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Reliable distinguishing DDOS flood traffic from aggregated traffic is desperately desired by
reliable prevention of DDOS attacks. By reliable distinguishing, we mean that flood traffic can
be distinguished from aggregated one for a predetermined probability. The basis to reliably
distinguish flood traffic from aggregated one is reliable detection of signs of DDOS flood attacks.
As is known, reliably distinguishing DDOS flood traffic from aggregated traffic becomes a
tough task mainly due to the effects of flash-crowd traffic. For this reason, this paper studies
reliable detection in the underlying DiffServ network to use static-priority schedulers. In this
network environment, we present a method for reliable detection of signs of DDOS flood
attacks for a given class with a given priority. There are two assumptions introduced in this
study. One is that flash-crowd traffic does not have all priorities but some. The other is that
attack traffic has all priorities in all classes, otherwise an attacker cannot completely achieve
its DDOS goal. Further, we suppose that the protected site is equipped with a sensor that
has a signature library of the legitimate traffic with the priorities flash-crowd traffic does
not have. Based on those, we are able to reliably distinguish attack traffic from aggregated
traffic with the priorities that flash-crowd traffic does not have according to a given detection
probability.

1. Introduction

Attackers may take the advantages of the principles [1] of distributed systems (i.e., the
internet), such as openness, resources sharing, assessability, and so on, to launch distributed
denial of service (DDOS) attacks. The threats of DDOS attacks to the individuals are severe.
For instance, any denial of service of a bank server implies a loss of money, disgruntling or
losing customers.
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According to the classification of the CERT Coordination Center (CERT/CC), DDOS
attacks are divided into three categories [2]: (1) flood (i.e., bandwidth) attacks, (2) protocol
attacks, and (3) logical attacks. This paper considers flood attacks. DDOS flood attacks
consume resources (e.g., bandwidth) by sending flood packets in order to shut down the
target or significantly degrade its performance. The flood packets may be generated by
hundreds or thousands of machines distributed all over the world.

A network-based intrusion detection system (IDS) monitors the traffic on its network
as a data source [3]. In this regard, there are two main approaches. One is misuse detection
and the other anomaly detection. Solutions given by misuse detection are primarily based on
a library of known signatures to match against network traffic. Hence, unknown signatures
from new variants of an attack mean 100% miss positives. As a matter of fact, the form in
which an attack takes place is usually determined by a large number of details many of
which are unknown. This is particularly true for DDOS attacks [4]. Hence, anomaly detectors
play a role in DDOS detection [2, 3, 5–12]. Anomaly detectors cannot replace signature-based
systems [2, 3]. From a practical view, therefore, the combination of a signature-based system
and anomaly detector is worth noting [2].

A traffic series is a packet flow. A packet consists of a number of fields, such as
protocol, source IP, destination IP, ports, flag setting (in the case of TCP or UDP), message
type (in the case of ICPM), timestamp, and length (packet size). Each may serve as a feature
of a packet for statistical detection purpose, see for example, [8, 13–15]. In addition, there
are other available features of traffic, such as flow rate [16], the number of connections [17],
and so on [6, 11, 12]. This paper takes traffic series in packet size (traffic series for short) as a
monitored objective.

Usually, detections are expected to be adaptable to a wide range of network
environments (e.g., [7, 8, 11–17]). Nevertheless, it is obviously worth studying detections
that are environment dependent. This paper studies detecting signs of DDOS flood attacks in
the underlying network to use static-priority schedulers.

As known, two tough issues in detecting DDOS flood attacks are (1) reliable detection
as can be seen from [2, 3, 5, 7, 9, 10], and (2) distinguishing attack traffic from aggregated
traffic [7, 9, 16]. The solution to the first issue is crucial to practical applications because false
positives can lead to inappropriate responses that cause denial of service to legitimate traffic.
In addition, it is the basis to find the solution to the second.

It is noted that flash-crowd traffic and DDOS flood traffic may have similar statistics
from a network view. DDOS flood is malicious but flash crowds legitimate. Flash crowds
happen when a huge number of users try to access the same server simultaneously for
some specific events (e.g., the NASA Pathfinder mission) [16]. Because an attacker aims at
attacking the target such that it denies services of all legitimate traffic, we assume DDOS
flood traffic has all priorities in all classes. On the other hand, according to the nature of
differentiated services, we assume that flash-crowd traffic does not have all priorities. Further,
we suppose that the protected site is equipped with a sensor that has a signature library of
the legitimate traffic with the priorities flood crowds do not have. In these cases, DDOS flood
attack traffic can be distinguished, according to a given detection probability, from aggregated
traffic with the priorities flash crowds do not have.

The rest of paper is organized as follows. Section 2 introduces the randomized traffic
regulator for feature extraction of arrival traffic. Section 3 considers the principle. A case
study is demonstrated in Section 4; discussions are given in Section 5 and conclusions in
Section 6.
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2. Traffic Regulator and Its Randomization

There are two major areas of traffic modeling. One is based on random processes, see for
example, [6, 8, 18–30]. The other is deterministically modeling, for example, traffic regulator
[18, 30–33]. We take traffic regulator to characterize traffic in this research.

Definition 2.1 (see [31, 33]). Let y(t) be the instantaneous rate of arrival traffic at time t. Then,
the amount of traffic generated in the interval [t1, t2] is upper bounded by

∫ t2

t1

y(t)dt ≤ σ + ρ(t2 − t1), (2.1)

where σ and ρ are constants and t2 > t1. This property is written as y ∼ (σ, ρ) that is called
traffic regulator.

Practically, traffic is considered in the discrete case on an interval-by-interval basis.
Thus, we generalize Definition 2.1 as follows.

Definition 2.2. Let y(t) be the instantaneous rate of arrival traffic at t. Then, the amount of
traffic generated in the nth interval [(n − 1)I, nI] (n = 1, 2, . . . ,N) is upper bounded by

nI∑
t=(n−1)I

y(t) ≤ σ(n, I) + ρ(n, I)I, (2.2)

where (σ(I, n), ρ(I, n)) represents the traffic regulator in the nth interval, and I is a positively
real number.

For the simplicity, denote F(I, n) = σ(I, n) + ρ(I, n)I.

Definition 2.3. Let yi
p,j,k(t) be the instantaneous rate of all flows of class i with priority p

going through server k from input link j at t. Then, the amount of yi
p,j,k

(t) generated in

the nth interval [(n − 1)I, nI] (n = 1, 2, . . . ,N) is upper bounded by Fi
p,j,k

(I, n). That is,∑nI
y=(n−1)I y

i
p,j,k

(t) ≤ Fi
p,j,k

(I, n).

Definition 2.3 provides a feature of arrival traffic yi
p,j,k

(t) on an interval-by-interval
basis. Theoretically, I can be any positively real number. In practice, however, I is selected as
a finite positive integer.

Usually, Fi
p,j,k

(I, n)/=Fi
p,j,k

(I, q) for n/= q. Therefore, {Fi
p,j,k

(I, n)} (n = 1, 2, . . .) is a

random process. Computing the sample mean of Fi
p,j,k(I, n) in terms of I yields

1
I

I∑
m=1

Fi
p,j,k(m,n) = F

i

p,j,k(n). (2.3)

Usually, F
i

p,j,k(n1)/=F
i

p,j,k(n2) for n1 /=n2. In practice, if I ≥ 10, F
i

p,j,k(n) quite accurately
follows Gaussian distribution regardless of the distribution of Fi

p,j,k
(I, n) [34]. Denote

A = Var[F
i

p,j,k(n)] and B = E[F
i

p,j,k(n)], where Var and E are operators of variance

and mean, respectively. Then, one can use the sample distribution of F
i

p,j,k(n) as follows:

[B − F
i

p,j,k(n)]/
√
A = z, where z follows the standard Gaussian distribution. Thus,

F
i

p,j,k(n) ∼
1√
2πA

e−[F
i

p,j,k(n)−B]2/2A. (2.4)
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Figure 1: Illustration of DDOS flood attacks.

3. Principle

3.1. Detection Probability and Miss Probability

Normally, a server serves for a number of connections (clients) concurrently. Figure 1
illustrates a server that serves for r connections of normal traffic and s connections of attack
traffic. Aggregated traffic y(t) consists of normal traffic x(t) and attack one a(t).

In the case of I ≥ 10, one has

Prob

⎡
⎣z1−α/2 < F

i

p,j,k(n) − B
√
A

≤ zα/2

⎤
⎦ = 1 − α, (3.1)

where (1 − α) is called confidence coefficient. Let Ci
p,j,k

(α) be the confidence interval with
(1 − α) confidence coefficient. Then,

Ci
p,j,k(α) =

(
B −

√
Azα/2, B +

√
Azα/2

)
. (3.2)

The above expression exhibits that B is a template of F
i

p,j,k(n). Thus, we have (1 − α)%

confidence to say that F
i

p,j,k(n) normally takes the value of B as its approximation with the
variation less than or equal to

√
Azα/2.

Denote that ξ(n) = ξ = F
i

p,j,k(n). Then,

Prob
(
ξ > B +

√
Azα/2

)
=

α

2
. (3.3)

On the other hand,

Prob
(
ξ ≤ B −

√
Azα/2

)
=

α

2
. (3.4)
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Figure 2: Diagram of detection model.

For facilitating the discussion, two terms are explained as follows. Correctly
recognizing an abnormal sign means detection and failing to recognize it miss. We explain
the detection probability and miss probability by the following theorem.

Theorem 3.1 (Detection probability). Let

V (α) = V = B +
√
Azα/2 (3.5)

be the detection threshold. Denote Pdet = P{V < ξ < ∞} as detection probability. Denote Pmiss as miss
probability. Then,

Pdet = P{V < ξ < ∞} =
(
1 − α

2

)
, (3.6)

Pmiss =
α

2
. (3.7)

Proof. The probability of ξ ∈ Ci
p,j,k(α) is (1 − α). Accordingly, the probability of ξ ≤ V is

(1 − α/2). Therefore, the detection probability for ξ > V is (1 − α/2). Hence, (3.6) holds. Since
Pdet + Pmiss = 1 [8], Pmiss = α/2.

In the case of Pdet = 1 and the computation precision being 4, one has

V = B + 4
√
A. (3.8)

The diagram of our detection is indicated in Figure 2.

3.2. About False Alarm

False alarm means mistakenly recognizing a normal as abnormal. In this mechanism,

detection criterion is F
i

p,j,k(n) > V (α) with Pdet = (1 − α/2) and Pmiss = α/2. Therefore, if
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F
i

p,j,k(n) > V (α) happens in the case that F
i

p,j,k(n) comes from normal traffic and an alert is
fired, then this alert will be a false alarm, which has the probability α/2. Therefore,

Pfalse = Pmiss. (3.9)

In the case of Pdet = 1, one has Pfalse = Pmiss = 0.

3.3. Partly Distinguishing Attack Traffic

For the simplicity, suppose that traffic has two priorities p1 and p2. We further suppose that
flash-crowd traffic has the priority p1 but does not have p2. Non-flash-crowd normal traffic

has both p1 and p2 and DDOS flood traffic has both p1 and p2. Then, F
i

p2,j,k(n) > V (α) implies
a detection that the traffic yi

p2,j,k
(t) contains attack traffic of class i at the server k from the link

j in the nth interval. The detection probability is (1 − α/2).
Denote yi

p2,j,k
(t) = xy

i
p2,j,k

(t) + ay
i
p2,j,k

(t), where xy
i
p2,j,k

(t) and ay
i
p2,j,k

(t) are normal

traffic and attack traffic with p2, respectively. Note that xy
i
p2,j,k

(t) does not have the
components of flash-crowd traffic.

Usually, a signature-based sensor is designed such that it has a library that contains
signatures of attack traffic. In the present mechanism, however, we use a signature-based
sensor that has a library to contain signatures of legitimate traffic with the priorities that flash-
crowd traffic does not have. In this way, traffic whose signatures cannot be matched by this

signature-based sensor may be taken as flood traffic or suspicious. Thus, if F
i

p2,j,k(n) > V (α)
occurs, the flows that are in yi

p2,j,k
(t) and cannot be matched by the signature-based sensor are

flood traffic of class i with p2 at the server k from the link j in the nth interval. The reason to
use a signature library of legitimate traffic instead of attack one is that attackers make efforts
to create new variants of signatures but legitimate users usually do not. Figure 3 indicates the
process of distinguishing attack traffic ay

i
p2,j,k

(t) from yi
p2,j,k

(t).

4. A Case Study

We consider fractional Gaussian noise (FGN), which is an approximation model of traffic
time series [18, 19, 21, 22, 35, 36]. The autocorrelation function of discrete FGN is given by

R(l) = 0.5σ2
[
||l| + 1|2H − 2|l|2H + ||l| − 1|2H

]
, (4.1)

where σ2 = (Γ(2 −H) cos(πH))/πH(2H − 1) is the strength of FGN [37], l is an integer, Γ(·)
is the Gamma function, and H ∈ (0.5, 1) the Hurst parameter.

In Figures 4, 5, 6, and 7, subscripts and superscripts of y and F are omitted. Consider
TCP traffic series y(t) (40 ≤ y ≤ 1500 (Bytes)), indicating the number of bytes in a packet
at t. By simulating FGN, we have a series with H = 0.6 as shown in Figure 4. According
to Definition 2.2, we obtain F(I, n) (Bytes) as shown in Figure 5 (n, I = 1, 2, . . . , 16). Figure 6
indicates ξ(n) (Bytes). The histogram of ξ is given in Figure 7.

From Figure 7, we attain μξ = 3,105 and σξ = 344.402. Under the condition of Pdet = 1,
one has the interval [1720, 4467] and the threshold V = 4, 467.
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Figure 4: Synthesized FGN series.

5. Discussions

5.1. DiffServ Architecture: A Flexible Foundation

The above explanations only take the simple case of two priorities. In fact, there may be
several priorities in a DiffServ domain, where applications are differentiated by their classes,
and a certain portion of bandwidth is reserved for each class traffic [38]. Usually, all the flows
in a class are assigned the same priority on each router. However, it is also available that the
flows in a class may be assigned different priorities, and flows from different classes may
have the same priority as can be seen from [32, Paragraph 5, Section 1, page 327]. This paper
considers a class to be assigned different priorities. On the other side, the DiffServ architecture
distinguishes two types of routers (edge routers and core routers) [32, Paragraph 2, Section
3, page 327]. Thus, a detector can be installed with either edge routers or core ones. Con-
sequently, the DiffServ architecture provides a flexible foundation to design effective IDS to
distinguish flood traffic from aggregated one. This paper is simply a beginning on this track.
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Figure 5: Illustrations of traffic regulators in different intervals.

5.2. Applicability

Mathematical properties of traditionally aggregated traffic time series have been studied
deeply in a way, see for example, [18–22, 35]. However, math properties of aggregated
traffic time series on a class-by-class basis for different priorities in the DiffServ domain
are rarely seen. That is a main reason we use traffic regulator proposed by [33] because
it is a tool particularly applicable in a flow-unaware environment. In addition to that, the
traffic regulator is simple. Let Tm and Tc be the time for recording data and data processing,
respectively. Suppose that we record a packet per 10microsecond. Then, Tm = 10−5Q (second),
where Q is the length of the series involved in computations. In the above case study,
Q = 16 × 16 = 256. Thus, Tm = 2.56ms. One the other hand, Tc for a series of 256 length
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on an average Pentium IV PC is neglectable in comparison with Tm. This exhibits that the
detection time is short enough to meet real-time use in practice.

It is worth noting that F
i

p,j,k(n) is a traffic pattern. In the presentmethod, signs of DDOS

flood attacks are identified by F
i

p,j,k(n) > V , meaning traffic pattern under attacking must be
significantly different from that of normal traffic. As a matter of fact, if an attacker were able
to attack a target such that it would be overwhelmed by creating the floods that well mimic
or be near to normal traffic, the target would be overwhelmed at its normal state even if there
were no flood packets. This is obviously impossible even if the attacker knows normal traffic
pattern exactly before attacking.
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5.3. Future Work

The previous presentation is quite academic in the following senses. The detection
mechanism previously exhibited was discussed based on postulated traffic models without
analyzing real-traffic data. For this reason, we shall work on the traffic models in this paper
with real-traffic data for anomaly detections. In addition, we will derive a general mechanism
to reliably identify and distinguish attack traffic from aggregated traffic for the flows of class i
with all priorities. In addition to that, we shall explore statistical learning methods discussed
in other fields, see for example, [39–49].

6. Conclusions

This paper suggests a reliable method to detect signs of DDOS flood attacks in the DiffServ
environment with static-priority schedulers. The present method can, with the combination
of a signature-based sensor, partly but reliably distinguish attack traffic from aggregated
traffic at a given server for a given link in a given time interval according to a predetermined
detection probability. Given that static-priority schedulers are widely supported in current
routers, it is our belief that this approach may be practical and effective in engineering.
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