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This work presents a hybrid real-coded genetic algorithm with a particle swarm optimization
(RGA-PSO) algorithm and a hybrid artificial immune algorithm with a PSO (AIA-PSO)
algorithm for solving 13 constrained global optimization (CGO) problems, including six nonlinear
programming and seven generalized polynomial programming optimization problems. External
RGA and AIA approaches are used to optimize the constriction coefficient, cognitive parameter,
social parameter, penalty parameter, and mutation probability of an internal PSO algorithm. CGO
problems are then solved using the internal PSO algorithm. The performances of the proposed
RGA-PSO and AIA-PSO algorithms are evaluated using 13 CGO problems. Moreover, numerical
results obtained using the proposed RGA-PSO and AIA-PSO algorithms are compared with those
obtained using published individual GA and AIA approaches. Experimental results indicate that
the proposed RGA-PSO and AIA-PSO algorithms converge to a global optimum solution to a
CGO problem. Furthermore, the optimum parameter settings of the internal PSO algorithm can
be obtained using the external RGA and AIA approaches. Also, the proposed RGA-PSO and AIA-
PSO algorithms outperform some published individual GA and AIA approaches. Therefore, the
proposed RGA-PSO and AIA-PSO algorithms are highly promising stochastic global optimization
methods for solving CGO problems.

1. Introduction

Many scientific, engineering, and management problems can be expressed as constrained
global optimization (CGO) problems, as follows:

Minimize f(x),

s.t. gm(x) ≤ 0, m = 1, 2, . . . ,M,
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hk(x) = 0, k = 1, 2, . . . , K,

xl
n ≤ xn ≤ xu

n, n = 1, 2, . . . ,N,

(1.1)

where f(x) denotes an objective function; gm(x) represents a set of m nonlinear inequality
constraints; hk(x) refers to a set of k nonlinear equality constraints; x represents a vector
of decision variables which take real values, and each decision variable xn is constrained
by its lower and upper boundaries [xl

n, x
u
n]; N is the total number of decision variables

xn. For instance, generalized polynomial programming (GPP) belongs to the nonlinear
programming (NLP) method. The formulation of GPP is a nonconvex objective function
subject to nonconvex inequality constraints and possibly disjointed feasible region. The
GPP approach has been successfully used to solve problems including alkylation process
design, heat exchanger design, optimal reactor design [1], inventory decision problem
(economic production quantity) [2], process synthesis and the design of separations,
phase equilibrium, nonisothermal complex reactor networks, and molecular conformation
[3].

Traditional local NLP optimization approaches based on a gradient algorithm are
inefficient for solving CGO problems, while an objective function is nondifferentiable.
Global optimization methods can be divided into deterministic or stochastic [4]. Often
involving a sophisticated optimization process, deterministic global optimization methods
typically make assumptions regarding the problem to be solved [5]. Stochastic global
optimization methods that do not require gradient information and numerous assumptions
have received considerable attention. For instance, Sun et al. [6] devised an improved
vector particle swarm optimization (PSO) algorithm with a constraint-preserving method
to solve CGO problems. Furthermore, Tsoulos [7] developed a real-coded genetic algorithm
(RGA) with a penalty function approach for solving CGO problems. Additionally, Deep and
Dipti [8] presented a self-organizing GA with a tournament selection method for solving
CGO problems. Meanwhile, Wu and Chung [9] developed a RGA with a static penalty
function approach for solving GPP optimization problems. Finally, Wu [10] introduced an
artificial immune algorithm (AIA) with an adaptive penalty function method to solve CGO
problems.

Zadeh [11] defined “soft computing” as the synergistic power of two or more fused
computational intelligence (CI) schemes, which can be divided into several branches: gran-
ular computing (e.g., fuzzy sets, rough sets, and probabilistic reasoning), neurocomputing
(e.g., supervised, unsupervised, and reinforcement neural learning algorithms), evolutionary
computing (e.g., GAs, genetic programming, and PSO algorithms), and artificial life (e.g.,
artificial immune systems) [12]. Besides, outperforming individual algorithms in terms of
solving certain problems, hybrid algorithms can solve general problems more efficiently
[13]. Therefore, hybrid CI approaches have recently attracted considerable attention as a
promising field of research. Various hybrid evolutionary computing (GA and PSO methods)
and artificial life (such as AIA methods) approaches have been developed for solving
optimization problems. These hybrid algorithms focus on developing diverse candidate
solutions (such as chromosomes and particles) of population/swarm to solve optimization
problems more efficiently. These hybrid algorithms use two different algorithms to create
diverse candidate solutions using their specific operations and then merge these diverse
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candidate solutions to increase the diversity of the candidate population. For instance, Abd-
El-Wahed et al. [14] developed an integrated PSO algorithm and GA to solve nonlinear
optimization problems. Additionally, Kuo and Han [15] presented a hybrid GA and PSO
algorithm for bilevel linear programming to solve a supply chain distribution problem.
Furthermore, Shelokar et al. [16] presented a hybrid PSOmethod and ant colony optimization
method for solving continuous optimization problems. Finally, Hu et al. [17] developed an
immune cooperative PSO algorithm for solving the fault-tolerant routing problem.

Compared to the above hybrid CI algorithms, this work optimizes the parameter
settings of an individual CI method by using another individual CI algorithm. A standard
PSO algorithm has certain limitations [17, 18]. For instance, a PSO algorithm includes
many parameters that must be set, such as the cognitive parameter, social parameter, and
constriction coefficient. In practice, the optimal parameter settings of a PSO algorithm are
tuned based on trial and error and prior knowledge is required to successfully manipulate
the cognitive parameter, social parameter, and constriction coefficient. The exploration and
exploitative capabilities of a PSO algorithm are limited to optimum parameter settings.
Moreover, conventional PSO methods involve premature convergence that rapidly losses
diversity during optimization.

Fortunately, optimization of parameter settings for a conventional PSO algorithm
can be considered an unconstrained global optimization (UGO) problem, and the diversity
of candidate solutions of the PSO method can be increased using a multi-nonuniform
mutation operation [19]. Moreover, the parameter manipulation of a GA and AIA method
is easy to implement without prior knowledge. Therefore, to overcome the limitations of
a standard PSO algorithm, this work develops two hybrid CI algorithms to solve CGO
problems efficiently. The first algorithm is a hybrid RGA and PSO (RGA-PSO) algorithm,
while the second algorithm is a hybrid AIA and PSO (AIA-PSO) algorithm. The proposed
RGA-PSO and AIA-PSO algorithms are considered to optimize two optimization problems
simultaneously. The UGO problem (optimization of cognitive parameter, social parameter,
constriction coefficient, penalty parameter, and mutation probability of an internal PSO
algorithm based on a penalty function approach) is optimized using external RGA and AIA
approaches, respectively. A CGO problem is then solved using the internal PSO algorithm.
The performances of the proposed RGA-PSO and AIA-PSO algorithms are evaluated using a
set of CGO problems (e.g., six benchmark NLP and seven GPP optimization problems).

The rest of this paper is organized as follows. Section 2 describes the RGA, PSO
algorithm, AIA, and penalty function approaches. Section 3 then introduces the proposed
RGA-PSO and AIA-PSO algorithms. Next, Section 4 compares the experimental results of
the proposed RGA-PSO and AIA-PSO algorithms with those of various published individual
GAs and AIAs [9, 10, 20–22] and hybrid algorithms [23, 24]. Finally, conclusions are drawn
in Section 5.

2. Related Works

2.1. Real-Coded Genetic Algorithm

GAs are stochastic global optimization methods based on the concepts of natural selection
and use three genetic operators, that is, selection, crossover, and mutation, to explore and
exploit the solution space. RGA outperforms binary-codedGA in solving continuous function
optimization problems [19]. This work thus describes operators of a RGA [25].
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2.1.1. Selection

A selection operation selects strong individuals from a current population based on their
fitness function values and then reproduces these individuals into a crossover pool. The
several selection operations developed include the roulette wheel, ranking, and tournament
methods [19, 25]. This work uses the normalized geometric ranking method, as follows:

pj = q′
(
1 − q

)r−1
, j = 1, 2, . . . ,psRGA, (2.1)

pj = probability of selecting individual j, q = probability of choosing the best individual (here
q = 0.35)

q′ =
q

1 − (
1 − q

)psRGA
, (2.2)

r = individual ranking based on fitness value, where 1 represents the best, r = 1, 2, . . . ,psRGA,
psRGA = population size of the RGA.

2.1.2. Crossover

While exploring the solution space by creating new offspring, the crossover operation
randomly selects two parents from the crossover pool and then uses these two parents to
generate two new offspring. This operation is repeated until the psRGA/2 is satisfied. The
whole arithmetic crossover is easily implemented, as follows:

v′1 = β × v1 +
(
1 − β

) × v2,

v′2 =
(
1 − β

)
v1 + β × v2,

(2.3)

where v1 and v2 = parents, v′1 and v′2 = offspring, β = uniform random number in the interval
[0, 1.5].

2.1.3. Mutation

Mutation operation can increase the diversity of individuals (candidate solutions). Multi-
nonuniform mutation is described as follows:

xtrial,n =

⎧
⎨

⎩

xcurrent,n + (xu
n − xcurrent,n)pert

(
gRGA

)
if U1(0, 1) < 0.5,

xcurrent,n −
(
xcurrent,n − xl

n

)
pert

(
gRGA

)
if U1(0, 1) ≥ 0.5,

(2.4)

where pert(gRGA) = [U2(0, 1)(1 − gRGA/gmax,RGA)]
2, perturbed factor, U1(0, 1) and U2(0, 1) =

uniform random variable in the interval [0, 1], gmax,RGA = maximum generation of the RGA,
gRGA = current generation of the RGA, xcurrent,n = current decision variable xn, xtrial,n = trial
candidate solution xn.
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2.2. Particle Swarm Optimization

Kennedy and Eberhart [26] first introduced a conventional PSO algorithm, which is inspired
by the social behavior of bird flocks or fish schools. Like GAs, a PSO algorithm is a
population-based algorithm. A population of candidate solutions is called a particle swarm.
The particle velocities can be updated by (2.5), as follows:

vj,n

(
gPSO + 1

)
= vj,n

(
gPSO

)
+ c1r1j

(
gPSO

)[
plbj,n

(
gPSO

) − xj,n

(
gPSO

)]

+ c2r2j
(
gPSO

)[
p
gb

j,n

(
gPSO

) − xj,n

(
gPSO

)]
j = 1, 2, . . . ,psPSO, n = 1, 2, . . . ,N,

(2.5)

vj,n(gPSO + 1) = particle velocity of decision variable xn of particle j at generation gPSO + 1,
vj,n(gPSO) = particle velocity of decision variable xn of particle j at generation gPSO, c1 =
cognitive parameter, c2 = social parameter, xj,n(gPSO) = particle position of decision variable
xn of particle j at generation gPSO, r1,j(gPSO), r2,j(gPSO) = independent uniform random
numbers in the interval [0, 1] at generation gPSO, plbj,n(gPSO) = best local solution at generation

gPSO, p
gb

j,n(gPSO) = best global solution at generation gPSO, psPSO = population size of the PSO
algorithm.

The particle positions can be computed using (2.6), as follows:

xj,n

(
gPSO + 1

)
= xj,n

(
gPSO

)
+ vj,n

(
gPSO + 1

)
j = 1, 2, . . . ,psPSO, n = 1, 2, . . . ,N. (2.6)

Shi and Eberhart [27] developed amodified PSO algorithm by incorporating an inertia
weight (ωin) into (2.7) to control the exploration and exploitation capabilities of a PSO
algorithm, as follows:

vj,n

(
gPSO + 1

)
= ωinvj,n

(
gPSO

)
+ c1r1j

(
gPSO

)[
plbj,n

(
gPSO

) − xj,n

(
gPSO

)]

+ c2r2j
(
gPSO

)[
p
gb

j,n

(
gPSO

) − xj,n

(
gPSO

)]
j = 1, 2, . . . ,psPSO, n = 1, 2, . . . ,N.

(2.7)

A constriction coefficient (χ) was inserted into (2.8) to balance the exploration and
exploitation tradeoff [28–30], as follows:

vj,n

(
gPSO + 1

)
= χ

{
vj,n

(
gPSO

)
+ ρ1

(
gPSO

)[
plbj,n

(
gPSO

) − xj,n

(
gPSO

)]

+ ρ2
(
gPSO

)[
p
gb

j,n

(
gPSO

) − xj,n

(
gPSO

)]}
j = 1, 2, . . . ,psPSO, n = 1, 2, . . . ,N,

(2.8)
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where

χ =
2U3(0, 1)∣

∣
∣2 − τ −√

τ(τ − 4)
∣
∣
∣
, (2.9)

U3(0, 1) = uniform random variable in the interval [0, 1], τ = τ1 + τ2, τ1 = c1r1j , τ1 = c2r2j .
This work considers parameters ωin and χ to update the particle velocities, as follows:

vj,n

(
gPSO + 1

)
= χ

{
ωinvj,n

(
gPSO

)
+ c1r1j

(
gPSO

)[
plbj,n

(
gPSO

) − xj,n

(
gPSO

)]

+ c2r2j
(
gPSO

)[
p
gb

j,n

(
gPSO

) − xj,n

(
gPSO

)]}
j = 1, 2, . . . ,psPSO, n = 1, 2, . . . ,N,

(2.10)

where ωin = ((gmax,PSO − gPSO)/gmax,PSO), increased gPSO value reduces the ωin, gmax,PSO =
maximum generation of the PSO algorithm.

According to (2.10), the optimal values of parameters c1, c2, and χ are difficult to obtain
through a trial and error. This work thus optimizes these parameter settings by using RGA
and AIA approaches.

2.3. Artificial Immune Algorithm

Wu [10] presented an AIA based on clonal selection and immune network theories to solve
CGO problems. The AIA approach comprises selection, hypermutation, receptor editing,
and bone marrow operations. The selection operation is performed to reproduce strong
antibodies (Abs). Also, diverse Abs are created using hypermutation, receptor editing, and
bone marrow operations, as described in the following subsections.

2.3.1. Ab and Ag Representation

In the human immune system, an antigen (Ag) has multiple epitopes (antigenic determi-
nants), which can be recognized by various Abswith paratopes (recognizers), on its surface.
In the AIA approach, an Ag represents known parameters of a solved problem. The Abs are
the candidate solutions (i.e., decision variables xn, n = 1, 2, . . . ,N) of the solved problem. The
quality of a candidate solution is evaluated using an Ab-Ag affinity that is derived from the
value of an objective function of the solved problem.
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2.3.2. Selection Operation

The selection operation, which is based on the immune network principle [31], controls the
number of antigen-specific Abs. This operation is defined according to Ab-Ag and Ab-Ab
recognition information, as follows:

prj =
1
N

N∑

n=1

1
ednj

,

dnj =
∣
∣
∣
∣
x∗
n − xnj

x∗
n

∣
∣
∣
∣, j = 1, 2, . . . , rs, n = 1, 2, . . . ,N,

(2.11)

where prj = probability that Ab j recognizes Ab∗ (the best solution), x∗
n = the best Ab∗ with

the highest Ab-Ag affinity, xnj = decision variables xn of Ab j, rs = repertoire (population)
size of the AIA.

The Ab∗ is recognized by other Abj in a current Ab repertoire. Large prj implies that
Abj can effectively recognize Ab∗. The Abj with prj that is equivalent to or larger than the
threshold degree prt is reproduced to generate an intermediate Ab repertoire.

2.3.3. Hypermutation Operation

Multi-nonuniform mutation [19] is used as the somatic hypermutation operation, which can
be expressed as follows:

xtrial,n =

{
xcurrent,n + (xu

n − xcurrent,n)pert
(
gAIA

)
, if U4(0, 1) < 0.5,

xcurrent,n −
(
xcurrent,n − xl

n

)
pert

(
gAIA

)
, if U4(0, 1) ≥ 0.5,

(2.12)

where pert(gAIA) = {U5(0, 1)(1 − gAIA/gmax,AIA)}2 = perturbation factor, gAIA = current
generation of the AIA, gmax,AIA = maximum generation number of the AIA, U4(0, 1) and
U5(0, 1) = uniform random number in the interval [0, 1].

This operation has two tasks, that is, a uniform search and local fine-tuning.

2.3.4. Receptor Editing Operation

A receptor editing operation is developed using the standard Cauchy distribution C(0, 1),
in which the local parameter is zero and the scale parameter is one. Receptor editing is
performed using Cauchy random variables that are generated from C(0, 1), owing to their
ability to provide a large jump in the Ab-Ag affinity landscape to increase the probability of
escaping from the local Ab-Ag affinity landscape. Cauchy receptor editing can be defined by

xtrial = xcurrent +U5(0, 1)2 × σ, (2.13)

where σ = [σ1, σ2, . . . , σN]T , vector of Cauchy random variables, U5(0, 1) = uniform random
number in the interval [0, 1].

This operation is employed in local fine-tuning and large perturbation.
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2.3.5. Bone Marrow Operation

The paratope of anAb can be generated by recombining gene segmentsVH DH JH andVL JL
[32]. Therefore, based on this metaphor, diverse Abs are synthesized using a bone marrow
operation. This operation randomly chooses two Abs from the intermediate Ab repertoire
and a recombination point from the gene segments of the paratope of the selected Abs. The
selected gene segments (e.g., gene x1 ofAb 1 and gene x1 of theAb 2) are reproduced to create
a library of gene segments. The selected gene segments in the paratope are then deleted.
The new Ab 1 is formed by inserting the gene segment, which is gene x1 of the Ab 2 in
the library plus a random variable created from standard normal distribution N(0, 1), at the
recombination point. The literature details the implementation of the bone marrow [10].

2.4. Penalty Function Methods

Stochastic global optimization approaches, including GAs, AIAs, and PSO, are naturally
unconstrained optimization methods. Penalty function methods, which are constraint
handling approaches, are commonly used to create feasible solutions to a CGO problem
and transform it into an unconstrained optimization problem. Two popular penalty functions
exist, namely, the exterior and interior functions. Exterior penalty functions use an infeasible
solution as a starting point, and convergence is from the infeasible region to the feasible one.
Interior penalty functions start from a feasible solution, then move from the feasible region
to the constrained boundaries. Exterior penalty functions are favored over interior penalty
functions, because they do not require a feasible starting point and are easily implemented.
The exterior penalty functions developed to date include static, dynamic, adaptive, and death
penalty functions [33]. This work uses the form of a static penalty function, as follows:

Minimize fpseudo
(
x, ρ

)
= f(x) + ρ

⎧
⎨

⎩

M∑

m=1

{

max
[
0, gm(x)

]
+

K∑

k=1

[hk(x)]

}2
⎫
⎬

⎭
, (2.14)

where fpseudo(x, ρ) = pseudo-objective function obtained using an original objective function
plus a penalty term, ρ = penalty parameter.

Unfortunately, the penalty function scheme is limited by the need to fine-tune the
penalty parameter ρ [8]. To overcome this limitation, this work attempts to find the optimum
ρ for each CGO problem using the RGA and AIA approaches. Additionally, to obtain high-
quality RGA-PSO and AIA-PSO solutions accurate to at least five decimal places for the
violation of each constraint to a specific CGO problem, the parameter ρ is within the search
space [1 × 109, 1 × 1011].

3. Method

3.1. RGA-PSO Algorithm

Figure 1 shows the pseudocode of the proposed RGA-PSO algorithm. The external RGA
approach is used to optimize the best parameter settings of the internal PSO algorithm, and
the internal PSO algorithm is employed to solve CGO problems.
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Procedure external RGA
begin

gRGA ← 0
Step 1: Initialize the parameter settings

a parameter setting
b generate initial population

While gRGA ≤ gmax,RGAdo

Step 2: Compute the fitness function value

Candidate
solution

x∗PSO

Step 3: Implement a selection operation

For each candidate solution j, j = 1, 2,..., psRGA / 2 do

Step 4: Perform a crossover operation
endIf

endFor

Step 5: Conduct a mutation operation

For each candidate solution j, j 1, 2,..., psRGAdo
≤ pm , RGAthen

endIf
endFor

Step 6: Implement an elitist strategy

gRGA ← gRGA 1

end
end

end

Procedure internal PSO Algorithm
gPSO ←0

Step 1 Create an initial particle swarm

a parameter settings from RGA
b generate initial particle swarm

While executing time the predefined fixed total time
Step 2 Calculate the objective function value
Step 3 Update the particle velocity and position
For each candidate particle

Step 4 Implement a mutation operation
endIf

Step 5 Perform an elitist strategy
endFor
gPSO ← gPSO 1
end

end

ρχ pm,PSOj, j= 1, 2,..., psRGA

fitness j = f (x∗PSO)

if rand (·) ≤ pcthen

c1 c2

j, j= 1, 2,..., psPSO do
if rand (·) ≤ pm, PSO then

if rand (·)

Figure 1: The pseudocode of the proposed RGA-PSO algorithm.

Candidate solution1 c2

c2

c2

c1

c1

c1

Candidate solution 2

ρ

ρ

ρCandidate solution psRGA

...

pm,PSO

pm,PSO

pm,PSO

χ

χ

χ fitnesspsRGA

fitness2

fitness1

Figure 2: Chromosome representation of the external RGA.

External RGA

Step 1 (initialize the parameter settings). Parameter settings are given such as psRGA,
crossover probability pc, mutation probability of the external RGA approach pm,RGA, the lower
and upper boundaries of these parameters c1, c2, χ, ρ, and the mutation probability of the
internal PSO algorithm pm,PSO. The candidate solutions (individuals) of the external RGA
represent the optimized parameters of the internal PSO algorithm. Finally, Figure 2 illustrates
the candidate solution of the external RGA approach.
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Candidate solution 1 x2

Candidate solution 2

Candidate solution psPSO

x1

x2x1

xN

xN

x2x1 xN

...

· · ·

· · ·

· · ·

f(xPSO,1)

f(xPSO,2)

f(xPSO,psPSO )

Figure 3: Candidate solution of the internal PSO algorithm.

Step 2 (compute the fitness function value). The fitness function value fitnessj of the external
RGA approach is the best objective function value f(x∗PSO) obtained from the best solution
x∗PSO of each internal PSO algorithm execution, as follows:

fitnessj = f
(
x∗PSO

)
, j = 1, 2, . . . ,psRGA. (3.1)

Candidate solution j of the external RGA approach is incorporated into the internal
PSO algorithm, and a CGO problem is then solved using the internal PSO algorithm, which
is executed as follows.

Internal PSO Algorithm

Step (1) (create an initial particle swarm). An initial particle swarm is created based on the
psPSO from [xl

n, x
u
n] of a CGO problem. A particle represents a candidate solution of

a CGO problem, as shown in Figure 3.

Step (2) (calculate the objective function value). According to (2.14), the pseudo-objective
function value of the internal PSO algorithm is defined by

fpseudo,j = f
(
xPSO,j

)
+

{

ρ ×
M∑

m=1

{
max

[
0, gm

(
xPSO,j

)]}2
}

, j = 1, 2, . . . ,psPSO. (3.2)

Step (3) (update the particle velocity and position). The particle position and velocity can
be updated using (2.6) and (2.10), respectively.

Step (4) (implement a mutation operation). The standard PSO algorithm lacks evolution
operations of GAs such as crossover and mutation. To maintain the diversity of
particles, this work uses the multi-nonuniform mutation operator defined by (2.4).

Step (5) (perform an elitist strategy). A new particle swarm is created from internal step
(3). Notably, f(xPSO,j) of a candidate solution j (particle j) in the particle swarm
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is evaluated. Here, a pairwise comparison is made between the f(xPSO,j) value of
candidate solutions in the new and current particle swarms. A situation in which
the candidate solution j (j = 1, 2, . . . ,psPSO) in the new particle swarm is superior to
candidate solution j in the current particle swarm implies that the strong candidate
solution j in the new particle swarm replaces the candidate solution j in the current
particle swarm. The elitist strategy guarantees that the best candidate solution is
always preserved in the next generation. The current particle swarm is updated to
the particle swarm of the next generation.

Internal steps (2) to (5) are repeated until the gmax,PSO value of the internal PSO algo-
rithm is satisfied.

End

Step 3 (implement selection operation). The parents in a crossover pool are selected using
(2.1).

Step 4 (perform crossover operation). In GAs, the crossover operation performs a global
search. Thus, the crossover probability pc usually exceeds 0.5. Additionally, candidate
solutions are created using (2.3).

Step 5 (conduct mutation operation). In GAs, the mutation operation implements a local
search. Additionally, a solution space is exploited using (2.4).

Step 6 (implement an elitist strategy). This work updates the population using an elitist
strategy. A situation in which the fitnessj of candidate solution j in the new population is
larger than that in the current population suggests that the weak candidate solution j is
replaced. Additionally, a situation in which the fitnessj of candidate solution j in the new
population is equal to or worse than that in the current population implies that the candidate
solution j in the current population survives. In addition to maintaining the strong candidate
solutions, this strategy eliminates weak candidate solutions.

External Steps 2 to 6 are repeated until the gmax,RGA value of the external RGA approach
is met.

3.2. AIA-PSO Algorithm

Figure 4 shows the pseudocode of the proposed AIA-PSO algorithm, in which the external
AIA approach is used to optimize the parameter settings of the internal PSO algorithm and
the PSO algorithm is used to solve CGO problems.

External AIA

Step 1 (initialize the parameter settings). Several parameters must be predetermined. These
include rs and the threshold for Ab-Ab recognition prt, as well as the lower and upper
boundaries of these parameters c1, c2, χ, ρ, and pm,PSO. Figure 5 shows the Ab and Ag
representation.
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Step 2 (evaluate the Ab-Ag affinity).

Internal PSO Algorithm
The external AIA approach offers parameter settings c1, c2, χ, ρ, and pm,PSO for the internal
PSO algorithm, subsequently leading to the implementation of internal steps (1)–(5) of the
PSO algorithm. The PSO algorithm returns the best fitness value of PSO f(x∗PSO) to the
external AIA approach.

Step (1) (create an initial particle swarm). An initial particle swarm is created based on psPSO
from [xl

n, x
u
n] of a CGO problem. A particle represents a candidate solution of a

CGO problem.

Step (2) (calculate the objective function value). Equation (3.2) is used as the pseudo-
objective function value of the internal PSO algorithm.

Step (3) (update the particle velocity and position). Equations (2.6) and (2.10) can be used
to update the particle position and velocity.

Step (4) (implement a mutation operation). The diversity of the particle swarm is increased
using (2.4).

Step (5) (perform an elitist strategy). A new particle swarm (population) is generated from
internal step (3). Notably, f(xPSO,j) of a candidate solution j (particle j) in the
particle swarm is evaluated. Here, a pairwise comparison is made between the
f(xPSO,j) value of candidate solutions in the new and current particle swarms. The
elitist strategy guarantees that the best candidate solution is always preserved in
the next generation. The current particle swarm is updated to the particle swarm of
the next generation.

Internal steps (2) to (5) are repeated until the gmax,PSO value of the internal PSO
algorithm is satisfied.

End

Consistent with the Ab-Ag affinity metaphor, an Ab-Ag affinity is determined using (3.3), as
follows:

max
(
affinityj

)
= −1 × f

(
x∗PSO

)
j = 1, 2, . . . , rs. (3.3)

Following the evaluation of the Ab-Ag affinities of Abs in the current Ab repertoire, the
Ab with the highest Ab-Ag affinity (Ab∗) is chosen to undergo clonal selection operation in
external Step 3.

Step 3 (perform clonal selection operation). To control the number of antigen-specific Abs,
(2.11) is used.

Step 4 (implementAb-Ag affinity maturation). The intermediateAb repertoire that is created
in external Step 3 is divided into two subsets. These Abs undergo somatic hypermutation
operation by using (2.12) when the random number is 0.5 or less. Notably, these Abs suffer
receptor editing operation using (2.13) when the random number exceeds 0.5.
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ρχ pm,PSOc1 c2

Procedure external AIA
begin

Step 1: Initialize the parameter settings

while gAIA < gmax,AIA do
Step 2: Evaluate the Ab-Ag affinity

Ab∗ ←max affinityj , j 1, 2, . . ., rs

Step 3: Perform clonal selection operation
for each Abj , j 1, 2, . . ., rs do

if prj ≥ prt then
promote clone

else
suppress

endIf
endFor

Step 4: Implement affinity maturation
for each promoted Abj do

somatic hypermutation
else

receptor editing
endIf

endFor
Step 5: Introduce diverse Abs
Step 6: Update an Abrepertoire
gAIA ← gAIA 1

endwhile
end

end

Procedure internal PSO Algorithm
gPSO ← 0
Step 1 Create an initial particle swarm

a parameter settings from RGA
b generate initial particle swarm

while executing time ≤ the predefined fixed total time do

Step 2 Calculate the objective function value
Step 3 Update the particle velocity and position
For each candidate particle j, j 1, 2,..., psPSOdo

Step 4 Implement a mutation operation
endIf

Step 5 Perform an elitist strategy
endFor
gPSO ← gPSO 1
end

end

−1 × x∗
PSO

gAIA ← 0

if rand (·) ≤ 0.5 do

if rand (·) ≤ pm, PSO then

Figure 4: The pseudocode of the AIA-PSO algorithm.

Step 5 (introduce diverseAbs). Based on the bonemarrow operation, diverseAbs are created
to recruit the Abs suppressed in external Step 3.

Step 6 (update an Ab repertoire). A new Ab repertoire is generated from external Steps 3–
5. The Ab-Ag affinities of the Abs in the generated Ab repertoire are evaluated. This work
presents a strategy for updating the Ab repertoire. A situation in which the Ab-Ag affinity of
Ab j in the new Ab repertoire exceeds that in the current Ab repertoire implies that a strong
Ab in the new Ab repertoire replaces the weak Ab in the current Ab repertoire. Additionally,
a situation in which the Ab-Ag affinity of Ab j in the new Ab repertoire equals to or is worse
than that in the current Ab repertoire implies that the Ab j in the current Ab repertoire
survives. In addition to maintaining the strong Abs, this strategy eliminates nonfunctional
Abs.

External Steps 2–6 are repeated until the termination criterion gmax,AIA is satisfied.

4. Results

The 13 CGO problems were taken from other studies [1, 20, 21, 23, 34]. The set of CGO
problems comprises six benchmark NLP problems (TPs 1–4 and 12–13), and seven GPP
problems, in which TP 5 (alkylation process design in chemical engineering), TP 6 (optimal
reactor design), TP 12 (a tension/compression string design problem), and TP 13 (a pressure
vessel design problem) are constrained engineering problems, were used to evaluate the
performances of the proposed RGA-PSO and AIA-PSO algorithms. In the appendix, the
objective function, constraints, boundary conditions of decision variables, and known global
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Candidate solution

Stimulate

Suppress

Epitope (antigenic determinants)

The known coefficient parameters

for a CGO problem

c1 c2

x2 x3

RGA-PSO/AIA-PSO

Ab

Ab

Paratope (recognizer)

Ab

x4 x5

ρ pm.PSO

x1

χ

Ag

Max(affinityj) = −1 × f(x∗PSO)

Figure 5: Ag and Ab representation.

optimum for TPs 1−11 are described and the problem characteristics of TPs 5, 12, and 13 are
further detailed.

The proposed RGA-PSO and AIA-PSO algorithms were coded in MATLAB software
and executed on a Pentium D 3.0 (GHz) personal computer. Fifty independent runs were
conducted to solve each test problem (TP). Numerical results were summarized, including
the best, median, mean, andworst results, as well as the standard deviation (S.D.) of objective
function values obtained using RGA-PSO and AIA-PSO solutions, mean computational CPU
times (MCCTs), and mean absolute percentage error MAPE, as defined by

MAPE =

∑50
s=1

∣∣(f(x∗) − f
(
xsstochastic

))
/f(x∗)

∣∣

50
× 100%, s = 1, 2, . . . , 50, (4.1)

where f(x∗) = value of the known global solution, f(xsstochastic) = values obtained from
solutions of stochastic global optimization approaches (e.g., RGA-PSO and AIA-PSO
algorithms).

Table 1 lists the parameter settings for the RGA-PSO and AIA-PSO algorithms, as
shown in Table 1.
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Table 1: The parameter settings for the RGA-PSO and AIA-PSO algorithms.

Methods Parameter settings Search space

The external RGA

pc = 1

pm,RGA = 0.15 [χl, χu] = [0.1, 1]
psRGA = 10 [cl1, c

u
1 ] = [0.1, 2]

gmax,RGA = 3 [cl2, c
u
2 ] = [0.1, 2]

The external AIA
prt = 0.9 [ρl, ρu] = [1×109, 1 × 1011]
rs = 10 [plm,PSO, p

u
m,PSO] = [0.1, 0.5]

gmax,AIA = 3

The internal PSO algorithm
psPSO = 100

[xl
n, x

u
n] for a CGO problemgmax,PSO = 3500 for TPs 1–4

gmax,PSO = 3000 for TPs 5–13
[χl, χu]: the lower and upper boundaries of parameter χ.
[cl1, c

u
1 ]: the lower and upper boundaries of parameter c1.

[cl2, c
u
2 ]: the lower and upper boundaries of parameter c2.

[ρl, ρu]: the lower and upper boundaries of parameter ρ.
[plm,PSO, p

u
m,PSO]: the lower and upper boundaries of pm,PSO for the internal PSO algorithm pm,PSO.

4.1. Comparison of the Results Obtained Using the RGA-PSO
and AIA-PSO Algorithms

Table 2 summarizes the numerical results obtained using the proposed RGA-PSO and AIA-
PSO algorithms for TPs 1–13. Numerical results indicate that the RGA-PSO and the AIA-PSO
algorithms can obtain the global minimum solution to TPs 1–11, since each MAPE% is small.
Moreover, the best, median, worst, and S.D. of objective function values obtained using the
RGA-PSO andAIA-PSO solutions are identical for TPs 1, 2, 3, 4, 6, 7, 8, 9, and 11. Furthermore,
the worst values obtained using the AIA-PSO algorithm for TPs 5 and 13 are smaller than
those obtained using the RGA-PSO algorithm. Additionally, t-test is performed for each TP,
indicating that the mean values obtained using the RGA-PSO and AIA-PSO algorithms are
statistically significant for TPs 5, 10, 12, and 13, since P value is smaller than a significant level
0.05. Based on the results of t-test, the AIA-PSO algorithm yields better mean values than the
RGA-PSO algorithm for TPs 5, 12, and 13, and the AIA-PSO algorithm yields worse mean
value than the RGA-PSO algorithm for TP 10.

Tables 3 and 4 list the best solutions obtained using the RGA-PSO and AIA-PSO
algorithms from TPs 1–13, respectively, indicating that each constraint is satisfied (i.e., the
violation of each constraint is accurate to at least five decimal places) for every TP. Tables
5 and 6 list the best parameter settings of the internal PSO algorithm obtained using the
external RGA and AIA approaches, respectively.

4.2. Comparison of the Results for the Proposed RGA-PSO and AIA-PSO
Algorithms with Those Obtained Using the Published Individual GA
and AIA Approaches and Hybrid Algorithms

Table 7 compares the numerical results of the proposed RGA-PSO and AIA-PSO algorithms
with those obtained using published individual GA and AIA approaches for TPs 1–4. In this
table, GA-1 is a GA with a penalty function methods, as used by Michalewicz [20]. Notably,
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Table 3: The best solutions obtained using the RGA-PSO algorithm from TPs 1–13.

TP number f(x∗RGA-PSO) x∗RGA-PSO

1 24.323

x∗RGA-PSO = (2.16727760, 2.37789634, 8.78162804, 5.12372885,
0.97991270, 1.39940993, 1.31127142, 9.81945011, 8.30004549,
8.45891329)

gm(x∗RGA-PSO) = (−0.000171 ≤ 0,−0.003109 ≤ 0,−0.000027 ≤
0,−0.000123 ≤ 0,−0.001371 ≤ 0,−0.002101 ≤ 0,−6.245957 ≤
0,−47.846302 ≤ 0)

2 −30665.539
x∗RGA-PSO = (78, 33, 29.99525450, 45, 36.77581373)

gm(x∗RGA-PSO) = (−92.000000 ≤ 0, 2.24E − 07 ≤ 0,−8.840500 ≤
0,−11.159500 ≤ 0, 4.28E − 07 ≤ 0,−5.000000 ≤ 0)

3 680.632

x∗RGA-PSO = (2.33860239, 1.95126191, −0.45483579, 4.36300325,
−0.62317747, 1.02938443, 1.59588410)
gm(x∗RGA-PSO) = (−7.76E − 07 ≤ 0,−252.7211 ≤ 0,−144.8140 ≤
0,−6.15E − 05 ≤ 0)

4 −15
x∗RGA-PSO = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)

gm(x∗RGA-PSO) = (0 ≤ 0, 0 ≤ 0, 0 ≤ 0,−5 ≤ 0,−5 ≤ 0,−5 ≤ 0, 0 ≤ 0, 0 ≤
0, 0 ≤ 0)

5 1227.1139

x∗RGA-PSO = (1697.13793410, 54.17332240, 3030.44600072,
90.18199040, 94.99999913, 10.42097385, 153.53771370)

gm(x∗RGA-PSO) = (0.999978 ≤ 1, 0.980114 ≤ 1, 1.000005 ≤ 1, 0.980097 ≤
1, 0.990565 ≤ 1, 1.000005 ≤ 1, 1.00000 ≤ 1, 0.976701 ≤ 1, 1.000003 ≤
1, 0.459311 ≤ 1, 0.387432 ≤ 1, 0.981997 ≤ 1, 0.980364 ≤ 1,−8.241926 ≤
1)

6 3.9521

x∗RGA-PSO = (6.444100620, 2.243029250, 0.642672939, 0.582321363,
5.940008650, 5.531235784, 1.018087316, 0.403665649)

gm(x∗RGA-PSO) = (1.000000 ≤ 1, 1.000000 ≤ 1, 0.999996 ≤ 1, 0.99986 ≤
1)

7 −5.7398 x∗RGA-PSO = (8.12997229, 0.61463971, 0.56407162, 5.63623069)

gm(x∗RGA-PSO) = (1.000000 ≤ 1, 1.000000 ≤ 1)

8 −83.2497 x∗RGA-PSO = (88.35595404, 7.67259607, 1.31787691)

gm(x∗RGA-PSO) = (1.000000 ≤ 1)

9 −6.0441
x∗RGA-PSO = (6.40497368, 0.64284563, 1.02766984, 5.94729224,
2.21044814, 0.59816471, 0.42450835, 5.54339987)

gm(x∗RGA-PSO) = (0.999997 ≤ 1, 0.999959 ≤ 1, 0.999930 ≤ 1, 0.999975 ≤
1)

10 6299.8374
x∗RGA-PSO = (108.66882633, 85.10837983, 204.35894362)

gm(x∗RGA-PSO) = (1.000002 ≤ 1)

11 10122.4732
x∗RGA-PSO = (78, 33, 29.99564864, 45, 36.77547104)

gm(x∗RGA-PSO) = (−0.309991 ≤ 1, 1.000004 ≤ 1,−0.021379 ≤
1, 0.621403 ≤ 1, 1.000002 ≤ 1, 0.681516 ≤ 1)

12 0.012692
x∗RGA-PSO = (0.050849843, 0.336663305, 12.579603478)

gm(x∗RGA-PSO) = (−0.000143 ≤ 0,−0.000469 ≤ 0,−4.009021 ≤
0,−0.741658 ≤ 0)

13 5885.3018
x∗RGA-PSO = (0.77816852, 0.38464913, 40.31961883, 199.99999988)

gm(x∗RGA-PSO) = (1.23E − 07 ≤ 0, 3.36E − 08 ≤ 0,−0.006916 ≤
0,−40.00000012 ≤ 0)
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Table 4: The best solutions obtained using the AIA-PSO algorithm from TPs 1–13.

TP number f(x∗AIA-PSO) x∗AIA-PSO

1 24.358

x∗AIA-PSO = (2.18024296, 2.35746157, 8.75670935, 5.11326109,
1.03976363 1.54784227, 1.32994030, 9.83127443, 8.27618717,
8.32717779)
gm(x∗AIA-PSO) = (−0.000071 ≤ 0,−0.003699 ≤ 0,−0.000440 ≤
0,−0.684025 ≤ 0,−0.000086 ≤ 0,−0.001024 ≤ 0,−5.973866 ≤
0,−47.371958 ≤ 0)

2

−30665.539

x∗AIA-PSO = (78, 33, 29.99525527, 45, 36.77581286)

gm(x∗AIA-PSO) = (−92.000000 ≤ 0, 5.57E − 08 ≤ 0,−8.840500 ≤
0,−11.159500 ≤ 0, 2.76E − 07 ≤ 0,−5.000000 ≤ 0)

3 680.633

x∗AIA-PSO = (2.32925164, 1.95481519, −0.47307614, 4.35691576,
−0.62313420, 1.05236194, 1.59750978)
gm(x∗AIA-PSO) = (−4.26E − 06 ≤ 0,−252.612733 ≤ 0,−144.741194 ≤
0,−1.00E − 05 ≤ 0)

4 −15
x∗AIA-PSO = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)
gm(x∗AIA-PSO) = (0 ≤ 0, 0 ≤ 0, 0 ≤ 0,−5 ≤ 0,−5 ≤ 0,−5 ≤ 0, 0 ≤ 0, 0 ≤
0, 0 ≤ 0)

5 1227.1598

x∗AIA-PSO = (1697.91645044, 53.78132825, 3031.07989059, 90.12651301,

94.99999995, 10.48103708, 153.53594861)
gm(x∗AIA-PSO) = (1.000000 ≤ 1, 0.980100 ≤ 1, 1.000002 ≤ 1, 0.980099 ≤
1, 0.990562 ≤ 1, 1.000001 ≤ 1, 1.000002 ≤ 1, 0.976715 ≤ 1, 1.000001 ≤
1, 0.459425 ≤ 1, 0.387515 ≤ 1, 0.981856 ≤ 1, 0.987245 ≤ 1,−8.302533 ≤
1)

6 3.9516

x∗AIA-PSO = (6.44373647, 2.23335111, 0.68233303, 0.60026617,

5.93745119, 5.53146186, 1.01862958, 0.40673661)
gm(x∗AIA-PSO) = (0.999999 ≤ 1, 0.999999 ≤ 1, 0.999994 ≤ 1, 0.999985 ≤
1)

7 −5.7398 x∗AIA-PSO = (8.13042985, 0.61758136, 0.56393603, 5.63618191)

gm(x∗AIA-PSO) = (0.999999 ≤ 1, 0.999998 ≤ 1)

8 −83.2497 x∗AIA-PSO = (88.35635930, 7.67202113, 1.31765768)

gm(x∗AIA-PSO) = (3.00E − 18 ≤ 1)

9 −6.0467
x∗AIA-PSO = (6.46393173, 0.67575021, 1.01188804, 5.94072071,
2.24639462, 0.60683404, 0.39677469, 5.52596342)
gm(x∗AIA-PSO) = (0.999980 ≤ 1, 0.999999 ≤ 1, 0.998739 ≤ 1, 0.999928 ≤
1)

10 6299.8395
x∗AIA-PSO = (108.97708780, 85.02248757, 204.45439729)

gm(x∗AIA-PSO) = (1.000003 ≤ 1)

11 10122.4852
x∗AIA-PSO = (78, 33, 29.99571251, 45, 36.77534593)
gm(x∗AIA-PSO) = (−0.309991 ≤ 1, 1.000001 ≤ 1,−0.021380 ≤
1, 0.621403 ≤ 1, 1.000001 ≤ 1, 0.681517 ≤ 1)

12 0.012667
x∗AIA-PSO = (0.05164232, 0.35558085, 11.35742676)
gm(x∗AIA-PSO) = (−8.83E − 05 ≤ 0,−3.04E − 05 ≤ 0,−4.050924 ≤
0,−0.728518 ≤ 0)

13 5885.3310
x∗AIA-PSO = (0.77816843, 0.38464909, 40.31961929, 199.99999330)
gm(x∗AIA-PSO) = (2.22E − 07 ≤ 0, 7.80E − 08 ≤ 0,−0.006015 ≤
0,−40.000007 ≤ 0)
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Table 5: The best parameter settings of the best solution obtained using the RGA-PSO algorithm from TPs
1–13.

TP number χ c1 c2 ρ pm,PSO

1 0.73759998 1.52939998 1.72753568 28709280994 0.3750
2 0.67057537 0.45010388 2 1000000000 0.2709
3 0.75493696 0.36925226 1.91198475 54900420223 0.3856
4 0.45438391 1.45998477 1.25508289 1000000000 0.1
5 1 0.77483233 2 1000000000 0.5
6 0.70600559 0.82360083 0.91946627 26622414511 0.1619
7 0.74584341 0.95474855 1.17537957 86557786169 0.1958
8 1 0.69725160 1.53028620 1000000000 0.1675
9 0.41638718 0.46594542 1.97807798 12976330236 0.3686
10 0.25378610 0.59619170 0.83891277 1000000000 0.1
11 0.48183123 2 2 1000000000 0.1
12 0.76190087 0.1 1.16855713 100000000000 0.5
13 0.71783704 1.39420750 1.33590124 29071187026 0.2098

Table 6: The best parameter settings of the best solution obtained using the AIA-PSO algorithm from TPs
1–13.

TP number χ c1 c2 ρ pm,PSO

1 0.44896780 0.71709211 1.93302154 72140307110 0.4058
2 1 1.36225259 1.97905466 182831007 0.5
3 0.46599492 0.90346435 1.89697456 69125199709 0.2613
4 0.98124982 0.27882671 0.87437226 85199047430 0.1
5 0.99082484 0.1 1.11371788 4231387044 0.5
6 0.82869043 0.88773247 2 1387448505 0.5
7 0.87571243 1.89936723 0.74306310 94752095153 0.2194
8 0.93583844 1.53906226 1.30374874 22520728225 0.1798
9 1 0.22556712 1.52263349 67578847151 0.4507
10 1 1.93003999 0.1 1351461763 0.5
11 1 1.51209364 1.63826995 1811017789 0.5
12 0.52068067 0.1 2 81914376144 0.1
13 0.82395890 1.60107152 0.93611204 17767111886 0.1813

GA-2 represents a GA with a penalty function, but without any penalty parameter, as used
by Deb [21]. Also, GA-3 is an RGA with a static penalty function, as developed by Wu and
Chung [9]. Notably, AIA-1 is an AIA method called CLONALG, as proposed by Cruz-Cortés
et al. [22]. Finally, AIA-2 is an AIA approach based on an adaptive penalty function, as
developed by Wu [10]. The numerical results of GA-1, GA-2, and AIA-1 methods for solving
TPs 1–4 were collected from the published literature [20–22]. Furthermore, the GA-1, GA-2,
and AIA-1 approaches were executed under 350,000 objective function evaluations. To fairly
compare the performances of the proposed hybrid CI algorithms and the individual GA and
AIA approaches, the GA-3, AIA-2, the internal PSO algorithm of RGA-PSO method, and the
internal PSO algorithm of AIA-PSO method were independently executed 50 times under
350,000 objective function evaluations for solving TPs 1–4.

For solving TP 1, the median values obtained using the RGA-PSO and AIA-PSO
algorithms are smaller than those obtained using the GA-1, GA-3, and AIA-2 approaches, and
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Table 7: Comparison of the results of the proposed RGA-PSO and AIA-PSO algorithms and those of the
published individual GA and AIA approaches for TPs 1–4.

TP
number

Global
optimum Methods Best Mean Median Worst MAPE%

GA-1 [20] 24.690 — 29.258 36.060 —

GA-2 [21] 24.372 — 24.409 25.075 —

GA-3 [9] 24.935 27.314 27.194 33.160 12.377

1 24.306 AIA-1 [22] 24.506 25.417 — 26.422 —
AIA-2 [10] 24.377 24.669 24.663 24.988 1.495

The proposed
RGA-PSO 24.323 24.568 24.521 24.831 1.078

The proposed
AIA-PSO 24.358 24.579 24.564 24.809 1.125

GA-1 [20] — — — — —

GA-2 [21] — — — — —

GA-3 [9] −30665.526 −30662.922 −30664.709 −30632.445 8.53E − 03

2 −30665.539 AIA-1 [22] −30665.539 −30665.539 — −30665.539 —
AIA-2 [10] −30665.539 −30665.526 −30665.527 −30665.506 4.20E − 05

The proposed
RGA-PSO −30665.539 −30665.539 −30665.539 −30665.534 1.34E − 06

The proposed
AIA-PSO −30665.539 −30665.539 −30665.539 −30665.539 9.95E − 07

GA-1 [20] 680.642 — 680.718 680.955 —

GA-2 [21] 680.634 — 680.642 680.651 —

GA-3 [9] 680.641 680.815 680.768 681.395 2.72E − 02

3 680.630 AIA-1 [22] 680.631 680.652 — 680.697 —
AIA-2 [10] 680.634 680.653 680.650 680.681 3.45E − 03

The proposed
RGA-PSO 680.632 680.640 680.639 680.658 1.46E − 03

The proposed
AIA-PSO 680.633 680.640 680.640 680.657 1.50E − 03

GA-1 [20] −15 −15 −15 −15 —

GA-2 [21] — — — — —

GA-3 [9] −13.885 −12.331 −12.267 −10.467 17.795

4 −15 AIA-1 [22] −14.987 −14.726 — −12.917 —
AIA-2 [10] −14.998 −14.992 −14.992 −14.988 5.08E − 02

The proposed
RGA-PSO −15 −15 −15 −15 1.27E − 06

The proposed
AIA-PSO −15 −15 −15 −15 1.20E − 10

(The “—” denotes unavailable information.)

the worst values obtained using RGA-PSO and AIA-PSO algorithms are smaller than those
obtained using the GA-1, GA-2, GA-3, AIA-1, and AIA-2 approaches. For solving TP 2, the
median and worst values obtained using the RGA-PSO and AIA-PSO algorithms are smaller
than those obtained using the GA-3 method. For solving TP 3, the median and worst values



22 Mathematical Problems in Engineering

Table 8: Results of the t-test for TPs 1–4.

TP number GA-3 versus
AIA-2

GA-3 versus
RGA-PSO

GA-3 versus
AIA-PSO

AIA-2 versus
RGA-PSO

AIA-2 versus
AIA-PSO

RGA-PSO versus
AIA-PSO

1 0.000∗ 0.000∗ 0.000∗ 0.000∗ 0.001∗ 0.643

2 0.003∗ 0.003∗ 0.003∗ 0.000∗ 0.000∗ 0.478

3 0.000∗ 0.000∗ 0.000∗ 0.000∗ 0.000∗ 0.839

4 0.000∗ 0.000∗ 0.000∗ 0.000∗ 0.000∗ 0.294
∗Represents that the mean values obtained using two algorithms are statistically different.)

obtained using the RGA-PSO and AIA-PSO algorithms are smaller than those obtained using
the GA-1 and GA-3 approaches. For solving TP 4, the median and worst values obtained
using the RGA-PSO and AIA-PSO algorithms are smaller than those obtained using the GA-
3 method, and the worst values obtained using the RGA-PSO and AIA-PSO algorithms are
smaller than those obtained using the AIA-1 approach. Moreover, the GA-3 method obtained
the worst MAPE% for TP 1 and TP 4. Table 8 lists the results of the t-test for the GA-3,
AIA-2, RGA-PSO, and AIA-PSO methods. This table indicates that the mean values of the
RGA-PSO, and AIA-PSO algorithms are not statistically significant, since P values are larger
than a significant level 0.05, and the mean values between GA-3 versus AIA-2, GA-3 versus
RGA-PSO, GA-3 versus AIA-PSO, AIA-2 versus RGA-PSO, and AIA-2 versus AIA-PSO are
statistically significant. According to Tables 7 and 8, themean values obtained using the RGA-
PSO and AIA-PSO algorithms are better than those of obtained using the GA-3 and AIA-1
methods for TPs 1–4.

Table 9 compares the numerical results obtained using the proposed RGA-PSO and
AIA-PSO algorithms and those obtained using AIA-2 and GA-3 for solving TPs 5–13.
The AIA-2, GA-3, the internal PSO algorithm of the RGA-PSO approach, and the internal
PSO algorithm of AIA-PSO approach were independently executed 50 times under 300,000
objective function evaluations. Table 9 shows that MAPE% obtained using the proposed
RGA-PSO and AIA-PSO algorithms is close to 1%, or smaller than 1% for TPs 5–11, indicating
that the proposed RGA-PSO and AIA-PSO algorithms can converge to global optimum for
TPs 5–11. Moreover, the worst values obtained using the RGA-PSO and AIA-PSO algorithms
are significantly smaller than those obtained using the GA-3 method for TPs 5, 6, 11, and
13. Additionally, the worst values obtained using the RGA-PSO and AIA-PSO algorithms are
smaller than those obtained using the AIA-2 method for TPs 5, 6, and 13.

Table 10 summarizes the results of the t-test for TPs 5–13. According to Tables 9 and 10,
the mean values of the RGA-PSO and AIA-PSO algorithms are smaller than those of the GA-3
approach for TPs 5, 6, 7, 8, 9, 10, 11, and 13. Moreover, the mean values obtained using the
RGA-PSO and AIA-PSO algorithms are smaller than those of the AIA-2 approach for TPs 6,
7, 8, 10, and 12. Totally, according to Tables 7−10, the performances of the hybrid CI methods
are superior to those of individual GA and AIA methods.

The TPs 12 and 13 have been solved by many hybrid algorithms. For instance,
Huang et al. [23] presented a coevolutionary differential evolution (CDE) that integrates
a coevolution mechanism and a DE approach. Zahara and Kao [24] developed a hybrid
Nelder-Mead simplex search method and a PSO algorithm (NM-PSO). Table 11 compares
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Table 10: Results of t-test for TPs 5–13.

TP number GA-3 versus
AIA-2

GA-3 versus
RGA-PSO

GA-3 versus
AIA-PSO

AIA-2 versus
RGA-PSO

AIA-2 versus
AIA-PSO

RGA-PSO
versus AIA-PSO

5 0.000∗ 0.000∗ 0.000∗ 0.485 0.163 0.002∗

6 0.112 0.000∗ 0.000∗ 0.000∗ 0.000∗ 0.682

7 0.000∗ 0.000∗ 0.000∗ 0.000∗ 0.000∗ 0.358

8 0.000∗ 0.000∗ 0.000∗ 0.000∗ 0.000∗ 0.291

9 0.000∗ 0.000∗ 0.000∗ 0.516 0.814 0.577

10 0.000∗ 0.000∗ 0.000∗ 0.009∗ 0.001∗ 0.001∗

11 0.000∗ 0.000∗ 0.000∗ 0.069 0.013∗ 0.884

12 0.049∗ 0.389 0.178 0.000∗ 0.007∗ 0.014∗

13 0.003∗ 0.001∗ 0.000∗ 0.240 0.000∗ 0.019∗
∗Represents that the mean values obtained using two algorithms are statistically different.)

Table 11: Comparison of the numerical results of the proposed RGA-PSO and AIA-PSO algorithms and
those of the published hybrid algorithms for TPs 12-13.

TP number Methods Best Mean Median Worst S.D.

12

CDE [23] 0.0126702 0.012703 — 0.012790 2.7E − 05

NM-PSO [24] 0.0126302 0.0126314 — 0.012633 8.73E − 07

The proposed
RGA-PSO 0.012692 0.012724 0.012721 0.012784 1.46E − 05

The proposed
AIA-PSO 0.012667 0.012715 0.012719 0.012778 2.00E − 05

13

CDE [23] 6059.7340 6085.2303 — 6371.0455 43.01

NM-PSO [24] 5930.3137 5946.7901 — 5960.0557 9.16

The proposed
RGA-PSO 5885.3018 5895.0381 5885.3326 6005.4351 24.33

The proposed
AIA-PSO 5885.3310 5886.5426 5885.3323 5906.7404 4.54

the numerical results of the CDE, NM-PSO, RGA-PSO, andAIA-PSOmethods for solving TPs
12−13. The table indicates that the best, mean, and worst values obtained using the NM-PSO
method are superior to those obtained using the CDE, RGA-PSO, and AIA-PSO approaches
for TP 12. Moreover, the best, mean, and worst values obtained using the AIA-PSO algorithm
are better than those of the CDE, NM-PSO, and RGA-PSO algorithms.

According to the No Free Lunch theorem [35], if algorithm A outperforms algorithm
B on average for one class of problems, then the average performance of the former must
be worse than that of the latter over the remaining problems. Therefore, it is unlikely that
any unique stochastic global optimization approach exists that performs best for all CGO
problems.
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4.3. Summary of Results

The proposed RGA-PSO and AIA-PSO algorithms with a penalty function method have the
following benefits.

(1) Parameter manipulation of the internal PSO algorithm is based on the solved CGO
problems. Owing to their ability to efficiently solve an UGO problem, the external
RGA and AIA approaches are substituted for trial and error to manipulate the
parameters (χ, c1, c2, ρ, and pm,PSO).

(2) Besides obtaining the optimum parameter settings of the internal PSO algorithm,
the RGA-PSO and AIA-PSO algorithms can yield a global optimum for a CGO
problem.

(3) In addition to performing better than approaches of some published individual GA
and AIA approaches, the proposed RGA-PSO and AIA-PSO algorithms reduce the
parametrization for the internal PSO algorithm, despite the RGA-PSO and AIA-
PSO algorithms being more complex than individual GA and AIA approaches.

The proposed RGA-PSO and AIA-PSO algorithms have the following limitations.

(1) The proposed RGA-PSO and AIA-PSO algorithms increase the computational CPU
time, as shown in Table 2.

(2) The proposed RGA-PSO and AIA-PSO algorithms are designed to solve CGO prob-
lems with continuous decision variables xn. Therefore, the proposed algorithms
cannot be applied to manufacturing problems such as job shop scheduling and
quadratic assignment problems (combinatorial optimization problems).

5. Conclusions

This work presents novel RGA-PSO and AIA-PSO algorithms. The synergistic power of
the RGA with PSO algorithm and the AIA with PSO algorithm is also demonstrated by
using 13 CGO problems. Numerical results indicate that, in addition to converging to
a global minimum for each test CGO problem, the proposed RGA-PSO and AIA-PSO
algorithms obtain the optimum parameter settings of the internal PSO algorithm. Moreover,
the numerical results obtained using the RGA-PSO and AIA-PSO algorithms are superior to
those obtained using alternative stochastic global optimization methods such as individual
GA and AIA approaches. The RGA-PSO and AIA-PSO algorithms are highly promising
stochastic global optimization approaches for solving CGO problems.
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Appendices

A. TP 1 [20, 21]

TP 1 has ten decision variables, eight inequality constraints, and 20 boundary conditions, as
follows:

Minimize f(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2

+ 4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2

+ 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

Subject to g1(x) ≡ −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0,

g2(x) ≡ 10x1 − 8x2 − 17x7 + 2x8 ≤ 0,

g3(x) ≡ −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0,

g4(x) ≡ 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0,

g5(x) ≡ 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0,

g6(x) ≡ x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0,

g7(x) ≡ 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0,

g8(x) ≡ −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0,

− 10 ≤ xn ≤ 10, n = 1, 2, . . . , 10.

(A.1)

The global solution to TP 1 is as follows:

x∗ = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548,

1.430574, 1.321644, 9.828726, 8.280092, 8.375927),

f(x∗) = 24.306.

(A.2)
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B. TP 2 [21]

TP 2 involves five decision variables, six inequality constraints, and ten boundary conditions,
as follows:

Minimize f(x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

Subject to g1(x) ≡ −85.334407 − 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0,

g2(x) ≡ −6.665593 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 ≤ 0,

g3(x) ≡ 9.48751 − 0.0071371x2x5 − 0.0029955x1x2 − 0.0021813x2
3 ≤ 0,

g4(x) ≡ −29.48751 + 0.0071371x2x5 + 0.0029955x1x2 + 0.0021813x2
3 ≤ 0,

g5(x) ≡ 10.669039 − 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 ≤ 0,

g6(x) ≡ −15.699039 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 ≤ 0,

78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xn ≤ 45, n = 3, 4, 5.
(B.1)

The global solution to TP 2 is

x∗ = (78.0, 33.0, 29.995256, 45.0, 36.775812),

f(x∗) = −30665.539.
(B.2)

C. TP 3 [20, 21]

TP 3 has seven decision variables, four inequality constraints, and 14 boundary conditions,
as follows:

Minimize f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5

+ 7x2
6 + x4

7 − 4x6x7 − 10x6 − 8x7

Subject to g1(x) ≡ −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0,

g2(x) ≡ −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0,

g3(x) ≡ −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0,

g4(x) ≡ 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0,

− 10 ≤ xn ≤ 10, n = 1, 2, . . . , 7.

(C.1)
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The global solution to TP 3 is

x∗ = (2.330499, 1.951372,−0.4775414, 4.365726,−0.6244870, 1.038131, 1.594227),
f(x∗) = 680.630.

(C.2)

D. TP 4 [20, 21]

TP 4 involves 13 decision variables, nine inequality constraints, and 26 boundary conditions,
as follows:

Minimize f(x) = 5
4∑

n=1

xn − 5
4∑

n=1

x2
n −

13∑

n=5

xn

Subject to g1(x) ≡ 2x1 + 2x2 + x10 + x11 − 10 ≤ 0,

g2(x) ≡ 2x1 + 2x3 + x10 + x12 − 10 ≤ 0,

g3(x) ≡ 2x2 + 2x3 + x11 + x12 − 10 ≤ 0,

g4(x) ≡ −8x1 + x10 ≤ 0,

g5(x) ≡ −8x2 + x11 ≤ 0,

g6(x) ≡ −8x3 + x12 ≤ 0,

g7(x) ≡ −2x4 − x5 + x10 ≤ 0,

g8(x) ≡ −2x6 − x7 + x11 ≤ 0,

g9(x) ≡ −2x8 − x9 + x12 ≤ 0,

0 ≤ xn ≤ 1, n = 1, 2, . . . , 9,

0 ≤ xn ≤ 100, n = 10, 11, 12,

0 ≤ x13 ≤ 1.

(D.1)

The global solution to TP 4 is

x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1), f(x∗) = −15. (D.2)

E. TP 5 (Alkylation Process Design Problem
in Chemical Engineering) [1]

TP 5 has seven decision variables subject to 12 nonconvex, two linear, and 14 boundary
constraints. The objective function is to improve the octane number of some olefin feed
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by reacting it with isobutane in the presence of acid. The decision variables xn are olefin
feed rate (barrels/day) x1, acid addition rate (thousands of pounds/day) x2, alkylate yield
(barrels/day) x3, acid strength x4, motor octane number x5, external isobutane-to-olefin
ration x6, and F-4 performance number x7:

Minimize f(x) = (ω1x1 +ω2x1x6 +ω3x3 +ω4x2 +ω5 −ω6x3x5)

s.t. g1(x) = ω7x
2
6 +ω8x

−1
1 x3 −ω9x6 ≤ 1,

g2(x) = ω10x1x
−1
3 +ω11x1x

−1
3 x6 −ω12x1x

−1
3 x2

6 ≤ 1,

g3(x) = ω13x
2
6 +ω14x5 −ω15x4 −ω16x6 ≤ 1,

g4(x) = ω17x
−1
5 +ω18x

−1
5 x6 +ω19x4x

−1
5 −ω20x

−1
5 x2

6 ≤ 1,

g5(x) = ω21x7 +ω22x2x
−1
3 x−1

4 −ω23x2x
−1
3 ≤ 1,

g6(x) = ω24x
−1
7 +ω25x2x

−1
3 x−1

7 −ω26x2x
−1
3 x−1

4 x−1
7 ≤ 1,

g7(x) = ω27x
−1
5 +ω28x

−1
5 x7 ≤ 1,

g8(x) = ω29x5 −ω30x7 ≤ 1,

g9(x) = ω31x3 −ω32x1 ≤ 1,

g10(x) = ω33x1x
−1
3 +ω34x

−1
3 ≤ 1,

g11(x) = ω35x2x
−1
3 x−1

4 −ω36x2x
−1
3 ≤ 1,

g12(x) = ω37x4 +ω38x
−1
2 x3x4 ≤ 1,

g13(x) = ω39x1x6 +ω40x1 −ω41x3 ≤ 1,

g14(x) = ω42x
−1
1 x3 +ω43x

−1
1 −ω44x6 ≤ 1,

1500 ≤ x1 ≤ 2000, 1 ≤ x2 ≤ 120, 3000 ≤ x3 ≤ 3500,

85 ≤ x4 ≤ 93, 90 ≤ x5 ≤ 95, 3 ≤ x6 ≤ 12, 145 ≤ x7 ≤ 162,

(E.1)

where ωl (l = 1, 2, . . . , 44) denotes positive parameters given in Table 12. The global solution
to TP 5 is

x∗ = (1698.18, 53.66, 3031.30, 90.11, 10.50, 153.53), f(x∗) = 1227.1978. (E.2)
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Table 12: Coefficients for TP 5.

l ωl l ωl l ωl

1 1.715 16 0.19120592E − 1 31 0.00061000

2 0.035 17 0.56850750E + 2 32 0.0005

3 4.0565 18 1.08702000 33 0.81967200

4 10.000 19 0.32175000 34 0.81967200

5 3000.0 20 0.03762000 35 24500.0

6 0.063 21 0.00619800 36 250.0

7 0.59553571E − 2 22 0.24623121E + 4 37 0.10204082E − 1

8 0.88392857 23 0.25125634E + 2 38 0.12244898E − 4

9 0.11756250 24 0.16118996E + 3 39 0.00006250

10 1.10880000 25 5000.0 40 0.00006250

11 0.13035330 26 0.48951000E + 6 41 0.00007625

12 0.00660330 27 0.44333333E + 2 42 1.22

13 0.66173269E − 3 28 0.33000000 43 1.0

14 0.17239878E − 1 29 0.02255600 44 1.0

15 0.56595559E − 2 30 0.00759500

F. TP 6 (Optimal Reactor Design Problem) [1]

TP 6 contains eight decision variables subject to four nonconvex inequality constraints and
16 boundary conditions, as follows:

Minimize f(x) =
(
0.4x0.67

1 x−0.67
7 + 0.4x0.67

2 x−0.67
8 + 10 − x1 − x2

)

s.t. g1(x) = 0.0588x5x7 + 0.1x1 ≤ 1,

g2(x) = 0.0588x6x8 + 0.1x1 + 0.1x2 ≤ 1,

g3(x) = 4x3x
−1
5 + 2x−0.71

3 x−1
5 + 0.0588x−1.3

3 x7 ≤ 1.

g4(x) = 4x4x
−1
6 + 2x−0.71

4 x−1
6 + 0.0588x−1.3

4 x8 ≤ 1, 0.1 ≤ xn ≤ 10, n = 1, 2, . . . , 8.
(F.1)

The global solution to TP 6 is

x∗ = (6.4747, 2.2340, 0.6671, 0.5957, 5.9310, 5.5271, 1.0108, 0.4004), f(x∗) = 3.9511. (F.2)
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G. TP 7 [1]

TP 7 has four decision variables, two nonconvex inequality constraints, and eight boundary
conditions, as follows:

Minimize f(x) =
(
−x1 + 0.4x0.67

1 x−0.67
3

)

s.t. g1(x) = 0.05882x3x4 + 0.1x1 ≤ 1

g2(x) = 4x2x
−1
4 + 2x−0.71

2 x−1
4 + 0.05882x−1.3

2 x3 ≤ 1, 0.1 ≤ x1, x2, x3, x4 ≤ 10.

(G.1)

The global solution to TP 7 is

x∗ = (8.1267, 0.6154, 0.5650, 5.6368), f(x∗) = −5.7398. (G.2)

H. TP 8 [1]

TP 8 contains three decision variables subject to one nonconvex inequality constraint and six
boundary conditions, as follows:

Minimize f(x) =
(
0.5x1x

−1
2 − x1 − 5x−1

2

)

s.t. g1(x) = 0.01x2x
−1
3 + 0.01x1 + 0.0005x1x3 ≤ 1, 1 ≤ xn ≤ 100, n = 1, 2, 3.

(H.1)

The global solution to TP 8 is

x∗ = (88.2890, 7.7737, 1.3120), f(x∗) = −83.2540. (H.2)

I. TP 9 [1]

TP 9 contains eight decision variables subject to four nonconvex inequality constraints and
16 boundary conditions, as follows:

Minimize f(x) =
(
−x1 − x5 + 0.4x0.67

1 x−0.67
3 + 0.4x0.67

5 x−0.67
7

)

s.t. g1(x) = 0.05882x3x4 + 0.1x1 ≤ 1,

g2(x) = 0.05882x7x8 + 0.1x1 + 0.1x5 ≤ 1,

g3(x) = 4x2x
−1
4 + 2x−0.71

2 x−1
4 + 0.05882x−1.3

2 x3 ≤ 1,

g4(x) = 4x6x
−1
8 + 2x−0.71

6 x−1
8 + 0.05882x−1.3

6 x7 ≤ 1, 0.01 ≤ xn ≤ 10, n = 1, 2, . . . , 8.
(I.1)
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The global solution to TP 9 is

x∗ = (6.4225, 0.6686, 1.0239, 5.9399, 2.2673, 0.5960, 0.4029, 5.5288), f(x∗) = −6.0482. (I.2)

J. TP 10 [34]

TP 10 contains three decision variables subject to one nonconvex inequality constraint and
six boundary conditions, as follows:

Minimize f(x) =
(
5x1 + 50000x−1

1 + 20x2 + 72000x−1
2 + 10x3 + 144000x−1

3

)

s.t. g1(x) = 4x−1
1 + 32x−1

2 + 120x−1
3 ≤ 1, 1 ≤ xn ≤ 1000, n = 1, 2, 3.

(J.1)

The global solution to TP 10 is

x∗ = (107.4, 84.9, 204.5), f(x∗) = 6300. (J.2)

K. TP 11 [1, 34]

TP 11 involves five decision variables, six inequality constraints, and ten boundary condi-
tions, as follows:

Minimize g0(x) =
(
5.3578x2

3 + 0.8357x1x5 + 37.2392x1

)

s.t. g1(x) = 0.00002584x3x5 − 0.00006663x2x5 − 0.0000734x1x4 ≤ 1,

g2(x) = 0.000853007x2x5 + 0.00009395x1x4 − 0.00033085x3x5 ≤ 1,

g4(x) = 0.00024186x2x5 + 0.00010159x1x2 + 0.00007379x2
3 ≤ 1,

g3(x) = 1330.3294x−1
2 x−1

5 − 0.42x1x
−1
5 − 0.30586x−1

2 x2
3x

−1
5 ≤ 1,

g5(x) = 2275.1327x−1
3 x−1

5 − 0.2668x1x
−1
5 − 0.40584x4x

−1
5 ≤ 1,

g6(x) = 0.00029955x3x5 + 0.00007992x1x3 + 0.00012157x3x4 ≤ 1,

78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ x3 ≤ 45, 27 ≤ x4 ≤ 45, 27 ≤ x5 ≤ 45.
(K.1)

The global solution to TP 11 is

x∗ = (78.0, 33.0, 29.998, 45.0, 36.7673), f(x∗) = 10122.6964. (K.2)

L. TP 12 (a Tension/Compression String Design Problem) [23]

TP 12 involves three decision variables, six inequality constraints, and six boundary
conditions. This problem is taken from Huang et al. [23]. This problem attempts to minimize
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the weight (i.e., f(x)) of a tension/compression spring subject to constraints on minimum
deflection, shear stress, and surge frequency. The design variables are the mean coil diameter
x2, wire diameter x1, and number of active coils x3:

Minimize f(x) = (x3 + 2)x2x
2
1

s.t. g1(x) = 1 − x3
2x3

71785x4
1

≤ 0,

g2(x) =
4x2

2 − x1x2

12566
(
x2x

3
1 − x4

1

) +
1

5108x2
1

− 1 ≤ 0,

g3(x) = 1 − 140.45x1

x2
2x3

≤ 0,

g4(x) =
x1 + x2

1.5
− 1 ≤ 0, 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15.

(L.1)

M. TP 13 (Pressure Vessel Design Problem) [23]

TP 13 involves four decision variables, four inequality constraints, and eight boundary con-
ditions. This problem attempts to minimize the total cost (f(x)), including cost of materials
forming and welding. A cylindrical vessel is capped at both ends by hemispherical heads.
Four design variables exist: thickness of the shell x1, thickness of the head x2, inner radius x3,
and length of the cylindrical section of the vessel, excluding the head x4:

Minimize f(x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3

s.t. g1(x) = −x1 + 0.0193x3 ≤ 0,

g2(x) = −x2 + 0.00954x3 ≤ 0,

g3(x) = −πx3
2x4 − 4

3
πx3

3 + 1296000 ≤ 0,

g4(x) = x4 − 240 ≤ 0, 0 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 100, 10 ≤ x3 ≤ 200, 10 ≤ x3 ≤ 200.
(M.1)
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[22] N. Cruz-Cortés, D. Trejo-Pérez, and C. A. Coello Coello, “Handling constraints in global optimization
using an artificial immune system,” in Proceedings of the 4th International Conference on Artificial Immune
Systems, pp. 234–247, Banff, Canada,, 2005.

[23] F.-Z. Huang, L. Wang, and Q. He, “An effective co-evolutionary differential evolution for constrained
optimization,” Applied Mathematics and Computation, vol. 186, no. 1, pp. 340–356, 2007.

[24] E. Zahara and Y. T. Kao, “Hybrid Nelder-Mead simplex search and particle swarm optimization for
constrained engineering design problems,” Expert Systems with Applications, vol. 36, no. 2, part 2, pp.
3880–3886, 2009.

[25] C. R. Houck, J. A. Joines, and M. G. Kay, “A genetic algorithm for function optimization: a matlab
implementation,” in NSCU-IE TR 95-09, North Carolina State University, Raleigh, NC, USA, 1995.

[26] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International
Conference on Neural Networks, pp. 1942–1948, Perth, Australia, 1995.



36 Mathematical Problems in Engineering

[27] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proceedings of the IEEE International
Conference on Evolutionary Computation, pp. 69–73, Anchorage, Alaska, USA, 1998.

[28] M. Clerc, “The swarm and the queen: towards a deterministic and adaptive particle swarm optimiza-
tion,” in Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1951–1957, Washington, DC,
USA, 1999.

[29] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimen-
sional complex space,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[30] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, John Wiley & Sons, 2005.
[31] N. K. Jerne, “Idiotypic networks and other preconceived ideas,” Immunological Reviews, vol. 79, pp.

5–24, 1984.
[32] L. N. de Castro and F. J. Von Zuben, “Artificial Immune Systems: Part I—Basic Theory and Appli-

cations,” FEEC/Univ. Campinas, Campinas, Brazil, 1999, ftp://ftp.dca.fee.unicamp.br/pub/docs/
vonzuben/tr dca/trdca0199.pdf.

[33] C. A. Coello Coello, “Theoretical and numerical constraint-handling techniques used with evolution-
ary algorithms: a survey of the state of the art,” Computer Methods in Applied Mechanics and Engineering,
vol. 191, no. 11-12, pp. 1245–1287, 2002.

[34] M. J. Rijckaert and X. M. Martens, “Comparison of generalized geometric programming algorithms,”
Journal of Optimization Theory and Applications, vol. 26, no. 2, pp. 205–242, 1978.

[35] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Transactions on
Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


