)) + fT (x(t − τ0))Q1f(x(t − τ0))

]

+
[
σT (t − τ0)P̃σ(t − τ0) + 2σT (t − τ0)H̃h(σ(t − τ0)) + hT (σ(t − τ0))Q̃h(σ(t − τ0))

]

−
[
σT (t − τ0 − δ)P̃σ(t − τ0 − δ)+2σT (t − τ0 − δ)H̃h(σ(t − τ0 − δ))+ hT (σ(t − τ0 − δ))

×Q̃h(σ(t − τ0 − δ))
]

+
[
σT (t − τ0)X̃1σ(t − τ0) + σT(t − τ0 − ρ(t)

)(
1 − τ̇(t)

l

)(
X̃2 − X̃1

)
σ
(
t − τ0 − ρ(t)

)

−σT (t − τ0 − δ)X̃2σ(t − τ0 − δ)
]

+
[
2σT (t − τ0)Ỹ1h(σ(t − τ0)) + 2σT(t − τ0 − ρ(t)

)(
1 − τ̇(t)

l

)(
Ỹ2 − Ỹ1

)

×h(σ(t − τ0 − ρ(t)
)) − 2σT (t − τ0 − δ)Ỹ2h(σ(t − τ0 − δ))

]

+
[
hT (σ(t − τ0))Z̃1h(σ(t − τ0))+ hT(σ

(
t − τ0 − ρ(t)

))(
1 − τ̇(t)

l

)(
Z̃2 − Z̃1

)

×h(σ(t − τ0 − ρ(t)
)) − hT (σ(t − τ0 − δ))Z̃2h

T (σ(t − τ0 − δ))
]
,

(3.9)

V̇3(x(t)) =
n∑

i=1

n∑

j=1

ti

∫∞

0
kij(θ)f2

j

(
xj(t)

)
dθ −

n∑

i=1

n∑

j=1

∫∞

0
kij(θ)f2

j

(
xj(t − θ)

)
dθ

≤
n∑

i=1

tif
T (x(t))f(x(t)) −

n∑

i=1

n∑

j=1

(∫∞

0
kij(θ)fj

(
xj(t − θ)

)
dθ

)2
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≤ Tr(T)fT (x(t))f(x(t)) −
(∫ t

−∞
K(t − s)f(x(s))ds

)T(
1
n
T

)

×
(∫ t

−∞
K(t − s)f(x(s))ds

)

, (3.10)

V̇4(x(t)) = ẋT (t)

[

τ20V +
l∑

i=1

(
δ2Wi

)]

ẋ(t) −
∫ t

t−τ0
τ0ẋ

T (s)V ẋ(s)ds

−
l∑

i=1

∫ t−τ0−(i−1)δ

t−τ0−iδ
δẋT (s)Wiẋ(s)ds.

(3.11)

Moreover, together with Lemmas 2.2 and 2.3 and (3.1), we can estimate −∑l
i=1

∫ t−τ0−(i−1)δ
t−τ0−iδ ×

δẋT (s)Wiẋ(s)ds as follows:

−
l∑

i=1

∫ t−τ0−(i−1)δ

t−τ0−iδ
δẋT (s)Wiẋ(s)ds

≤ −
l∑

i=1

{
τm

τm − τ(t)
[
x
(
t − τ0 − (i − 1)δ − ρ(t)

) − x(t − τ0 − iδ)
]T

×Wi

[
x
(
t − τ0 − (i − 1)δ − ρ(t)

) − x(t − τ0 − iδ)
] − τm

τ(t) − τ0

× [x(t − τ0 − (i − 1)δ) − x
(
t − τ0 − (i − 1)δ − ρ(t)

)]T

× Wi

[
x(t − τ0 − (i − 1)δ) − x

(
t − τ0 − (i − 1)δ − ρ(t)

)]}

≤ −
l∑

i=1

⎡

⎢⎢
⎣

x(t − τ0 − (i − 1)δ)

x
(
t − τ0 − (i − 1)δ − ρ(t)

)

x(t − τ0 − iδ)

⎤

⎥⎥
⎦

T⎡

⎢⎢
⎣

Wi Si −Wi −Si

∗ 2Wi − Si − ST
i ST

i −Wi

∗ ∗ Wi

⎤

⎥⎥
⎦

×

⎡

⎢⎢
⎣

x(t − τ0 − (i − 1)δ)

x
(
t − τ0 − (i − 1)δ − ρ(t)

)

x(t − τ0 − iδ)

⎤

⎥⎥
⎦

= −

⎡

⎢⎢
⎣

σ(t − τ0)

σ
(
t − τ0 − ρ(t)

)

σ(t − τ0 − δ)

⎤

⎥⎥
⎦

T⎡

⎢⎢
⎣

W̃ S̃ − W̃ −S̃
∗ 2W̃ − S̃ − S̃T S̃T − W̃

∗ ∗ W̃

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

σ(t − τ0)

σ
(
t − τ0 − ρ(t)

)

σ(t − τ0 − δ)

⎤

⎥⎥
⎦.

(3.12)
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From (2.5), the following inequality holds for any diagonal matrices Ui >0 (i=1, 2, 3), Vj >0,
Rj > 0 (j = 1, . . . , l) with the compatible dimensions and setting Ṽ = diag{V1, . . . , Vl},
R̃ = diag{R1, . . . , Rl},

0 ≤
[
−xT (t)U1Σ1x(t) + 2xT (t)U1Σ2f(x(t)) − fT (x(t))U1f(x(t))

]

+
[
−xT (t − τm)U2Σ1x(t − τm)+2xT (t − τm)U2Σ2f(x(t − τm))−fT (x(t − τm))U2f(x(t − τm))

]

+
[
−xT (t − τ(t))U3Σ1x(t − τ(t)) + 2xT (t − τ(t))U3Σ2f(x(t − τ(t))) − fT (x(t − τ(t)))

×U3f(x(t − τ(t)))
]

+
[
−σT (t − τ0)Ṽ Σ̃1σ(t − τ0) + 2σT (t − τ0)Ṽ Σ̃2h(σ(t − τ0))

]
− hT (σ(t − τ0))Ṽ h(σ(t − τ0))

+
[
−σT(t − τ0 − ρ(t)

)
R̃Σ̃1σ

(
t − τ0 − ρ(t)

)
+ 2σT(t − τ0 − ρ(t)

)
R̃Σ̃2h

(
σ
(
t − τ0 − ρ(t)

))

−hT(σ
(
t − τ0 − ρ(t)

))
R̃h
(
σ
(
t − τ0 − ρ(t)

))]
.

(3.13)

Now, adding the terms on the right-hand side of (3.8)–(3.12) and employing inequality (3.13),
we can deduce

V̇ (x(t)) ≤ ζT (t)

{

Υ1ΘΥT
1 + Υ2ΞΥT

2 +
τ̇(t) − μ0

l

l∑

i=1

IT3i

[
X1i Y1i

∗ Z1i

]

I3i +
μm − τ̇(t)

l

×
l∑

i=1

IT3i

[
X2i Y2i

∗ Z2i

]

I3i

}

ζ(t) =̇ ζT (t)Λ(t)ζ(t),

(3.14)

in which Θ,Ξ,Υi (i = 1, 2) are presented in (3.2), and

ζT (t) =

⎡

⎣xT (t) σT (t − τ0) xT (t − τ0 − τm) σT(t − τ0 − ρ(t)
)
fT (x(t))

hT (σ(t − τ0)) fT (x(t − τm))hT(σ
(
t − τ0 − ρ(t)

))
ẋT (t)

xT (t − τ(t)) fT (x(t − τ(t)))

(∫ t

−∞
K(t − s)f(x(s))ds

)T
⎤

⎦.

(3.15)

Then by employing convex combination technique, the LMIs in (3.2) can guarantee Λ(t) < 0,
which indicates that there must exist a positive scalar χ > 0 such that V̇ (x(t)) ≤ −χ‖x(t)‖2 < 0
for x(t)/= 0. Then it follows from Lyapunov-Krasovskii stability theory that the system (2.4)
is asymptotically stable, and the proof is completed.
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Remark 3.2. Presently, the convex combination technique has been widely employed to
tackle time-varying delay owing to the truth that it could reduce the conservatism more
effectively than the previous ones, see [15–18, 28–30]. In [31], the authors put forward the
reciprocal convex approach, which can reduce the conservatismmore effectively than convex
combination ones. Yet, it has come to our attention that no researchers have utilized both of
them simultaneously to tackle the stability for DNNs.

Remark 3.3. One can easily check that the theorem in this work achieves some great improve-
ments over the one in [17], which can be illustrated in the following. Firstly, some ignored
terms in [17] have been fully considered in this paper when estimating the derivative of
Lyapunov-Krasovskii functional in (3.11), such as the ignored ones.

Secondly, owing to the introduction of reciprocal convex approach, Theorem 3.1 can
be much less complicated than the ones in [17], which will result in some computation sim-
plicity in some degree. Thirdly, though reciprocal convex approach plays an important role
in tackling the range of time delay, it cannot efficiently deal with the effect of lower and
upper bound on delay derivative, which can be checked in (3.14). Thuswe employ the convex
combination technique to overcome this shortcoming.

Remark 3.4. When τ(t) is not differentiable or μ0 (resp., μm) is unknown, through setting[
Xij Yij

∗ Zij

]
= 0 (i = 1, 2) or

[
X2j Y2j

∗ Z2j

]
= 0 (resp.,

[
X1j Y1j

∗ Z1j

]
= 0) in (3.5), our theorem still can be true.

Remark 3.5. Owing to the introduction of delay-partitioning idea in this work, the difficulty
and complexity in checking the theorem will become more and more evident when the
integer l increases and the dimension of the LMIs in (3.2) will become much higher. Yet
based on the results in [12–16], the maximum allowable upper bound of τm would become
unapparent enlarging as l ≥ 5. Thus if we want to employ the idea to real cases, we do not
necessarily partition the interval [τ0, τm] into more than l ≥ 5 subintervals.

4. Numerical Examples

In the section, three numerical examples will be presented to illustrate that our results are
superior over the ones by convex combination technique.

Example 4.1. We revisit the system considered in [9, 11, 17] with the following parameters:

C =

[
2 0

0 2

]

, A =

[
1 1

−1 −1

]

, B =

[
0.88 1

1 1

]

,

D = Σ =

[
0 0

0 0

]

, Σ =

[
0.4 0

0 0.8

]

,

(4.1)

in which τ0 = 0 is set. If we do not consider the existence of μ0, then by utilizing Theorem 3.1
and Remark 3.2, the corresponding maximum allowable upper bounds (MAUBs) τmax for
different μm derived by Theorem 3.1 in [17] and in the paper can be summarized in Table 1,
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Table 1: Calculated MAUBs τmax for various l, unavailable μ0 in Example 4.1.

Methods\μm 0.6 0.8 0.9 1.2
Li et al. [17] l = 1 3.4878 2.8458 1.9150 1.1167

l = 2 3.7458 3.1150 2.1153 1.3189
Theorem 3.1 l = 1 3.5664 2.9316 2.0552 1.2107

l = 2 3.8543 3.2311 2.2115 1.4445

Table 2: Calculated MAUBs τmax for various l and μ0 = 0.5 in Example 4.1.

Methods\μm 0.6 0.8 0.9 1.2
Zhang et al. [9] 3.5209 2.8654 1.9508 —
Li et al. [17] l = 1 3.5872 2.8815 1.9657 1.2055
Theorem 3.1 l = 1 3.6435 2.9443 2.0112 1.2899

which demonstrates that Theorem 3.1 in this paper of l = 1 is less conservative than the
theorem in [17]. Yet, if we set μ0 = 0.5, it is still easy to verify that our results can yield much
less conservative results than the one in [17], which can be shown in Table 2.

Based on Tables 1 and 2, it indicates that the conservatism of stability criterion can be
greatly deduced if we take μ0 into consideration. Moreover, though the delay-partitioning
idea has been used in [17], the corresponding MAUBs τmax derived by [17] and Theorem 3.1
are summarized in Table 3, which shows that the idea in this work can be more efficient than
the one in [17] even for l = 1, 2.

Example 4.2. Consider the delayed neural networks (2.1)with

C = diag{1.2769, 0.6231, 0.9230, 0.4480}, Σ = 03×3, Σ = diag{0.1137, 0.1279, 0.7994, 0.2368},

A =

⎡

⎢⎢⎢⎢⎢
⎣

−0.0373 0.4852 −0.3351 0.2336

−1.6033 0.5988 −0.3224 1.2352

0.3394 −0.0860 −0.3824 −0.5785
−0.1311 0.3253 −0.9534 −0.5015

⎤

⎥⎥⎥⎥⎥
⎦
, B =

⎡

⎢⎢⎢⎢⎢
⎣

0.8674 −1.2405 −0.5325 0.0220

0.0474 −0.9164 0.0360 0.9816

1.8495 2.6117 −0.3788 0.8428

−2.0413 0.5179 1.1734 −0.2775

⎤

⎥⎥⎥⎥⎥
⎦
,

(4.2)

which has been addressed extensively, see [2, 15, 17] and the references therein. Together
with the delay-partitioning idea and for different μm, the works [15, 17] have calculated the
MAUBs τmax such that the origin of the system is globally asymptotically stable for τ(t)
satisfying 3 = τ0 ≤ τ(t) ≤ τm ≤ τmax. By resorting to Theorem 3.1 and Remark 3.2, the
corresponding results can be given in Table 4, which indicates that our delay-partitioning
idea can be more effective than the relevant ones in [15, 17] for l = 1, 2 and μ0 = 0.



12 Mathematical Problems in Engineering

Table 3: Calculated MAUBs τmax for various l, μ0 = 0.5 in Example 4.1

Methods\μm 0.8 0.9 Unknown μm

Li et al. [17] l = 1 2.8815 1.9657 1.2055
l = 2 3.1488 2.1968 1.4078

Theorem 3.1 l = 1 2.9668 2.0113 1.3115
l = 2 3.2350 2.2778 1.4890

Table 4: Calculated MAUBs τmax for various l, μm in Example 4.2.

Methods\μm 0.1 0.5 0.9 Unknown μm

Hu et al. [15] l = 1 3.33 3.16 3.10 3.09
l = 2 3.65 3.32 3.26 3.24

Li et al. [17] l = 1 3.35 3.21 3.20 3.19
l = 2 3.77 3.41 3.38 3.37

Theorem 3.1 l = 1 3.40 3.32 3.31 3.24
l = 2 3.86 3.49 3.42 3.40

Table 5: Calculated MAUBs τmax for various [μ0, μm], and l in Example 4.3.

Methods\[μ0, μm] [0.1, 0.4] [0.4, 0.8] [0.8, 0.9] [0.9, 1.1 ]
Li et al. [17] l = 1 0.8712 0.8257 0.9327 0.9805

l = 2 1.1872 1.1815 1.2657 1.3028
Theorem 3.1 l = 1 0.9221 0.9115 0.9995 1.1134

l = 2 1.2315 1.2189 1.3012 1.3898

Example 4.3. Consider the delayed neural networks (2.4)with

C =

[
4.2 0

0 3.8

]

, A =

[
1 −1.66
0 −1

]

, B =

[
1 0

−2.475 1

]

, D =

[
0.5 0.2

0.3 0.4

]

,

K(t − s) =

[
2e−2(t−s) 3e−3(t−s)

4e−4(t−s) 2e−2(t−s)

]

,

(4.3)

and f(xi) = tanh(xi), i = 1, 2. For τ0 = 0.5, choosing various μ0, μm in Table 5 and applying
Theorem 3.1 in our work and the one in [17], we can find the MAUBs on τm for which the
system remains asymptotically stable.

Based on Table 5, it can indicate that the delay-partitioning idea in our work can be
less conservative than the ones in [17].

5. Conclusion

This paper has investigated the asymptotical stability for DNNs with continuously dis-
tributed delay. Through employing one improved delay-partitioning idea and combining
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reciprocal convex technique with convex combination one, one stability criterion with signif-
icantly reduced conservatism has been established in terms of LMIs. The proposed stability
condition benefits from the partition of delay intervals and reciprocal convex technique.
Three numerical examples have been given to demonstrate the effectiveness of the presented
criteria and the improvements over some existent ones. Finally, it should be worth noting that
the delay-partitioning idea presented in this work is widely applicable in many cases.
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