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Vibration analysis of a new type of compliant parallel mechanism with flexible intermediate links
is investigated. The application of the Timoshenko beam theory to the mathematical modeling
of the intermediate flexible link is described, and the equations of motion of the flexible links are
obtained by using Lagrange’s equation of motion. The equations of motion are obtained in the form
of a set of ordinary differential equations by using assumed mode method theory. The governing
differential equations of motion are solved using perturbation method. The assumed mode shapes
and frequencies are to be obtained based on clamped-clamped boundary conditions. Comparing
perturbation method with Runge-Kutta-Fehlberg 4, 5th leads to highly accurate solutions, and the
results are performed and discussed.

1. Introduction

Micro- and nanopositioning is essential technologies that play a significant role in many
technical fields such as microbiology, surgery automation in medicine, scanning electron
microscopy, and the manipulation of microscale components in microassembly. In recent
years, there has been considerable interest in dynamic modeling of the micrometer
positioning system based on the compliant mechanism concept.

Unlike conventional mechanisms, compliant mechanism is a monolithic structure that
provides the required motion by flexure hinges inherent to the structure and has capacity to
be utilized in small-scale applications.



2 Mathematical Problems in Engineering

A foundation work on the flexure hinges was presented by Paros and Weisbord [1].
In modeling and analyzing compliant mechanisms, the pseudo-rigid-body model (PRBM)
approach is the almost exclusive tool, that is, currently utilized. The PRBM considers a flexure
hinge as a revolute joint with an attached torsional spring. This concept has been introduced
and then developed by Midha et al. [5], Howell and Ananthasuresh and Kota [2], Murphy et
al. [3], and Brockett and Stokes [4].

A flexure hinge is in fact a complex spring element that can respond to and transmit
both rotational and translational motions. Flexure hinges are classified into different profiles
such as circular, beam type, corner filleted, parabolic, hyperbolic, elliptical, inverse parabolic
and secant flexure hinges [5]. But circular hinges have been widely used because they
could be easily manufactured. Paros and Weisbord were the first group to introduce circular
flexure hinges. They derived the design equations, including full and simplified equations
to calculate compliance of flexure hinges. Rong et al. [6] derived analytical compliance
equations of circular flexure hinges which can be reduced to the simplified equation of Paros
and Weisbord. Her and Chang [7] used finite element approach to numerically determine the
rotational stiffness of circular flexure hinges. Smith et al. [8] studied both the compliance of
circular and elliptical flexure hinges. Zhang and Fasse [9] derived empirical equations based
on FEA results to predict the compliance of circular flexure hinges.

Lobontiu et al. [10] derived analytical equations to predict the compliances of the
corner-filleted flexure hinges along all three axes. Shim et al. [11] derived a kinematic model
of a six-DOF parallel micromanipulator for micro-positioning applications. Geo et al. derived
a static model for two-DOF compliant mechanism and x deformation of flexure hinges which
was considered in these models.

Lobontiu and Garcia [12] analyzed and formulated displacement and stiffness calcu-
lations of planar compliant mechanisms with flexure hinges. The formulations were based
on strain energy and Castiglione’s displacement theorem. Yu et al. [13] presented a kinematic
model for three-DOF compliant micromotion stage, and model was derived based on the
PRBM concept.

Tian et al. [14] derived the dimensionless empirical equations and graph expressions
of three flexure hinges for compliant mechanism.

Clearly, for nanopositioning applications, accuracy and precision of mechanism is
the most important. Furthermore, parallel structures have been adopted in many microp-
ositioning devices and are widely used in many applications, and the flexibility of link
improves accuracy and some other characteristics of manipulator such as minimizing the
energy needed to run the manipulator, increasing speed, reducing the internal stresses and
displacement.

Significant achievements, which have driven research on flexible manipulators, were
reported by Kanoh et al. [15], Baruh and Tadikonda [16], Book [17], Dwivedy and Eberhard
[18], and Tokhi and Azad [19].

Timoshenko beam theory accounts for both the effect of rotary inertia and shear
deformation, which are neglected when applied to Euler Bernoulli Beam Theory (EBBT).
The predictions of the Timoshenko Beam Theory (TBT) are in excellent agreement with the
results obtained from the elasticity equations and experimental results, as they can be seen in
the papers by Abramovich and Elishakoff [20], Han et al. [21], and Stephen [22].

In this paper for the first time a new compliant micromotion stage with three flexible
intermediate links is presented. The 3RPR links are arranged in parallel, and each link has
2 circular flexure hinges. Each intermediate link has been treated as a Timoshenko beam.
Structural dynamic equations of the proposed compliant mechanism are derived based on
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Figure 1: Modeling of parallel micropositioning compliant mechanism.

Lagrange’s equations. Also the AMM is adopted to discretize the distributed dynamic system
of the manipulator system with flexible links and solved using perturbation method and then
results for the deflection of the intermediate link are compared with Runge-Kutta-Fehlberg
4, 5th. Furthermore, numerical simulations are performed to illustrate and analyze the mode
characteristics of the compliant mechanism.

2. Compliant Micromotion System Configuration

The micromotion system is proposed as a parallel mechanism that consists of three chains that
connect the end effector to a fixed base. The compliant micromotion mechanism is illustrated
in Figure 1. The end effector translates along x-axis and y-axis and rotates about the z axis.
The first flexure hinge in each chain is modeled as having 2DOF hinge. Consequently, first
hinge assumes that the flexure hinges in the mechanism act like a 1DOF revolute joint and
a 1DOF prismatic joint and the second flexure hinge in each chain is modeled as a revolute
joint.

In order to facilitate the formulation of kinematics and dynamics, all coordinates are
shown in Figure 2. The three chains are 120 degrees apart from each others and mechanism
also has a symmetrical configuration and thus is less sensitive to temperature gradient that
can change the kinematics of structure due to material expansion or contraction. The BiCi are
assumed flexible. The first revolute joint in each chain is active joint, and the other ones are
passive joints.

3. Dynamic Modeling

In order to obtain the dynamic model of the ith linkage of compliant mechanism, the total
kinetic and potential energies are evaluated. The general form of Lagrange’s equations is used
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Figure 2: Coordinate system of the 3-RPR parallel compliant mechanism.

to derive dynamic equation of motion for parallel compliant mechanism with three flexible
intermediate links.

3.1. Kinetic and Potential Energy of ith Links

Each intermediate link can be treated as a beam. In present paper, Timoshenko beam theory
was adopted. One of the links is shown in Figure 3. The component Wi(x, t) represents the
transverse displacement of the ith link at a distance x from the joint coordinate system along
the x axis. αi + βi(t) represents the angle between the link and the horizontal axis, and ui(t) is
the axial deformation of flexure hinges.

The total energy of manipulator system includes the kinetic energy of flexure hinges,
flexible intermediate link, and moving platform. The position vector relative to an inertial
frame can be written as

ri =
[
(ui + x + Liflex) cos

(
αi + βi

) −Wi(x, t) sin
(
αi + βi

)]
i

+
[
(ui + x + Liflex) sin

(
αi + βi

)
+Wi(x, t) cos

(
αi + βi

)]
j,

(3.1)

or matrix form

ri =

[
cos
(
αi + βi

) − sin
(
αi + βi

)

sin
(
αi + βi

)
cos
(
αi + βi

)

][
(ui(t) + x + Liflex)

Wi(x, t)

]

. (3.2)

And derivation of (3.2) is

ṙi =

[
cos
(
αi + βi

) − sin
(
αi + βi

)

sin
(
αi + βi

)
cos
(
αi + βi

)

][ (−Wi(x, t)β̇i + u̇i(t)
)

β̇i(ui(t) + x + Liflex) + Ẇi(x, t)

]

. (3.3)

And velocity of ith intermediate flexible link is:

V 2
ilink =

[
u̇i(t) −Wi(x, t)β̇i

]2 +
[
β̇i(ui(t) + x + Liflex) + Ẇi(x, t)

]2
. (3.4)
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Figure 3: Compliant mechanism with flexure hinge and flexible link.

In which i = 1, 2, 3 in the above equations. The kinetic and potential energies have
differences by Euler Bernoulli beam theory. The kinetic and potential energies include the
effects of bending moment, lateral displacement, rotary inertia, and shear distortion. The total
kinetic energy of the intermediate flexible link and its potential energy due to the internal
bending moment and the shear force are, respectively, given by

T =
1
2

∫Li

0

(

ρA

(
∂W(x, t)

∂t

)2

+ ρI
(
∂γ(x, t)
∂t

)2
)

dx,

V =
1
2

∫Li

0

(

EI

(
∂γ(x, t)
∂x

)2

+ KAG
((

∂W(x, t)
∂x

)
− γ(x, t)

)2
)

dx.

(3.5)

In which γ(x, t) is slope of bending, and (∂W(x, t))/∂x is slope of centerline. The total kinetic
energy of system is

T = Tflex + Tlink + TP . (3.6)

TP is kinetic energy of moving platform and Tlink is kinetic energy of flexible intermediate link
and Tflex is kinetic energy of flexure hinges. Then total kinetic energy is written as:

T =
1
2

3∑

i=1

∫Liflex

0
ρ0

(
u̇2
i (t) + β̇

2
i (Liflex + ui(t))2

)
dx

+
1
2

3∑

i=1

∫Lilink

0
ρ1

[
β̇2
i

(
2xLiflex + u2

i (t) + 2ui(t)Li + x2 + L2
iflex + 2Liflexui(t)

)
+ u̇2

i (t)
]
dx

− u̇i(t)β̇Q2
ijδij +

1
2
Q1
ij δ̇

2
ij + ui(t)Q

2
ij δ̇ij β̇i +Q

3
ij δ̇ij β̇i + LiflexQ

2
ij δ̇ij β̇ +

1
2
Q1
ijδ

2
ij β̇

2

+
1
2
mp

(
ẋ2
p + ẏ

2
p

)
+

1
2
Ipθ

2
p +

1
2
ρIq1

ij δ̇
2
ij .

(3.7)

In which ρ0 and ρ1 are mass per unit length of flexure hinges and mass per unit length of ith
link, respectively. In addition Ip is mass moment of inertia of the platform around the center
point P , mp is the mass of the platform, xp and yp are positions of platform along x-axis and
y-axis directions, respectively, and θp is the orientation of platform at the mass center P .
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3.2. Potential Energy

The potential energy of intermediate link expresses the internal energy due to bending and
the elastic deformation of the link. According to Timoshenko beam theory, the potential
energy of the intermediate link is given as [21]

Vlink =
1
2

3∑

i=1

∫Lilink

0

(

EiIi

(
∂γ(x, t)
∂x

)2

+ KAG
((

∂W(x, t)
∂x

)
− γ(x, t)

)2
)

dx, (3.8)

where Ei is elastic modulus of the ith link, Ii is the second moment of area of the ith link, G
is the shear modulus, and K is the shear coefficient. In order to obtain potential energy of
flexure hinges, they are modeled as revolute and prismatic joints with constant torsional and
translational stiffness kθflex and kxflex. All the first flexure hinges in each chain are assumed
as a combination of torsional and translational stiffness, and the second flexure hinges
are assumed to have just torsional stiffness. Using the formulation presented by Lobontiu,
the rotational and translational stiffness of circular flexure hinge can be estimated. Those
compliance equations are presented in Appendix A [5, 23].

Potential energy of flexure hinges can be estimated as

Vflex =
1
2
kxflex(ui(t))2 +

1
2
kθ1iflex

(
βi
)2 +

1
2
kθ2iflex

(
θp
)2
. (3.9)

In which kθ1flex is torsional stiffness of the first flexure hinge, and kθ2flex is torsional stiffness
of the second flexure hinge. The total potential energy of the system is given as:

V =
1
2

3∑

i=1

∫Lilink

0

(

EiIi

(
∂γ(x, t)
∂x

)2

+ KAG
((

∂W(x, t)
∂x

)
− γ(x, t)

))

dx

+
1
2
kxflex(ui(t))2 +

1
2
kθ1iflex

(
βi
)2 +

1
2
kθ2iflex

(
θp
)2
.

(3.10)

3.3. Dynamic Equations of Motion

The governing equations of motion are derived using Lagrange’s equations. The Lagrangian
is computed using kinetic and potential energy as follows:

L = T − V. (3.11)

And the Lagrange’s equations are given by [24]

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= τi. (3.12)
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In (3.5), the Wi(x, t) and γi(x, t) are assumed to share the same time-dependent modal
generalized coordinates δij(t) under the following separated forms with the respective mode
shape functions ϕj(x) and ψj(x) that must satisfy the clamped-clamped boundary conditions

Wi(x, t) =
r∑

j=1

δij(t)ϕj(x),

γi(x, t) =
r∑

j=1

δij(t)ψj(x).

(3.13)

Functions δij(t) can be considered as generalized coordinates expressing the deformation of
the linkage, and functions ψj(x) and ϕj(x) are referred to as assumed modes. The clamped-
clamped boundary conditions are assumed for the intermediate links. The eigen function
of clamped-clamped beam was derived based on Timoshenko beam theory. According to
Timoshenko beam theory, position-dependent mode shape function for clamped-clamped
beam is selected as [21]

ϕj(x) = B1 cosh
(ps1x

l

)
+ B2 sinh

(ps1x

l

)
+ B3 cos

(ps2x

l

)
+ B4 sin

(ps2x

l

)
,

ψj(x) = C1 cosh
(ps1x

l

)
+ C2 sinh

(ps1x

l

)
+ C3 cos

(ps2x

l

)
+ C4 sin

(ps2x

l

)
. (3.14)

In which p is the root of the characteristic or frequency equation, and frequency equation of
clamped-clamped beam is given as [21]:

cosh
(
ps1
)

cos
(
ps2
) − p

(
3b2 − r2 + p2b4(b2 + r2))

2
(
1 + p2b2r2

) sinh
(
ps1
)

sin
(
ps2
)
= 1, (3.15)

in which in above equation

r =
R

L
, R =

√
I

A
, b2 =

EI

KAGL2
. (3.16)

Derivation of shape mode can be found in Appendix B. Substituting (3.7), (3.10), and (3.13)
into (3.11) and (3.12), we have

Q1
ij δ̈ij(t) + 2u̇iβ̇iQ2

ij + uiQ
2
ij β̈i +Q

3
ij β̈i + liflexQ

2
ij β̈i −Q1

ijδij(t)
(
β̇i
)2 + EIδij(t)q2

ij

+Iρδ̈ij(t)q1
ij +

1
2

KAGδij(t)
(
−4Mij + 2Q5

ij + 2q1
ij

)
= 0,

(3.17)
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in which

Q1
ij =
∫Lilink

0
ρ1
(
ϕij(x)

)2
dx Q2

ij =
∫Lilink

0
ρ1
(
ϕij(x)

)
dx, Q3

ij =
∫Lilink

0
ρ1
(
ϕij(x)

)
x dx,

Mij =
∫Li

0

(
ϕ′
ij(x)ψij(x)

)
dx, q1

ij =
∫Li

0

(
ψij(x)

)2
dx,

q2
ij =
∫Li

0

(
ψ ′

ij(x)
)2
dx, Q5

ij =
∫Li

0

(
ϕ′
ij(x)
)2
dx.

(3.18)

Equation (3.17) can be rewritten in matrix form as

Mδ̈ +Ksδ +Nβ̈ = Fcor, (3.19)

where M is the modal mass matrix, Ks is the modal stiffness matrix, Nβ̈ is the effect of rigid-
body motion on elastic vibration of flexible links, and Fcor is Coriolis force.

To obtain equations of motion for EBBT, the value of K (shear coefficient) and rotary
inertia in (3.17) should be equal to zero. In this way, the equations of motion for Euler-
Bernoulli Beam Theory can be obtained as follows:

Q1
ij δ̈ij(t) + 2u̇iβ̇iQ2

ij + uiQ
2
ij β̈i +Q

3
ij β̈i + liflexQ

2
ij β̈i −Q1

ijδij(t)
(
β̇i
)2 + EIδij(t)q2

ij = 0. (3.20)

For getting frequency equation, we use equation of motion in (3.20) and for considering
a constant angular velocity of intermediate link and assuming time-independent axial
displacement, one gets the following:

−Q1
ij

(
ω2
)
−Q1

ij

(
β̇i
)2 + EIq2

ij = 0. (3.21)

In the above equation (δ̈(t)/δ(t)) = −(ω2), the equivalent frequency may be evaluated by:

(
ω2
)
=

−Q1
ij

(
β̇i
)2 + EIq2

ij

Q1
ij

. (3.22)

Consequently, from (3.22), the natural frequency for the link decreases with angular velocity,
such that for some critical values of β̇c =

√
(EIq2

ij/Q
1
ij) the bending frequency equals zero.

For the clamped-clamped boundary conditions, we have

q2
ij =

((
1 + j

)
π

l

)4

q21
ij . (3.23)
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By substituting (3.23) into (3.22), frequency can be obtained as

(
ω2
)
=
EI
((

1 + j
)
π
)4

l4Q1
ij

q21
ij − (β̇i

)2
. (3.24)

Therefore, the first term on the right side of (3.24) is the natural frequency expression for
nonrotating beam. Equation (3.24) is similar to the results given in [25].

4. Solution Methodology

To solve equations of motion, the perturbation method is used, which consists of determining
the series convergent to the exact solution. Using Taylor series to expand the terms in (3.17),
we have the following:

d2δij(t)
dt2

+

(
a1Q

2
ij − a2Q

3
ij + a3Q

2
ij t − a4Q

2
ij t

2
)

Q1
ij

δij(t) +
−a5Q

1
ij + a6Q

4
ij − a7Q

1
ij t − a8Q

1
ij t

2

Q1
ij

= 0.

(4.1)

For mode1, we have

d2δ(t)
dt2

+
(λ1 + ε)δ(t) − a5Q

1
11 + a6Q

4
11 − a7Q

1
11t − a8Q

1
11t

2

Q1
11

= 0. (4.2)

When ε is small but is different from zero and λ1 � ε, we suppose that the solution of above
equation can be expressed in the following form [26]:

δ(t, ε) = δ0(t) + εδ1(t) + ε2δ2(t) + · · · . (4.3)

Substitute (4.3) into (4.2) and set ε = 0, then

Q1
11δ̈0 + (λ1)δ0(t) − a5Q

1
11 + a6Q

4
11 − a7Q

1
11t − a8Q

1
11t

2 = 0, (4.4)

Q1
11δ̈1 + (λ1)δ1(t) + δ0(t) = 0. (4.5)

The general solution of (4.4) can be written as

δ0(t) = A0 cos
(
t + β0

)
+ f(t), (4.6)

where A0 and β0 are arbitrary constants. Therefore (4.5) can be rewritten as

Q1
11δ̈1 + (λ1)δ1(t) +A0 cos

(
t + β0

)
+ f(t) = 0. (4.7)
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Table 1: Compliant mechanism physical parameters.

L1 = L2 = L3 (m) G (Pa) K A (m2) I (m4) ρ (kg/m3) E (N/m2)

0.05249 2.6e9 0.83 0.18e–4 1.35e–11 2.77e3 7.1e10

Table 2: Geometrical properties of flexure hinge.

Liflex b H t Rflex

6 (mm) 3 (mm) 3 (mm) 0.5 (mm) 3 (mm)

The homogeneous and particular solutions are

δ(t) = A0 cos
(
t + β0

)
+ f(t) + ε

(
A1 cos

(
t + β1

)
+ f1(t)

)
+ · · · (4.8)

And flexible deformation of the first intermediate link for mode 1 can be expressed as

W1(x, t) = δ(t)ϕ11(x). (4.9)

5. Numerical Results and Discussion

In the present compliant mechanism, dynamic analysis of parallel compliant mechanism with
flexible links is considered. Geometrical and material properties of flexible link are given
in Table 1. The geometrical properties for flexure hinges are given in Table 2. Flexures and
intermediate links are modeled as aluminum alloy.

The deflection of flexure hinges and intermediate links is determined based on the
prescribed motion of the moving platform. To obtain the deflection, velocity, angular velocity,
and acceleration, inverse kinematics was used. From inverse kinematics, the displacement
and velocity of flexure hinges are given as

ui =
(
xp − (l1iflex + Li + l2iflex) cos

(
αi + βi(t)

)
+ x′ cos(θ) + y′ sin(θ)

)2

+
(
yp − (l1iflex + Li + l2iflex) cos

(
αi + βi(t)

) − x′ sin(θ) − y′ cos(θ)
)2
,

(5.1)

u̇i = cos
(
αi + βi(t)

)
ẋp + sin

(
αi + βi(t)

)
ẏp. (5.2)

And angular velocities of intermediate links are given as

β̇i =
1

−(ui + Li + l1iflex)
(− sin

(
αi + βi(t)

)
ẋp + cos

(
αi + βi(t)

)
ẏp
)
. (5.3)
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In this simulation, the moving platform is set to move on a desired trajectory given as

xp = C1 +
xf

tf
t − xf

2π
sin

(
2π
tf
t

)

,

yp = C2 +
xf

tf
t − xf

2π
sin

(
2π
tf
t

)

,

θ = const,

(5.4)

where xf = 0.2 mm, tf = 1 ms, C1 = 0.039, and C2 = 0.041. Flexible generalized coordinates in
(3.17) are δij = [δ11 δ12 δ13 δ21 δ22 δ23 δ31 δ32 δ33].

To solve (3.17), initial conditions are adopted δij = 0, δ̇ij = 0. The deflection of the
midpoint of the intermediate links for three modes is obtained by using perturbation method
and Runge-Kutta-Fehlberg 4, 5th(RKF4, 5th). To obtain frequency equation for Timoshenko
beam, the value of β̇, β̈, u̇, ü in (3.17) should be equal to zero. By doing so the frequency can
be obtained as follows:

ω2 =
EIq2

ij + KAG
(
−2Mij +Q5

ij + q
1
ij

)

Q1
ij + Iρq

1
ij

. (5.5)
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Figure 5: First three vibration modes of the 1st intermediate link at the midpoint. (a) Mode 1, (b) Mode 2,
and (c) Mode 3.

In Figure 4 Variation of frequency versus length of link is illustrated. As it can be seen the
trend of variation is similar to the result obtained in the previous study [20].

Figure 5 shows the amplitude of the first three modes of vibration of the first
intermediate flexible link at the midpoint and reveals that the amplitude of the first mode
vibration is larger than the amplitude of the second mode vibration, and the first mode is
sufficiently accurate to describe the vibration of the flexible link.
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Figure 6: The comparison of results between perturbation method and Runge-Kutta-Fehlberg 4, 5th order.
(a) mode 1 and (b) mode 2.

3

2

1

0
0.00005 0.0001 0.00015

Mode 1
Mode 2
Mode 3

t

W
(m

)

×10−11

Figure 7: First three vibration modes of the 1st intermediate link at the x = L/5.
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The comparison of the deflection versus time between results obtained from perturba-
tion method and Runge-Kutta-Fehlberg 4, 5th order has been depicted in Figure 6. It can be
observed that there is an excellent agreement between the results obtained from perturbation
method with those of Runge-Kutta-fehlberg 4, 5th order method.

Figure 7 shows the amplitude of the first three modes of vibration of the first
intermediate link at x = L/5. It reveals that the amplitude of the first mode of vibration is
larger than the amplitude of the second and third mode of vibration.

In Figure 8, effect of intermediate link length on deflection is illustrated. From Figure 7
it can be seen that deflection of intermediate link decreases with increasing its height/length
ratio.

Figure 9 illustrates deflection of intermediate link at midpoint for Timoshenko beam
theory (TBT) and Euler Bernoulli beam theory (EBBT). EBBT is suitable where the link
geometry has length to height or aspect ratio greater than 10, approximately. As the height
decreases, aspect ratio increases, and EBBT becomes a better model. From Figure 9, it can be
seen that by decreasing the thickness (height) of intermediate link, the effects of rotary inertia
and shear deformation can be omitted, and behavior of the beam becomes close to EBBT.

In Figure 10 the effect of hinge length on deflection of the midpoint of intermediate
link is shown. It shows that when hinge length increases, hinge stiffness decreases (A.2) and
the deflection of link increases.

6. Conclusion

In this paper, the vibration analysis of a new type of compliant parallel mechanism with
flexible links is considered. Perturbation method is adopted for the solution of dynamic
equation of motion, and the mode shape functions are selected by modeling intermediate
link as Timoshenko beam with clamped-clamped boundary conditions. To derive equations
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of motion, the main steps of an energetic deriving procedure based on the Lagrangian method
combined with AMM are proposed. The obtained solution using the perturbation method
has a very high accuracy compared with Runge-Kutta-Fehlberg 4, 5th order method. Based
on numerical results, it is concluded that, for three intermediate links, the elastic deflection
is different due to their different base motions, and it has been found that the deflection
of intermediate link is decreased, and the frequency is increased with the increase in r
(height/length) ratio.

Appendices

A. Circular Flexure Hinge Compliance Equations

A.1. Lobontiu [23]

1
kθflex

=
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=
24r

Ebt3(2r + t)(4r + t)3
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(A.1)
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A.2. Paros and Weisbord [23]
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in which

β =
t

2
R, γ = 1 + β. (A.4)
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B.

To derive frequency and mode shapes of Timoshenko beam, the system of coupled partial
differential equations, known as [21]

EI
∂2γ

∂x2
+ KAG

(
∂W

∂x
− γ
)
− ρI ∂

2γ

∂t2
= 0,

ρA
∂2W

∂t2
− KAG

(
∂2W

∂x2
− ∂γ

∂x

)

= 0.

(B.1)

Above system of differential equations can be decoupled as follows:
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∂x4
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)
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(B.2)

The last term in (B.2) can be omitted due to its negligible contribution to yield
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(B.3)

Above equations have the following general solutions for transversal and rotational mode
shape
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(ps1x

l

)
+ B2 sinh

(ps1x

l

)
+ B3 cos

(ps2x

l

)
+ B4 sin

(ps2x

l

)
,

ψj(x) = C1 cosh
(ps1x

l

)
+ C2 sinh

(ps1x

l

)
+ C3 cos

(ps2x

l

)
+ C4 sin

(ps2x

l

)
.

(B.4)

The constants s1, s2 can be obtained from
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According to the clamped-clamped boundary conditions (W(0) = W(L) = 0, γ(0) = γ(L) =
0), we have [21]
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(B.6)

To obtain frequency of TBT, we use assumed mode method and have

Wi(x, t) =
r∑

j=1

δij(t)ϕj(x),

γi(x, t) =
r∑

j=1

δij(t)ψj(x).

(B.7)

Substitute (B.7) into (B.3), and we have
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In the above equation (δ̈(t)/δ(t)) = −(ω2), the equivalent frequency may be evaluated by

ω2 =
EIϕiv(x)

mϕ(x) −mR2
(

1 +
E

KG

)
ϕ′′(x)

. (B.10)
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