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Fault diagnosis for a class of discrete-time delayed complex interconnected networks with linear
coupling in the case of actuator fault is studied. For the case of unavailability of network state,
a state observer is first designed. Then a fault diagnosis observer is designed to detect the
actuator fault on the basis of online adaptive approximator, which can approximate the unmodeled
dynamics of the complex networks. Lastly, by choosing a suitable threshold, the actuator fault can
be detected. A numerical simulation is used to show the effectiveness of the proposed method.

1. Introduction

Fault diagnosis for dynamic systems has receivedmore andmore attention in the last decades
due to the increasing demand for higher performance, higher safety and reliability standards.
The main task of the fault diagnosis can be roughly described as the early detection and
diagnosis of faulty elements in a system, as well as the time of the detection. Many fault
diagnosis approaches have been reported in the existing literature [1–3]. All these proposed
fault diagnosis approaches have been applied to practical processes successfully [4–11], to
name a few. Among these techniques, one important type is the observer-based approach,
where fault diagnosis observers are used to generate residual signals to detect the fault.

Model-based schemes have emerged as prominent approaches to fault diagnosis of
continuous and discrete-time systems [1, 2, 10–15]. This approach is built on a mathematical
model of the process that must be monitored, so that a number of residuals can be
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computed by taking the difference between the estimated value of the system output
variables and their measured value. The residuals are then compared to suitable thresholds
by detection and isolation logics in order to provide fault decisions regarding the health
of the system [16–18]. Model-based approaches are well suited to monitor the centralized
and small systems, but suffer from scalability and robustness issues when distributed
and large-scale systems are concerned, for which there have been significant research
activities recently [19]. In [20], a distributed fault detection scheme was introduced for
a class of continuous-time systems based on an overlapping decomposition technique, in
which the subsystems were monitored by a network of interconnected local fault diagnosis
mechanism.

Note that all above concerned systems are mainly focused on isolated node
systems, which are the counterparts of the complex interconnected network systems
[21]. Over the past few years, complex networks have been gaining increasing research
attention because of their potential applications in many real-world systems from a
variety of fields such as biology, social systems, linguistic networks, and technological
systems [22–27]. In particular, rapidly growing research results have been reported
in the literature that have focused on the structural properties between the coupled
nodes in the complex networks such as stability and robustness. As one of the mostly
investigated dynamical behaviors, synchronization in complex networks with or without
time delays has drawn significant research interest in recent years [22, 23, 26, 28, 29].
It is well known that the faults may happen in the complex network systems, which is
composed of the same or different node system. Therefore, the fault diagnosis problem
for the complex interconnected networks plays an important role in the fault diagnosis
theory.

In the recent papers [30–32], the authors first studied the fault diagnosis problems
in the complex interconnected networks, and the adaptive control methods were adopted
to realize the fault-tolerant synchronization in the case of network deterioration. The main
object in [30–32] is to adjust the coupling strength using the adaptive method. Obviously,
this kind of deteriorated networks can have robust synchronization stability in the case of
uncertainties. In [33], a state feedback-based decentralized control scheme was proposed
for a class of networked large-scale systems with output sensor failures. However, the
designed controller required all the state combination of the whole networks, which made
the method in [33] restrictive in practice. In contrast to the fault diagnosis problem in the
conventional fault diagnosis theory [16, 17], there are many problems to be resolved in
the complex networks, for example, how to detect the fault in the isolated node system
such as actuator fault and sensor fault. Such kind of problems is not studied deeply at
present.

Motivated by the above discussions, this paper will study the fault diagnosis problem
for a class of discrete-time complex interconnected networks in the presence of actuator fault.
Considering the unavailability of the system states, a state observer is first constructed to
estimate the states via the linear matrix inequality (LMI) method. When the system states
are available, a fault diagnosis observer is designed based on an adaptive technique, in
which the uncertainty is approximated by an online approximator. The adopted method is
a generalization of the isolated node system to the complex system, in which the difficulty
lies in dealing with the coupling of the interconnected subsystems. By constructing a set of
suitable observers via the spirit of distributed control concept, we have discussed a special
class of actuator faults in the complex system. A numerical example is used to show the
effectiveness of the obtained result.
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2. Problem Description and Preliminaries

In this paper wewill discuss the following complex interconnected networkswithN identical
nodes:

xi(k + 1) = Axi(k) + g(xi(k)) + g(xi(k − τ(k))) + B(xi(k))u(k)

+
N∑

j=1

GijΓxj(k) + η(k, xi(k), u(k)),
(2.1)

yi(k) = Dxi(k), (2.2)

where N ≥ 1 is a positive integer, xi(k) = (xi1(k), . . . , xin(k))
T , and n is the dimensional

number of node system state xi(k). A is the linearly dominated matrix with appropriate
dimension, and g(xi(k)) = (g1(xi1(k)), . . . , gn(xin(k)))

T is the known nonlinear function.
B(xi(k)) is the control input matrix; u(k) is the control input. Positive integer τ(k) > 0 is
the discrete time-varying delay satisfying τm ≤ τ(k) ≤ τM, where τm, τM are known integers
and Γ is a positive diagonal matrix. G = (Gij) ∈ R

N×N is the coupled configuration matrix
of the networks with Gij > 0 (i /= j) but not all zeros,

∑N
l=1 Gsl =

∑N
l=1 Gls = 0, s = 1, . . . ,N,

G = GT , η(k, xi(k), u(k)) denotes the disturbances and uncertainties, i = 1, . . . ,N. yi(k) is the
system output, and D is the system output matrix with appropriate dimension.

Assumption 2.1. The nonlinear function gi(η) is bounded and continuous, which satisfies
|gi(η)| ≤ Gb

i , where Gb
i > 0 is a positive constant,

[
g
(
η
) − g(v) −Δ1

(
η − v

)]T[
g
(
η
) − g(v) −Δ2

(
η − v

)] ≤ 0, (2.3)

for any η /=v, η, v ∈ �n, and Δ1 and Δ2 are constant matrices.
Note that condition (2.3) can be changed into the following form:

[(
η − v

)T(
g
(
η
) − g(v)

)T]
[
ΔT

1Δ2 −ΔT
1

−Δ2 I

][
η − v

g
(
η
) − g(v)

]
≤ 0, (2.4)

or

[(
η − v

)T(
g
(
η
) − g(v)

)T]
[
ΔT

2Δ1 −ΔT
2

−Δ1 I

][
η − v

g
(
η
) − g(v)

]
≤ 0. (2.5)

Combining inequalities (2.4) and (2.5), we have

[(
η − v

)T(
g
(
η
) − g(v)

)T]
[
ΔT

2Δ1 + ΔT
1Δ2 −ΔT

2 −ΔT
1

−Δ1 −Δ2 2I

][
η − v

g
(
η
) − g(v)

]
≤ 0. (2.6)

It should be noticed that the above model (2.1)-(2.2) may represent the discrete-time
equivalent of a continuous model obtained via the well-known Euler method. The class of
failure considered in this work is that of actuator fault. This class of failure can be represented
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as an unknown additive disturbance on the nominal input to the system u(k). Hence, an
actuator fault occurring at the kth time step results in a faulty input given by

u(k) = u(k) + δu(k), (2.7)

where δu(k) represents the time profile of the unknown fault. Therefore, the nominal dynam-
ics (2.1) in the presence of faults becomes

xi(k + 1) = Axi(k) + g(xi(k)) + g(xi(k − τ(k))) + B(xi(k))u(k)

+
N∑

j=1

GijΓxj(k) + η(k, xi(k), u(k), θ(k)) + f(k, xi(k)),
(2.8)

where the fault vector f(k, xi(k)) is given by f(k, xi(k)) = B(xi(k))δu(k).
The uncertain term η(k, xi(k), u(k), θ(k)) is assumed to depend on the nominal input

and on the parameter vector θ(k). If η(k, xi(k), u(k), θ(k)) is linear in the parameter vector,
it can be expressed as η(k, xi(k), u(k), θ(k)) = Ω(k, xi(k), u(k))θ(k), where the matrix Ω(·)
is assumed to be known, while θ(k) is usually unknown (or partially known). If θ(k) is not
linear in the parameter or its structure is not exactly known, an approximation scheme can
be obtained by resorting to the so-called online interpolators [34–38] (e.g., neural networks,
fuzzy logic, and splines). By choosing a linear-in-the-parameters interpolator structure, the
uncertain term can be expressed as follows:

η(k, xi(k), u(k), θ(k)) = Ω(k, xi(k), u(k))θ(k) + ε(k, xi(k), u(k)), (2.9)

where ε(k, xi(k), u(k)) represents the interpolation error.
The following assumption is required.

Assumption 2.2. B(xi(k)) is a column full rank matrix, i = 1, . . . ,N.

Assumption 2.3. The norm of the matrix Ω(k, xi(k), u(k)) is uniformly bounded by a constant
Ω > 0, and the norm of the interpolation error ε(k, xi(k), u(k)) is uniformly bounded by a
constant ε0 > 0.

Usually, the network output is a linear combination of the information about the
network nodes. We wish to design an observer to estimate the network states through the
available network output. In order to estimate the states, the following state observer is
designed, i = 1, . . . ,N:

x̂i(k + 1) = Ax̂i(k) + g(x̂i(k)) + g(x̂i(k − τ(k))) + B(x̂i(k))u(k)

+
N∑

j=1

GijΓx̂j(k) + η̂
(
k, x̂i(k), u(k), θ̂

)
−K
(
yi(k) −Dx̂i(k)

)
.

(2.10)
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Therefore, in view of (2.8) and (2.10), the state estimation error is given by

ei(k + 1) = (A +KD)ei(k) + g̃(ei(k)) + g̃(ei(k − τ(k))) + B̃(ei(k))u(k)

+
N∑

j=1

GijΓej(k) + η̃
(
k, x̂i(k), u(k), θ̂

)
+ f(k, x̂i(k)),

(2.11)

where ei(k) = xi(k) − x̂i(k), g̃(ei(k − τ(k))) = g(xi(k − τ(k))) − g(x̂i(k − τ(k))), B̃(ei(k)) =
B(xi(k)) − B(x̂i(k)), g̃(ei(k)) = g(xi(k)) − g(x̂i(k)), η̃(k, x̂i(k), u(k), θ̂) = η(k, xi(k), u(k), θ̂) −
η̂(k, x̂i(k), u(k), θ̂), i = 1, . . . ,N.

Before we give the main results, we need the following preliminaries.

Lemma 2.4 (see [26, 28]). Let U = (uij)N×N , P ∈ Rn×n, α = (αT
1 , α

T
2 , . . . , α

T
N)T , γ =

(γT1 , γ
T
2 , . . . , γ

T
N)T , αk ∈ Rn×n, γk ∈ Rn×n, k = 1, . . . ,N. If U = UT and each row sum of U is

zero, then

αT (U ⊗ P)γ = −
∑

1≤i<j≤N
uij

(
αi − αj

)T
P
(
γi − γj

)
, (2.12)

where symbol ⊗ denotes the Kronecker product.

Lemma 2.5 (Schur complement, see [22, 27]). Given constant matrices S1, S2, and S3, where
S1 = ST

1 and S2 > 0 is a positive definite symmetric matrix, then

S1 + ST
3S

−1
2 S3 < 0 (2.13)

if and only if

[
S1 ST

3
S3 −S2

]
< 0. (2.14)

Lemma 2.6 (see [22, 29]). Let b ∈ R and A, B, C, D be matrices with appropriate dimensions. The
following statements about Kronecker product are true:

(1) b(A ⊗ B) = (bA) ⊗ B = A ⊗ (bB);

(2) (A ⊗ B)T = AT ⊗ BT ;

(3) (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD);

(4) A ⊗ B ⊗ C = (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C);

(5) (A + B) ⊗ (C +D) = A ⊗ C + B ⊗ C +A ⊗D + B ⊗D.

3. State Observer Design

Now we state our main results in this section.
Suppose that the online approximator has met the precision of modelling of the

uncertainty, then η̃(k) approaches to zero. For the case of no fault and no approximation
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error in (2.11), that is, ε(k) = 0, f(k, x̂i(k)) = 0, we will study the stability of the following
state observer, i = 1, . . . ,N:

ei(k + 1) = Aei(k) + g̃(ei(k)) + g̃(ei(k − τ(k))) +
N∑

j=1

GijΓej(k), (3.1)

or in a compact form

e(k + 1) =
(
I ⊗A

)
e(k) + gc(e(k)) + gc(e(k − τ(k))) + (G ⊗ Γ)e(k), (3.2)

where e(k) = (eT1 (k), e
T
2 (k), . . . , e

T
N(k))T , gc(e(k)) = (g̃T (e1(k)), . . . , g̃T (eN(k)))T , A = (A +

KD).

Theorem 3.1. Suppose that Assumption 2.1 holds. The observer error system (3.1) or (3.2) is globally
asymptotically stable if, for a given observer gain matrixK, there exist positive constant α, symmetric
positive definite matrices P and Q with appropriate dimensions, such that the following condition
holds, 1 ≤ i < j ≤ N:

Φij =

⎡
⎢⎣

Φ1
ij

∗
∗

Φ2
ij A

T
PT −NGijΓPT

P + (1 + τM − τm)Q − 2αI P
∗ P −Q

⎤
⎥⎦ < 0, (3.3)

where I is an identity matrix with appropriate dimension,

Φ1
ij = A

T
PA − P −NGijA

T
PΓ −

(
NGijA

T
PΓ
)T

−NG
(2)
ij ΓPΓ − α

(
ΔT

2Δ1 + ΔT
1Δ2

)
,

Φ2
ij = A

T
P −NGijΓPT + α(Δ1 + Δ2).

(3.4)

G
(2)
ij is the (i, j) elements of matrix GTG = G2.

Proof. Let us consider the Lyapunov functional V (k) = V1(k) + V2(k) + V3(k), where

V1(k) = eT(k)(U ⊗ P)e(k),

V2(k) =
k−1∑

i=k−τ(k)
gT
c (e(i))(U ⊗Q)gc(e(i)),

V3(k) =
k−τm∑

j=k−τM+1

k−1∑

i=j

gT
c (e(i))(U ⊗Q)gc(e(i)),

(3.5)
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where

U =

⎡
⎢⎢⎣

N − 1 −1 · · · −1
−1 N − 1 · · · −1
· · · · · · · · · · · ·
−1 −1 · · · N − 1

⎤
⎥⎥⎦

N×N

. (3.6)

Calculating the difference of V (k) along the system (3.2), we have

ΔV (k) = ΔV1(k) + ΔV2(k) + ΔV3(k), (3.7)

where

ΔV1(k) = V1(k + 1) − V1(k)

=
((

I ⊗A
)
e(k) + gc(e(k)) + gc(e(k − τ(k))) + (G ⊗ Γ)e(k)

)T

× (U ⊗ P)
((

I ⊗A
)
e(k) + gc(e(k)) + gc(e(k − τ(k))) + (G ⊗ Γ)e(k)

)

− eT(k)(U ⊗ P)e(k),

= eT(k)
(
I ⊗A

)T
(U ⊗ P)

(
I ⊗A

)
e(k) + gT

c (e(k))(U ⊗ P)gc(e(k))

+ gT
c (e(k − τ(k)))(U ⊗ P)gc(e(k − τ(k))) − eT(k)(U ⊗ P)e(k)

+ eT(k)(G ⊗ Γ)T (U ⊗ P)(G ⊗ Γ)e(k)

+ 2gT
c (e(k))(U ⊗ P)

(
I ⊗A

)
e(k) + 2gT

c (e(k))(U ⊗ P)gc(e(k − τ(k)))

+ 2gT
c (e(k))(U ⊗ P)(G ⊗ Γ)e(k) + 2gT

c (e(k − τ(k)))(U ⊗ P)
(
I ⊗A

)
e(k)

+ 2gT
c (e(k − τ(k)))(U ⊗ P)(G ⊗ Γ)e(k)

+ 2eT (k)
(
I ⊗A

)T
(U ⊗ P)(G ⊗ Γ)e(k),

ΔV2(k) = V2(k + 1) − V2(k),

=
k∑

i=k+1−τ(k+1)
gT
c (e(i))(U ⊗Q)gc(e(i)) −

k−1∑

i=k−τ(k)
gT
c (e(i))(U ⊗Q)gc(e(i)),

= gT
c (e(k))(U ⊗Q)gc(e(k)) +

k−1∑

i=k+1−τ(k+1)
gT
c (e(i))(U ⊗Q)gc(e(i))

−
k−1∑

i=k+1−τ(k)
gT
c (e(i))(U ⊗Q)gc(e(i)) − gT

c (e(k − τ(k)))(U ⊗Q)gc(e(k − τ(k))),
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= gT
c (e(k))(U ⊗Q)gc(e(k)) +

k−τm∑

i=k+1−τ(k+1)
gT
c (e(i))(U ⊗Q)gc(e(i))

+
k−1∑

i=k−τm+1
gT
c (e(i))(U ⊗Q)gc(e(i))

−
k−1∑

i=k+1−τ(k)
gT
c (e(i))(U ⊗Q)gc(e(i)) − gT

c (e(k − τ(k)))(U ⊗Q)gc(e(k − τ(k))),

≤ gT
c (e(k))(U ⊗Q)gc(e(k)) − gT

c (e(k − τ(k)))(U ⊗Q)gc(e(k − τ(k)))

+
k−τm∑

i=k+1−τM
gT
c (e(i))(U ⊗Q)gc(e(i)),

ΔV3(k) = V3(k + 1) − V3(k),

=
k−τm+1∑

j=k−τM+2

k∑

i=j

gT
c (e(i))(U ⊗Q)gc(e(i)) −

k−τm∑

j=k−τM+1

k−1∑

i=j

gT
c (e(i))(U ⊗Q)gc(e(i)),

=
k−τm∑

j=k−τM+1

k∑

i=j+1

gT
c (e(i))(U ⊗Q)gc(e(i)) −

k−τm∑

j=k−τM+1

k−1∑

i=j

gT
c (e(i))(U ⊗Q)gc(e(i)),

=
k−τm∑

j=k−τM+1

(
gT
c (e(k))(U ⊗Q)gc(e(k)) − gT

c

(
e
(
j
))
(U ⊗Q)gc

(
e
(
j
)))

,

≤ (τM − τm)gT
c (e(k))(U ⊗Q)gc(e(k)) −

k−τm∑

i=k−τM+1

gT
c (e(i))(U ⊗Q)gc(e(i)).

(3.8)

Note that the following equalities hold according to Lemma 2.6:

(G ⊗ Γ)T (U ⊗ P)(G ⊗ Γ) =
(
GT ⊗ ΓT

)
(U ⊗ P)(G ⊗ Γ)

=
(
GTUG

)
⊗
(
ΓTPΓ

)

= NG2 ⊗ (ΓPΓ),

(
I ⊗A

)T
(U ⊗ P)

(
I ⊗A

)
=
(
I ⊗A

T)
(U ⊗ P)

(
I ⊗A

)

= U ⊗
(
A

T
PA
)
,

(
I ⊗A

)T
(U ⊗ P)(G ⊗ Γ) = NG ⊗

(
A

T
PΓ
)
,

(U ⊗ P)(G ⊗ Γ) = NG ⊗ (PΓ).

(3.9)
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Substituting (3.8) and (3.9) into (3.7), it yields

ΔV (k) ≤ eT(k)
(
U ⊗

(
A

T
PA
))

e(k) + gT
c (e(k))(U ⊗ P)gc(e(k))

+ gT
c (e(k − τ(k)))(U ⊗ P)gc(e(k − τ(k))) − eT(k)(U ⊗ P)e(k)

+ eT(k)
(
NG2 ⊗ (ΓPΓ)

)
e(k)

+ 2gT
c (e(k))

(
U ⊗

(
PA
))

e(k) + 2gT
c (e(k))(U ⊗ P)gc(e(k − τ(k)))

+ 2gT
c (e(k))(NG ⊗ (PΓ))e(k) + 2gT

c (e(k − τ(k)))
(
U ⊗

(
PA
))

e(k)

+ 2gT
c (e(k − τ(k)))(NG ⊗ (PΓ))e(k)

+ 2eT (k)
(
NG ⊗

(
A

T
PΓ
))

e(k)

+ (1 + τM − τm)gT
c (e(k))(U ⊗Q)gc(e(k))

− gT
c (e(k − τ(k)))(U ⊗Q)gc(e(k − τ(k))).

(3.10)

According to Lemma 2.4 and inequality (2.6), (3.10) can be changed into the following
form:

ΔV (k) ≤
∑

1≤i<j≤N

(
eTij(k)A

T
PAeij(k) + g̃T

ij(e(k))Pg̃ij(e(k))

+ g̃T
ij(e(k − τ(k)))Pg̃ij(e(k − τ(k))) − eTij(k)Peij(k)

− eTij(k)
(
NG

(2)
ij ΓPΓ

)
eij(k)

+ 2g̃T
ij(e(k))PAeij(k) + 2g̃T

ij(e(k))Pg̃ij(e(k − τ(k)))

− 2g̃T
ij(e(k))NGijPΓeij(k) + 2g̃T

ij(e(k − τ(k)))PAeij(k)

− 2g̃T
ij(e(k − τ(k)))NGijPΓeij(k)

− 2eT (k)NGijA
T
PΓeij(k)

+ (1 + τM − τm)g̃T
ij(e(k))Qg̃ij(e(k))



10 Mathematical Problems in Engineering

− g̃T
ij(e(k − τ(k)))Qg̃ij(e(k − τ(k)))

− α
[
eTij(k)g̃

T
ij(e(k))

][ΔT
2Δ1 + ΔT

1Δ2 −ΔT
2 −ΔT

1
−Δ1 −Δ2 2I

][
eij(k)

g̃ij(e(k))

])
,

=
∑

1≤i<j≤N
ξTij(k)Φij ξij(k),

≤
∑

1≤i<j≤N
λmax

(
Φij

)∥∥ξij(k)
∥∥2,

(3.11)

where α > 0 is a free parameter to be adjusted, G2 = GTG = (G(2)
ij )N×N , λmax(Φij) denotes the

maximum eigenvalue of a matrix Φij , eij(k) = (ei(k)− ej(k)), g̃ij(e(k)) = gci(e(k))− gcj(e(k)),
g̃ij(e(k − τ(k))) = gci(e(k − τ(k))) − gcj(e(k − τ(k))), and ξij(k) = (eTij(k), g̃

T
ij(e(k)), g̃

T
ij(e(k −

τ(k))))T . Considering the negativeness of matrix Φij in (3.3), we have λmax(Φij) < 0. Letting
λ0 = max1≤i<j≤N{λmax(Φij)}, we have λ0 < 0, and then

ΔV (k) ≤ λ0
∑

1≤i<j≤N

∥∥eij(k)
∥∥2 < 0. (3.12)

Let m be a positive integer; then from (3.12) one has

V (m + 1) − V (1) =
m∑

k=1

ΔV (k) = λ0
∑

1≤i<j≤N

m∑

k=1

∥∥eij(k)
∥∥2, (3.13)

which implies that

−λ0
∑

1≤i<j≤N

m∑

k=1

∥∥eij(k)
∥∥2 ≤ V (1). (3.14)

By lettingm → +∞, we can deduce that the series
∑+∞

k=1 ‖eij(k)‖2 is convergent for 1 ≤ i < j ≤
N, and therefore, ‖eij(k)‖2 → 0, namely, limit k→+∞|xi(k) − x̂i(k)| = 0, which completes the
proof of Theorem 3.1.

In order to solve the observer gain matrix K, according to Lemma 2.5, we have the
following result.

Theorem 3.2. Suppose that Assumption 2.1 holds. The observer error system (3.1) or (3.2) is globally
asymptotically stable if there exist positive constant α, symmetric positive definite matrices P and
Q with appropriate dimensions, and appropriately dimensioned matrix Y , such that the following
condition holds, 1 ≤ i < j ≤ N:

Φij =

⎡
⎢⎢⎢⎣

Φ
1
ij

∗
∗
∗

Φ
2
ij Φ3

ij ATP +DTYT

P + (1 + τM − τm)Q − 2αI P 0
∗ P −Q 0
∗ ∗ −P

⎤
⎥⎥⎥⎦

< 0, (3.15)
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where

Φ1
ij = −P −NGij

(
ATP +DTYT

)
Γ −NGijΓ(PA + YD) −NG

(2)
ij ΓPΓ − α

(
ΔT

2Δ1 + ΔT
1Δ2

)
,

Φ2
ij = ATP +DTYT −NGijΓPT + α(Δ1 + Δ2),

Φ3
ij = ATP +DTYT −NGijΓP,

(3.16)

and the observer gain matrix K = P−1Y .

Remark 3.3. Note that we are mainly concerned with the complex interconnected networks
with identical node system in this paper. This kind of complex system can represent many
practical systems such as secure communication, chaos generators design, and harmonic
oscillation generation [23–26] (and references cited therein). Synchronization problems for
such kind of complex networks have been paid much attention in recent years. However, for
the fault diagnosis problem, there are few results to be reported. As a complex dynamical
system, it is inevitable for a fault to occur in the normal operation. Therefore, combining
the knowledge of fault diagnosis theory for isolated node system and the complex networks
theory, the authors try to extend the diagnosis method in node system to the complex system.
Correspondingly, we only consider a special kind of faults, that is, actuator fault, which has
the same form in each node system. The key point of the proposed method lies in the choice
of suitable state observer and diagnosis observer. For other kinds of faults, such as sensor
faults, parameter faults, and hybrid faults, it still needs to be further studied in the future.

Remark 3.4. The LMI condition in Theorem 3.1 requires the information of the interconnected
couplings Gij , Γ, the node system parameters A, D besides a given common observer gain
matrix K. For a prescribed matrix K, if the LMI condition (3.3) holds, the designed observer
exists and an estimated state can be achieved. In contrast, Theorem 3.2 aims to present an
observer gain matrix K directly, which has the same effect on the state estimation.

4. Adaptive Observer-Based Fault Diagnosis

Since all the states of the concerned system can be measured, in this section, we will consider
the following fault diagnosis observer, which is used to detect the fault, i = 1, . . . ,N:

x̂fi(k + 1) = Ax̂fi(k) + g(xi(k)) + g(xi(k − τ(k))) + B(xi(k))u(k)

+
N∑

j=1

GijΓxj(k) + η̂
(
k, xi(k), u(k), θ̂(k)

)
+Ko

(
xi(k) − x̂fi(k)

)
.

(4.1)

In view of (2.8) and (4.1), the diagnosis error dynamics is given by

efi(k + 1) = (A −Ko)efi(k) + η̂
(
k, xi(k), u(k), θ̂(k)

)
+ f(k, xi(k)), (4.2)
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where η̃(k, xi(k), u(k), θ̂(k)) = η(k, xi(k), u(k), θ(k)) − η̂(k, xi(k), u(k), θ̂(k)) represents the
uncertainties estimation error, efi(k) = xi(k) − x̂fi(k), and Ko is chosen to make the eigen-
values of A −Ko in the unit circle, i = 1, . . . ,N.

The residuals vector can be chosen as

ri(k + 1) = efi(k + 1) −Λefi(k), (4.3)

which can be rewritten as

ri(k + 1) = η̃
(
k, xi(k), u(k), θ̂(k)

)
+ f(k, xi(k)), (4.4)

where Λ = A −Ko.
Note that the residual vector is affected by the fault vector and the estimation error of

the uncertain term. If an accurate estimation of uncertain term is achieved, the fault signature
on the residual (i.e., its effect on the residuals) becomesmore evident. If a parametric model of
the uncertainties is available, an adaptive estimation algorithm of the unknown parameters
can be set up. It is worth remarking that such a paradigm has been keenly exploited for
adaptive fault identification. However, in this work the same concept is exploited in order
to adaptively compensate for the uncertainties, so as to obtain small values of the residuals
in the absence of faults. In this case, the uncertain term can be indirectly evaluated through
the estimation of θ(k). Thus, an adaptive update law for the parameters estimate θ(k) can be
chosen as

θ̂(k + 1) = θ̂(k) + ΩT (k)Λθ(k)r(k + 1), (4.5)

Λθ(k) = 2
[
Ω(k)ΩT (k) + Ωθ

]−1
, (4.6)

where Ωθ is a positive definite symmetric matrix.
In view of (2.9), the uncertainties estimation error η̃(k, x̂i(k), u(k), θ̂(k)) can be written

as

η̃
(
k, θ̂(k)

)
= Ω(k)θ̃(k) + ε(k), (4.7)

where θ̃(k) = θ(k) − θ̂(k) is the parameters estimation error.
Therefore, we have the following diagnosis error system:

efi(k + 1) = Λefi(k) + Ω(k)θ̃(k) + ε(k) + f(k, x̂i(k)),

θ̃(k + 1) =
(
I −ΩT (k)ΛθΩ(k)

)
θ̃(k) −ΩT (k)Λθ

(
f(k) + ε(k)

)
.

(4.8)
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In order to implement the fault detection, we first consider the stability problem of
diagnosis error system (4.8) in the absence of fault and interpolation error, that is,

efi(k + 1) = Λefi(k) + Ω(k)θ̃(k),

θ̃(k + 1) =
(
I −ΩT (k)ΛθΩ(k)

)
θ̃(k), i = 1, . . . ,N.

(4.9)

Theorem 4.1. Under Assumption 2.3, the diagnosis error system (4.9) is globally uniformly stable,
and the error efi(k) converges asymptotically to zero, i = 1, . . . ,N.

Proof. Consider the following functional:

Vi(k) = eTfi(k)Sefi(k) + qθ̃T (k)θ̃(k), (4.10)

where q is a positive constant and S is the solution to the Ricatti equation S −ΛTSΛ = Q0 for
a given symmetric and positive definite matrix Q0.

The difference of Vi(k) can be calculated as follows, with the consideration of (4.6):

ΔVi(k) = Vi(k + 1) − Vi(k)

=
(
Λefi(k) + Ω(k)θ̃(k)

)T(
Λefi(k) + Ω(k)θ̃(k)

)
,

+
((

I −ΩT (k)ΛθΩ(k)
)
θ̃(k)

)T((
I −ΩT (k)ΛθΩ(k)

)
θ̃(k)

)
− eTfi(k)Sefi(k) − qθ̃T θ̃,

= − eTfi(k)Q0efi(k) − θ̃T (k)ΩT (k)
[
qΛT

θ (k)ΩθΛθ(k) − S
]
Ω(k)θ(k)

+ 2eTfi(k)Λ
TSΩ(k)θ̃(k).

(4.11)

Considering (4.7)with ε(k) = 0, from (4.11)we can deduce

ΔV (k) =
N∑

i=1

ΔVi(k),

=
N∑

i=1

(
−eTfi(k)Q0efi(k) − η̃T (k)

[
qΛT

θ (k)ΩθΛθ(k) − S
]
η̃(k) + 2eTi (k)Λ

TSη̃(k)
)
,

≤
N∑

i=1

(
−λmin(Q0)||ei(k)||2 −

(
qβ2λmin(Qθ) − λmax(S)

)∣∣∣∣η̃(k)
∣∣∣∣2

+ 2λmax(S)‖Λ‖∥∥efi(k)
∥∥∥∥η̃(k)

∥∥
)
,

(4.12)
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Figure 1: State curves of x1(k) and x̂1(k).
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Figure 2: State curves of x2(k) and x̂2(k).

where ‖Λθ‖ ≥ β > 0. ΔV (k) ≤ 0 holds if q satisfies the inequality

q >
λmax(S)λmin(Q0) + λ2max(S)‖Λ‖2

λmin(Q0)β2λmin(Qθ)
. (4.13)

Since V (k) is a decreasing and nonnegative function, it converges to a constant value
as k → ∞, hence ΔV (k) → 0. This implies that both efi(k) and η̃(k) remain bounded for all
k, and ei(k) approaches to zero.
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Figure 3: State curves of x3(k) and x̂3(k).
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Figure 4: State curves of x1(k) and x̂f1(k).

Once the residual vector ri(k) is computed at each step, a fault is declared if each
component of ri(k) exceeds a suitably selected threshold. A priori selection of each threshold
should be based on the expressions of the residuals vector. Namely, proper setting of the
thresholds requires an accurate knowledge of the uncertainties influence on the residuals.
However, this approach often leads to extremely conservative results. Therefore, an empirical
approach may be pursued to set the residuals thresholds in alternative to (or in combination
with) the approach based on a priori knowledge of the uncertainties.
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Figure 5: State curves of x2(k) and x̂f2(k).
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Figure 6: State curves of x3(k) and x̂f3(k).

5. Numerical Simulation

In this section, we will use an example to show the effectiveness of the proposed result.

Example 5.1. Let us consider a complex system composed by systems (2.1) and (2.2) with
N = 3 and n = 2. The system parameters in (2.1) and (2.2) are as follows, A =

[ −0.8 0.9
−0.85 −0.1

]
,

τ(k) = 3 + (1 + (−1)k)/2, Γ = diag(0.5, 0.5), Gij = 0.1 if i /= j, and Gij = −0.2 if i = j. Di = D =[
1 0
0.2 0

]
, B =

[
1 0.1
0.3 0

]
. The nonlinear vector-value function is given by g(xi(k)) = (−0.05xi1(k) +

tanh(0.02xi1(k)) + 0.02xi2(k), 0.095xi2(k) − tanh(0.075xi2(k)))
T , i = 1, 2, 3. Obviously, Δ1 =[ −0.05 0.02

0 0.095

]
, Δ2 =

[ −0.03 0.02
0 0.02

]
.
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Figure 7: Error curves of x11(k) − x̂f11(k) in the faulty case.

By using the Matlab LMI Toolbox, using Theorem 3.2 to solve inequalities (3.15), the
feasible solutions are as follows: P =

[
0.1225 0.0189
0.0189 0.4993

]
, Q =

[
0.9413 0.4806
0.4806 1.9926

]
, Y =

[
0.1120 0.0224
0.3722 0.0744

]
, and

α = 9.2644. Correspondingly, the observer gain matrix K =
[
0.8048 0.1610
0.7149 0.1430

]
.

When u(k) = [sin(6πkts) + 4 cos(2πkts); 3 cos(7πkts)], ts = 0.1, and the initial states
are randomly chosen, using the state observer (2.10), the state curves are depicted in Figures
1–3, respectively. Obviously, the estimated states can track the system states accurately.

When η(k) = [2 cos(2πxi1); 0.2 cos(2πxi2)], f(k, xi(k)) = 0, and the gain matrix Ko in
(4.1) is chosen as Ko =

[ −0.4687 0.6941
−0.7354 −0.3082

]
(in which the eigenvalues of Λ = A − Ko are 0.2884 +

0.1310i and 0.2884 − 0.1310i, resp.), the states of the diagnosis observe (4.1) and the system
states (2.1) are depicted in Figures 4–6, respectively.

When the following faults occur in the first node system:

δu11 = 60

(
1 − e−(kts−1)

0.002

)
, kts ≥ 1,

δu12 = 40
(
1 − e−(kts−3)/0.08

)
, kts ≥ 15,

δu11 = δu12 = 0, kts ≥ 25,

(5.1)

the state errors of x1(k) − x̂f1(k), diagnosis observer states x̂f1, and the system state x1(k)
are depicted in Figures 6–8, respectively. The residual curves are depicted in Figure 9. If we
choose suitably the fault threshold, we can accurately detect the fault.

Note that we assume that the fault occurs in the first node system. Since three node
systems constitute a complex interconnected network, the fault in the first node system will
affect the other two systems. The state response curves of the other systems x2(k) and x3(k)
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Figure 8: Error curves of x12(k) − x̂f12(k) in the faulty case.
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Figure 9: Residual curves of first node system in the faulty case.

are depicted in Figures 10–11, respectively. Obviously, the states in the other two systems
will!be influenced by the first faulty system x1(k). In this case, if we judge whether the system
is healthy or not, it is not sufficient to detect the fault by the other system. However, if we
observe the residual curves of the other two systems, see Figure 12, we may judge the fault
location by choosing a suitable logic rule, which is out of the coverage in the paper.

6. Conclusions

In this paper, a state observer is constructed for a class of discrete-time delayed complex
interconnected networks with linear coupling based on LMI method. Then on the availability
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Figure 10: Error curves of x2(k) − x̂f2(k) in the faulty case.

0 50 100 150 200 250 300 350 400 450
−20
−10

0
10

x
31

x
f

31

(a)

0 50 100 150 200 250 300 350 400 450
−2

0
2
4

x
32
−x

f
32

(b)

0 50 100 150 200 250 300 350 400 450
−20

0

20

x
31

an
d
x
f

31

(c)

0 50 100 150 200 250 300 350 400 450
−20

0

20

x
32

an
d
x
f

32

(d)

Figure 11: Error curves of x3(k) − x̂f3(k) in the faulty case.
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Figure 12: Residual curves of the three systems in the faulty case.

of the system states, an adaptive fault diagnosis observer is designed to realize the actuator
fault detection. The uncertainty of the system is modelled by an online approximation
technique, and the stability of the residual system and approximation system are analyzed.
Finally, a numerical example is used to validate the proposed result. Note that the proposed
state observer and the fault diagnosis observer can only implement the diagnosis task. How
to realize the fault identification will be further studied.
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