
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 864652, 24 pages
doi:10.1155/2012/864652

Research Article
Knowledge Reduction Based on Divide
and Conquer Method in Rough Set Theory

Feng Hu and Guoyin Wang

Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and
Telecommunications, Chongqing 400065, China

Correspondence should be addressed to Guoyin Wang, Wanggy@cqupt.edu.cn

Received 27 June 2012; Revised 18 September 2012; Accepted 2 October 2012

Academic Editor: P. Liatsis

Copyright q 2012 F. Hu and G. Wang. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The divide and conquer method is a typical granular computing method using multiple levels of
abstraction and granulations. So far, although some achievements based on divided and conquer
method in the rough set theory have been acquired, the systematic methods for knowledge
reduction based on divide and conquer method are still absent. In this paper, the knowledge
reduction approaches based on divide and conquer method, under equivalence relation and under
tolerance relation, are presented, respectively. After that, a systematic approach, named as the
abstract process for knowledge reduction based on divide and conquer method in rough set theory,
is proposed. Based on the presented approach, two algorithms for knowledge reduction, including
an algorithm for attribute reduction and an algorithm for attribute value reduction, are presented.
Some experimental evaluations are done to test the methods on uci data sets and KDDCUP99 data
sets. The experimental results illustrate that the proposed approaches are efficient to process large
data sets with good recognition rate, compared with KNN, SVM, C4.5, Naive Bayes, and CART.

1. Introduction

In the search for new paradigms of computing, there is a recent surge of interest, under the
name of granular computing [1–3], in computations using multiple levels of abstraction and
granulation. To a large extent, the majority of existing studies include rough sets, fuzzy sets,
cluster analysis, and classical divide and conquer methods [4, 5] and aim at solving specific
problems [6].

Rough set (RS) [7–10] is a valid mathematical theory for dealing with imprecise,
uncertain, and vague information. It has been applied in such fields as machine learning,
data mining, intelligent data analysis, and control algorithm acquiring, successfully since it
was proposed by Pawlak and Skowron in 2007 [10]. Knowledge reduction is one of the most

2 Mathematical Problems in Engineering

important contributions of rough set theory to machine learning, pattern recognition, and
data mining. Although the problem of finding a minimal reduction of a given information
system was proven to be an NP-hard problem [8], many promising heuristics have been
developed that are promising. A variety of methods for knowledge reduction and their
applications can be found in [2, 7–43]. Among these existing methods, one group method
focuses on the indiscernibility relation in a universe that captures the equivalence of objects,
while the other group considers the discernibility relation that explores the differences
of objects [42]. For indiscernibility relation, one can employ it to induce a partition of
the universe and thereby to construct positive regions whose objects can be undoubtedly
classified into a certain class with respect to the selected attributes. Thus, knowledge
reduction algorithms based on positive regions have been proposed in [8, 10, 15, 16, 21,
28, 30]. For discernibility relation, we have knowledge reduction algorithms based on a
discernibility matrix and information entropy. Reduction methods based on discernibility
matrix [34] have high cost of storage with space complexity O(m × n2) for a large decision
table with n objects and m conditional attributes. Thus, storing and deleting the element
cells in a discernibility matrix is a time-consuming process. Many researchers have studied
discernibility matrix construction and contributed to a lot [10, 18, 28, 35, 38, 39, 43]. As
well, knowledge reduction algorithms based on information entropy [20, 37, 42] have been
developed. Although so many algorithms have been developed, it is valuable to study some
new high efficient algorithms.

Divide and conquer method is a simple granular computing method. When the
algorithms are designed by divide and conquer method, the decision table can be divided
into many subdecision tables recursively in attribute space. That

′
s to say, an original big data

set can be divided into many small ones. If the small ones can be processed one by one,
instead the original big one is processed on a whole, it will save a lot time. Thus, it may be an
effective way to process large data set. The divide and conquer method consists of three vital
stages.

Stage 1. Divide the big original problem into many independent subproblems with the same
structure.

Stage 2. Conquer the sub-problems recursively.

Stage 3. Merge the solutions of sub-problems into the one of original problem.

So far, some good results for knowledge reduction based on divide and conquer
method have been achieved, such as the computation of the attribute core and the
computation of attribute reduction under given attribute order [12, 13]. Besides, decision tree-
basedmethods [26, 27, 44] have been studied and are very popular. In fact, the construction of
decision tree is a special case of divide and conquer method, because it can be generated from
top to down recursively. In the methods based on decision tree, a tree should be constructed
by using decomposition at first. It costs more in the first stage, which is convenient to the
following stages, and costs less in the following two ones.

However, the systematic method for knowledge reduction based on divide and
conquer method is still absent, especially “how to keep invariance between the solution of
original problem and the ones of sub-problems.” It results in the difficulty to design the
high efficient algorithms for knowledge reduction based on divide and conquer method.
Therefore, it is urgent to discuss the knowledge reduction method based on divide and
conquer methods systematically and overall.

Mathematical Problems in Engineering 3

Contributions of this work are (1) some principles for “keeping invariance between the
solution of original problem and the ones of sub-problems” are concluded. Then, the abstract
process for knowledge reduction based on divide and conquermethod in the rough set theory
is presented, which is helpful to design high efficient algorithm based on divide and conquer
method. (2) Fast approaches for knowledge reduction based on divide and conquer method,
including an algorithm for attribute reduction and an algorithm for attribute value reduction,
are proposed. Experimental evaluations show that the presented methods are efficient.

The remainder of this paper is organized as follows. The basic theory and methods
dealing with the application of rough set theory in data mining are presented in Section 2.
Section 3 introduces the abstract process for knowledge reduction based on divide and
conquer method in the rough set theory. A quick algorithm based on divide and conquer
method for attribute reduction is presented in Section 4. In Section 5, a fast algorithm for
attribute value reduction using divide and conquer method is proposed. Some simulation
experimental evaluations are discussed to show the performance of the developed methods
in Section 6. The paper ends with conclusion in Section 7.

2. Preliminaries

Rough set theory was introduced by Pawlak as a tool for concept approximation relative to
uncertainty. Basically, the idea is to approximate a concept by three description sets, namely,
the lower approximation, upper approximation, and boundary region. The approximation
process begins by partitioning a given set of objects into equivalence classes called blocks,
where the objects in each block are indiscernible from each other relative to their attribute
values. The approximation and boundary region sets are derived from the blocks of a
partition of the available objects. The boundary region is constituted by the difference
between the lower approximation and upper approximation and provides a basis for
measuring the “roughness” of an approximation. Central to the philosophy of the rough set
approach to concept approximation is the minimization of the boundary region [28].

For the convenience of description, some basic notions of decision tables are
introduced here at first.

Definition 2.1 (decision table [36]). A decision table is defined as S = 〈U,A, V, f〉, where U is
a non-empty finite set of objects, called the universe, A is a nonempty finite set of attributes,
A = C ∪D, where C is the set of conditional attributes, andD is the set of decision attributes,
D/=φ. For any attribute a ∈ A, Va denotes the domain of attribute a. Each attribute determines
a mapping function f : U ×A → V .

Definition 2.2 (indiscernibility relation [36]). Given a decision table S = 〈U,A, V, f〉, each
subset of attribute B ⊆ A determines an indiscernibility relation IND(B) as follows: IND(B) =
{(x, y) | (x, y) ∈ U ×U, ∀b ∈ B(b(x) = b(y))}.

Definition 2.3 (lower approximation and upper approximation [36]). Given a decision table
S = 〈U,A, V, f〉, for any subset X ⊆ U and indiscernibility relation IND(B), the B lower
approximation and upper approximation of X are defined as B−(X) =

⋃
Yi∈U/IND(B)∧Yi⊆X Yi,

B−(X) =
⋃

Yi∈U/IND(B)∧Yi∩X /=φ Yi.

Definition 2.4 (positive region [36]). Given a decision table S = 〈U,A, V, f〉, P ⊆ A, and
Q ⊆ A, the P positive region of Q is defined as PosP (Q) = ∪x∈U/QP(X).

4 Mathematical Problems in Engineering

Definition 2.5 (relative core [36]). Given a decision table S = 〈U,A, V, f〉, P ⊆ A, Q ⊆ A,
r ∈ P , r is unnecessary in P relative to Q if and only if PosP (Q) = PosP−{r}(Q), otherwise r is
unnecessary in P relative to Q. The core of P relative to Q is defined as COREQ(P) = {r | r ∈
P ; r is necessary in P relative to Q}.

Definition 2.6 (see [36]). Given a decision table S = 〈U,A, V, f〉, P ⊆ A and Q ⊆ A, for all
r ∈ P , if r is relatively necessary in P relative to Q, P is called independent relative to Q.

Definition 2.7 (relative reduction [36]). Given a decision table S = 〈U,A, V, f〉, P ⊆ A, Q ⊆ A,
R ∈ P , if R is indispensable relative to Q and PosR(Q) = PosP (Q), R is called a reduction of P
relative to Q.

Definition 2.8 (see [18]). Given a decision table S = 〈U,A, V, f〉, the element of discernibility
matrix M can be defined as Bs

xy = {a ∈ C | f(x, a)/= f(y, a) ∧ w(x, y) = 1}, where, x ∈ U,
y ∈ U, and

w
(
x, y

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, x ∈ PosC(D), y /∈ PosC(D),
1, x /∈ PosC(D), y ∈ PosC(D),
1, x, y ∈ PosC(D), d(x)/=d

(
y
)
,

0, others.

(2.1)

3. The Abstract Process for Knowledge Reduction Based on Divide and
Conquer Method in Rough Set Theory

3.1. The Knowledge Reduction Based on Divide and Conquer Method under
Equivalence Relation

In the research of rough set theory, the divide and conquer method is an effective method
to design high effective algorithm. It can be used to compute equivalence classes, positive
region, and attribute core of decision table (see Propositions 3.1, 3.2, and 3.3) even execute
some operators of discernibility matrix (see Propositions 3.4 and 3.5). In this section, the
divide and conquer method under equivalence relation in rough set theory will be discussed.

Proposition 3.1 (see [13]). Given a decision table S = 〈U,A, V, f〉, for all c (c ∈ C), divide S
into k (k = |IND(U/{c})|) subdecision tables S1, S2, . . . , Sk byU/{c}, where Si = 〈Ui, (C \ {c}) ∪
D,Vi, fi〉, which satisfies ∀x∈Ui∀y∈Uic(x) = c(y) (1 ≤ i ≤ k) and ∀x∈Ui∀z∈Uj c(x)/= c(z) (1 ≤ i < j ≤
k). Let R = C − {c}. Let us denote by PosiR(D) (1 ≤ i ≤ k) the positive region of Si and the one of S
by PosC(D), respectively. Then, PosC(D) =

⋃
1≤i≤k Pos

i
R(D).

Proposition 3.1 presents the approach of computing equivalence classes or positive
region by using divide and conquer method. Compared with decision tree-based method
(without pruning), the approach allows us to generate “clear” leaves (with the same
decision) for objects in the positive region and “unclear” leaves where objects are with
different decisions and correspond to the boundary region. It may be an effective way to
prevent overfitting, because “conquer” can play a role of pruning of tree. Furthermore, the
approach needs less space because the construction of tree is not necessary.

Mathematical Problems in Engineering 5

Proposition 3.2 (see [13]). Given a decision table S = 〈U,A, V, f〉, for all c (c ∈ C), divide S into
k (k = |IND(U/{c})|) sub-decision tables S1, S2, . . . , Sk by U/{c}, where Si = 〈Ui, (C \ {c}) ∪
D,Vi, fi〉, which satisfies ∀x∈Ui∀y∈Uic(x) = c(y) (1 ≤ i ≤ k) and ∀x∈Ui∀z∈Uj c(x)/= c(z) (1 ≤ i <
j ≤ k). Let us denote by Corei (1 ≤ i ≤ k) the attribute core of Si and the one of S by Core. Then,
⋃

1≤i≤k Corei ⊆ Core ⊆ {c} ∪⋃
1≤i≤k Corei.

Proposition 3.3 (see [13]). Given a decision table S-〈U,A, V, f〉, for all c (c ∈ C), divide S into
k (k = |IND(U/{c})|) sub-decision tables S1, S2, . . . , Sk by U/{c}, where Si = 〈Ui, (C \ {c}) ∪
D,Vi, fi〉, which satisfies ∀x∈Ui∀y∈Uic(x) = c(y) (1 ≤ i ≤ k) and ∀x∈Ui∀z∈Uj c(x)/= c(z) (1 ≤ i <
j ≤ k). Let us denote by redi (1 ≤ i ≤ k) the attribute reduction of Si and the one of S by R. Let
R =

⋃
1≤i≤k redi, R1 = {c} ∪⋃

1≤i≤k redi. Then, PosR(D) ⊆ PosC(D) = PosR1(D).

Propositions 3.2 and 3.3 present the approach of attribute core determining based on
divide and conquer method. Compared with the method of computing attribute core on
original decision table, it may be more efficient and can process bigger data set, since the
big data set has been divided into many small data sets.

Obviously, Propositions 3.1, 3.2, and 3.3 hold.
Discernibility matrix by Skowron is a useful method to design some algorithms in

rough set theory. However, due to its high complexity of algorithms based on explicit
computing of the discernibility matrices, the efficiency of algorithms based on discernibility
matrix needs to be improved. In the literature some useful methods have been proposed (see
[26–31] by Nguyen et al., and decomposition methods implemented in RSES). Our methods
differ from the existing ones as follows.

(1) “How to keep invariance between the solution of original problem and the ones
of sub-problems” is a key problem. We conclude some principles for computing
positive region, attribute core, attribute reduction, and value reduction (see
Propositions 3.1, 3.2, 3.3, 3.4, 3.5, 3.11, and 3.12), which were not concluded before.

(2) Although the decision tree-based methods and our approaches both belong to
divide and conquer method, our approaches cost more on “conquer” and “merge”
while they cost less on “divide,” compared with the decision tree-based methods.
Furthermore, our approaches need not to construct a tree, which maybe save space.

(3) The existing heuristic ones in [26–28] can improve the efficiency by measuring the
discernibility degree of different objects quickly. In our approaches, the element
cells of discernibility matrix can be deleted by dividing decision table fast without
storing the discernibility matrix. Thus, it may be a quick one for operating
discernibility matrix with small space (see Propositions 3.4 and 3.5).

Given a decision table S = 〈U,A, V, f〉 and its discernibility matrixM (Definition 2.8);

for all C1 (C1 ⊆ C), let us denote by M
C1

a subset of element cells in M. M
C1

can be labeled

as {α1, α2, . . . , αt} (t = |MC1 |), where

(1) ∀
αi∈M

C1αi ∈ M (1 ≤ i ≤ |MC1 |);

(2) for all c ∈ C1, if ∃α∈M(c ∈ α), then α ∈ M
C1
.

Proposition 3.4. Given a decision table S = 〈U,A, V, f〉, for all c (c ∈ C), divide the decision table
S into k (k = |IND(U/{c})|) sub-decision tables S1, S2, . . . , Sk by U/{c}, where Si = 〈Ui, (C \

6 Mathematical Problems in Engineering

{c}) ∪ D,Vi, fi〉. Let us denote by M the discernibility matrix of S and the discernibility matrix of
Si (1 ≤ i ≤ k) byMi, respectively. Then,

⋃
α∈M α =

⋃k
i=1

⋃
β∈Mi

β ∪⋃

γ∈MC1 γ .

(Note: If ∀x,y∈Ui∀c1∈Cc1(x) = c1(y), then, Mi = φ)

Proof. First, prove
⋃

α∈M α ⊆ ⋃k
i=1

⋃
β∈Mi

β ∪⋃

γ∈MC1 γ .

For all α ∈ M, then, ∃x,y∈Uα = BS
xy (Definition 2.8). After the partition of U/C1,

suppose x and y be divided into sub-decision tables Si (1 ≤ i ≤ |U/C1|) and Sj (1 ≤ j ≤ k),
respectively.

If i = j, then, α ∈ Mi, that is, α ∈ ⋃k
i=1

⋃
β∈Mi

β.

If i /= j, then, α ∈ M
C1
, that is, α ∈ ⋃

γ∈MC1 γ .

Thus, α ∈ ⋃k
i=1

⋃
β∈Mi

β ∪⋃

γ∈MC1 γ . That is,
⋃

α∈M α ⊆ ⋃k
i=1

⋃
β∈Mi

β ∪⋃

γ∈MC1 γ .

Similarly, we can proof
⋃

α∈M α ⊇ ⋃k
i=1

⋃
β∈Mi

β ∪⋃

γ∈MC1 γ .
Therefore, Proposition 3.4 holds.

Proposition 3.5. Given a decision table S = 〈U,A, V, f〉, for all C1 (C1 ⊆ C), divide the decision
table S into k (k = |IND(U/C1)|) sub-decision tables S1, S2, . . . , Sk by U/C1, where Si = 〈Ui, (C \
C1)∪D,Vi, fi〉. Let us denote byM the discernibility matrix of S. Then, in the viewpoints of operating
discernibility matrix, divide the decision table S byU/C1 on attribute set C1 if and only if one deletes

all the element cells of M
C1
from M one by one.

According to Proposition 3.4, it is easy to find that Proposition 3.5 holds.
Propositions 3.4 and 3.5 present the approach of deleting element cells of discernibility

matrix. By using the approach, the element cells of discernibility matrix can be deleted
quickly without constructing or storing the discernibility matrix. It may be an effective way to
operate discernibility matrix quickly within small space. Thus, Propositions 3.4 and 3.5 can be
used to design some efficient algorithms without explicit computing of discernibility matrix.

3.2. The Knowledge Reduction Based on Divide and Conquer Method under
Tolerance Relation

In the course of attribute value reduction, tolerance relation is often adopted due to some
attribute values on condition attribute being deleted. Thus, tolerance relation in attribute
value reduction may be needed. A method is introduced by Kryszkiewicz and Rybinski [17]
to process incomplete information system, where “ ∗ ′′ is used to represent the missing values
on condition attributes. Here, “ ∗ ′′ can be also represent the deleted values on condition
attributes. According to the tolerance relation by Kryszkiewicz, the divide and conquer
method under the tolerance relation will be discussed.

Definition 3.6 (see [17]). Given an incomplete decision table S = 〈U,A, V, f〉, a tolerance
relation T is defined as

∀x, y∈U1∀B⊆R
(
TB

(
x, y

)⇐⇒∀b∈B
((
b(x) = b

(
y
)) ∨ (b(x) = ∗) ∨ (

b
(
y
)
= ∗))). (3.1)

Definition 3.7 (see [17]). The tolerance class TB(x) of an object x relative to an attribute set
B is defined as TB(x) = {y | y ∈ U ∧ TB(x, y)}. In the tolerance relation-based extension

Mathematical Problems in Engineering 7

of rough set theory, the lower approximation XT
B and upper approximation XB

T of an object
set X relative to an attribute set B (B ⊆ C) are defined as XT

B = {x ∈ U | TB(x) ⊆ X},
XB

T = {x ∈ U | TB(x) ∩X /= ∅}.

Definition 3.8 (the covering of the universe under tolerance relation). Given a decision table
S = 〈U,A, V, f〉 and condition attribute set C1 (C1 ⊆ C), according to the tolerance relation by
Kryszkiewicz, the covering of the universe of S can be defined asU = U1∪U2∪· · ·∪Uk, where
∀x,y∈Up(1≤p≤k)∀c∈C1(c(x) = c(y) ∨ c(x) = ∗ ∨ c(y) = ∗), and ∀x∈Ur∀y∈Up (1≤r<p≤k)∃c∈C1((c(x)/= ∗
∧c(y)/= ∗) ⇒ c(x)/= c(y)).

Definition 3.9 (certain decision rule). Given a decision table S = 〈U,A, V, f〉, for all xi ∈
PosC(D), the object xi can result in a certain decision rule di : des([xi]C) ⇒ des([xi]D),
di(a) = a(xi), a ∈ C ∪D. di | C and di | D are called the condition attribute set and decision
attribute set of di, respectively.

Definition 3.10 (see [36]). Given a decision table S = 〈U,A, V, f〉, for arbitrary certain decision
rule, there is [xi]C ⊂ [xi]D. For all a ∈ C, if [xi]C\{a} ⊆ [xi]D does not hold, then, a is necessary
in di; otherwise, a is not necessary in di.

Proposition 3.11. Given a decision table S = 〈U,A, V, f〉, and for all C1 ⊆ C, given an decomposing
order c1, c2, . . . cp (p = |C1|), according to the order and tolerance relation, S can be divided into k
sub-decision tables S1, S2, . . . , Sk, where Si = 〈Ui,A, V, f〉. Assume S and S1, S2, . . . , Sk be processed
with the same way. For each sub-decision table Si (1 ≤ i ≤ k), for all x (x ∈ Si ∧ x ∈ PosC(D)), let
us denote by dx a decision rule relative to object x in Si and a decision rule relative to x in S by d1

x,
respectively. There is

(1) in Si, if ∃c (c ∈ C), c is necessary in dx. Then, c is necessary in d1
x;

(2) in Si, if ∃c (c ∈ C), c is not necessary in dx. Then, c is not necessary in d1
x;

(3) dx = d1
x.

Proposition 3.12. Given a decision table S = 〈U,A, V, f〉, for all C1 ⊆ C, given an decomposing
order c1, c2, . . . cp (p = |C1|), and according to the order, S can be divided into k sub-decision tables
S1, S2, . . . , Sk, where Si = 〈Ui,A, V, f〉. Assume S and S1, S2, . . . , Sk be processed with the same.
For each sub-decision table Si (1 ≤ i ≤ k), let us denote by Rule the certain decision rule set of S and
the one of Si by Rulei, respectively. Then, Rule =

⋃k
i=1 Rulei.

Propositions 3.11 and 3.12 present the approach of value reduction based on divide
and conquer method. It can keep invariance between the solution of original decision table
and the ones of sub-decision tables. By using the approach, it allows us to generate decision
rules from sub-decision tables, not from original decision table. It may be a feasible way to
process big data set.

3.3. The Abstract Process for Knowledge Reduction Based on Divide and
Conquer Method in Rough Set Theory

According to the divide and conquer method under equivalence relation and tolerance
relation, the abstract process for knowledge reduction in rough set theory based on the divide
and conquer method APFKRDAC(P , S)will be discussed in this section.

8 Mathematical Problems in Engineering

Algorithm 3.13 (APFKRDAC(P, S)).
Input: The problem P on S.
Output: The solution Solu of the problem P .

Step 1 (determine a similarity relation of different objects). Determine a similarity relation
between different objects, such as equivalence relation or tolerance relation. Generally,
reflexivity and symmetry of different objects may be necessary.

Step 2 (determine the decomposing order). Determine the order C1 (C1 ⊆ C) for
decomposing the universe of decision table. Let C1 = {c1, c2, . . . , cp}, (p = |C1|).

Step 3 (determine the decomposing strategy).

(3.1) Design a judgment criteria CanBeDivide() for judging whether the universe can
be decomposed.

(3.2) Design a decompose function DecomposingFunc(), which can be used to
decompose the universe recursively.

(3.3) Design a boolean function IsEnoughSmall(), which can be used to judge if the size
of problem is small enough to be processed easily.

(3.4) Design a computation function ProcessSmallProblem(), which can be used to
process small problems directly.

(3.5) Design a computation function MergingSolution(), which can be used to merge
the solutions of sub-problems.

Step 4 (process the problem based on divide and conquer method).
(4.1) IF IsEnoughSmall(S) THEN Solu = SolutionSubProblems(S),

goto Step 5.
(4.2) (Divide)

According to the decomposing order, divide S into k sub-decision tables
S1, S2, . . . , Sk on C1.

(4.3) (Conquer sub-problems recursively)
FOR i = 1 TO k DO
Solui=APFKRDAC(Pi, Si).

END FOR.
Where, Si = 〈Ui, Ci ∪D,V, f〉, Ci ⊆ C, Pi is the sub-problem of Si.

(4.4) (Merge the solutions of sub-problems)
Solu = MergingSolution(Solu1, Solu2, . . . , Soluk).

Step 5 (optimize the solution). If necessary, optimize the solution Solu.

Step 6 (return the solution). RETURN Solu.

Now, let us give an example for computing the positive region of decision table to
explain Algorithm 3.13 (see Algorithm 3.14: the algorithm for computing positive region
based on divide and conquer method).

Algorithm 3.14 (CPRDAC(P, S)).
Input: The problem P on S: compute positive region.
Output: The positive region PosC(D) of S.

Mathematical Problems in Engineering 9

Step 1 (Determine the similar relation). equivalence relation.

Step 2 (Determine the decomposing order). c1, c2, . . . , cm (m = |C|).

Step 3 (Determine the decomposing strategy).
(3.1) Design a judgment criteria CanBeDivide():

On attribute ci, for all Ui (Ui ⊆ U),
IF ∃x∈Ui∃y∈Ui(ci(x)/= ci(y)) ∧ ∃z∈Ui∃w∈Ui(D(z)/=D(w)) THEN
CanbeDivide(ci)=true;

ELSE CanBeDivide(ci)=false;
END IF

(3.2) Design a decompose function DecomposingFunc():
According to U/C, S can be divided into k = |U/C| sub-decision tables
S1, S2, . . . , Sk on attributes c1, c2, . . . , cm recursively.

(3.3) Design a boolean function IsEnoughSmall():
Let cr be the attribute on which the universe is being decomposed.
IF (|Ui| == 1) or (r > m) or ∀x∈Ui∀y∈Ui(D(x) == D(y)) THEN
IsEnoughSmall(Si) = true.

END IF
(3.4) Design a computation function ProcessSmallProblem():

For arbitrary sub-decision table Si and its universe Ui,
IF ∀x∈Ui∀y∈Ui(D(x) == D(y)) THEN Ui ⊆ PosC(D) ∧ Solui = Ui;
ELSE Solui = φ;
END IF

(3.5) Design a computation function MergingSolution():
Solu = Solu1 ∪ Solu2 ∪ · · · ∪ Soluk;

Step 4 (Process the problem based on the divide and conquer method).
(4.1) IF IsEnoughSmall(S) THEN Solu = ProcessSmallProblem(S); goto Step 5.
(4.2) (Divide)

According to the order {c1, c2, . . . , cm}, S can be divided into k sub-
decision tables S1, S2, . . . , Sk on c1 by using U/IND({c1}).

(4.3) (Conquer sub-problems recursively)
FOR i = 1 TO k DO
Solui= CPRDAC(Pi, Si).

END FOR
Where, Si = 〈Ui, (C − {c1})∪D,V, f〉, Pi denotes computing the positive region of
Si.

(4.4) (Merge the solutions of sub-problems)
Solu = Solu1 ∪ Solu2 ∪ · · · ∪ Soluk.

Step 5 (Optimize the solution). Solu is an optimized result.

Step 6 (Return the solution). RETURN Solu.

Example 3.15. Given a decision table S = 〈U,A, V, f〉, (U = {x1, x2, x3, x4, x5, x6}, C =
{c1, c2, c3}), now compute the positive region of S according to Algorithm 3.14. The whole
process can be found in Figure 1.

10 Mathematical Problems in Engineering

Sort on C1

Sort on C2

Sort on C2

S

C1 C2 C3 D

2 2 2

2

22

2

2

2

0 0

0

00

0

1

S1 S4

S2

S3

S5

S6

U

x1

x2

x3

x

22 21

4

x5

x6

3

3 3

S4

S2

S5

S6 S7

1 1

00x5 1 1

1

1 1

0 0x3 1 1

C1 C2 C3 DU C1 C2 C3 DU

C1 C2 C3 DU

C1 C2 C3 DU

C1 C2 C3 DU C1 C2 C3 DU

2 2 2

22

x1

x2

3

3 3

2 2 2

22

x1

x2

3

3 3

0 0

00

x3

x5 1 1

1 1

2 00x6 1

2

0 0

0

00

0

x3

x5

x6

1 1

1

1 0

22 21x4

C1 C2 C3 DU

C1 C2 C3 DU

C1 C2 C3 DU

C1 C2 C3 DU

2 00x6 1

2 2 2

22

x1

x2

3

3 3

C1 C2 C3 DU

2 2 2

22

x1

x2

3

3 3

All objects have the
same decision.

Thus, all objects of S4

belong to positive
region.

Only one object.
Thus, the objects of S5

belong to positive
region.

Only one object.
Thus, the object of S2 belongs

to positive region.

The decision values
are not unique. Thus,
all the objects of S7 do
not belong to positive

region.

Are the
decision values

unique?
Sort on C3

Positive region of S1 = (positive region of S4) U (positive region of S5) = {x3, x5, x6}

Positive region of S = (positive region of S1) U (positive region of S2) U (positive region of S3)
= {x3, x5, x6} U {x4}
= {x3, x4, x5, x6}

x4

Figure 1: The course of computing positive region of S.

Let us denote by PosC(D),Pos1C(D),Pos2C(D), . . . ,Pos7C(D) the positive region of
S, S1, S2, . . . , S7, respectively.

Divide S into S1, S2, S3 on c1.
Conquer S1.
Divide S1 into S4, S5 on c2.

Mathematical Problems in Engineering 11

Conquer S4. Pos4C(D) = {x3, x5}.
Conquer S5. Pos5C(D) = {x6}.
Merge the solutions of S4 and S5. Pos1C(D) = Pos4C(D) ∪ Pos5C(D) = {x3, x5, x6}.

Similarly, we can conquer S2 and S3.
Conquer S2. Pos2C(D) = {x4}.
Conquer S3. Pos3C(D) = φ.
Merge the solutions of S1, S2, and S3.

PosC(D) = Pos1C(D) ∪ Pos2C(D) ∪ Pos3C(D) = {x3, x4, x5, x6}. (3.2)

4. A Fast Algorithm for Attribute Reduction Based on
Divide and Conquer Method

Knowledge reduction is the key problem in rough set theory. When the divide and conquer
method is used to design the algorithm for knowledge reduction, some good results may be
obtained. However, implementing the knowledge reduction based on the divide and conquer
method is very complex, though it is only a simple granular computingmethod. Here, wewill
discuss the quick algorithm for knowledge reduction based on divide and conquer method.

In the course of attribute reduction, the divide and conquer method is used to compute
the equivalence class, the positive region, and the non-empty label attribute set and delete the
elements of discernibility matrix. Due to the complexity of attribute reduction, the following
algorithm is not presented as Algorithm 3.14 in details.

According to Step 2 of Algorithm 3.13, the attribute set and the order must be
determined, on which the universe of decision table will be partitioned in turns. Generally
speaking, the decomposing order depends on the problem which needs to be solved.
Furthermore, if the order is not given by field experts, it can be computed by the weights
in [10, 15, 23, 25, 26, 28, 33, 36, 37, 41]. Of course, if the attribute order is given, it will be more
suitable for Algorithm 3.13. Most techniques discussed below are based on a given attribute
order and divide and conquer method. In this section, a quick attribute reduction algorithm
based on a given attribute order and divide and conquer method is proposed.

4.1. Attribute Order

In 2001, an algorithm for attribute reduction based on the given attribute order is proposed
by Jue Wang and Ju Wang [38]. For the convenience of illustration, some basic notions about
attribute order are introduced here.

Given a decision table S = 〈U,A, V, f〉, an attribute order relation over C (SO : c1 ≺
c2 ≺ · · · ≺ c|C|) can be defined. Let us denote by M the discernibility matrix of S. For any
δ ∈ M, the attributes of discernibility matrix δ inherit the order relation of SO from left to
right, that is, δ = cjB, where cj ∈ C and B ⊂ (C − {a}), and cj is the first element of δ by SO,
called the non-empty label attribute of δ [33].

For cj , a set L(SO) = {δ | δ = cjB, δ inherit the order relation of SO from left to
right and δ ∈ M} is defined. Hence, M can be divided into equivalence classes by label
attributes defining a partition {[1], [2], . . . , [|C|]} ofM denoted byM/L(SO) [33]. Supposing
N = max{k | [k] ∈ M/L(SO) ∧ [k]/=φ}, its maximum non-empty label attribute is aN .

12 Mathematical Problems in Engineering

4.2. Attribute Reduction Based on the Divide and Conquer Method

Lemma 4.1. ∀BS
xy∈M(BS

xy /=φ) (Definition 2.8) if and only if (x ∈ PosC(D) ∧ y ∈ PosC(D) ∧
(d(x)/=d(y)) ∨ (x ∈ PosC(D) ∧ y /∈ PosC(D)) ∨ (x /∈ PosC(D) ∧ y ∈ PosC(D)).

According to Definition 2.8, obviously Lemma 4.1 holds.

Proposition 4.2. Given a decision table S = 〈U,A, V, f〉, for all c ∈ C, let M be the discernibility
matrix of S. Then, ∃α∈M(c ∈ α) if and only if the following conditions hold: (1) |U| > 1; (2) ∃x∈U(x ∈
PosC(D)); (3) |VD| > 1; (4) |V{c}| > 1.

Proof. (Necessity) according to Lemma 4.1, obviously Proposition 4.2 holds.
(Sufficiency):

for all x (x ∈ PosC(D) ∧ x ∈ U), according to (|U| > 1) ∧ (|VD| > 1), then,
∃y(y /=x)(y ∈ U ∧D(x)/=D(y)).
If c(x)/= c(y), then c ∈ BS

xy, that is, ∃α(α∈M)c ∈ α. The proposition holds.
If c(x) = c(y), then, there are two cases.

Case 1 (y ∈ PosC(D)). According to |V{c}| > 1, ∃z(z/=x∧z/=y)(c(z)/= c(x)), thus (c ∈ BS
xz) ∨ (c ∈

BS
yz) = 1.

That is, ∃α(α∈M)c ∈ α. The proposition holds.

Case 2 (y /∈ PosC(D)). According to |V{c}| > 1, ∃z(z/=x∧z/=y)(c(z)/= c(x)). If z ∈ PosC(D), then
c ∈ BS

yz;
if z /∈ PosC(D), then c ∈ BS

yz. Thus, the proposition holds.
Therefore, Proposition 4.2 holds.

According to the algorithm in [38], in order to compute the attribute reduction of
a decision table, its non-empty label attribute set L(SO) should be first calculated. Using
the divide and conquer method, an efficient algorithm for computing the non-empty label
attribute set L(SO) is developed. A recursive function for computing the non-empty label
attribute set is used in the algorithm.

Function 1

NonEmptyLabelAttr(S, r)
//S is decision table. r is the number of attributes (1 ≤ r ≤ |C|).

Step 1 (Ending Condition). According to Propositions 4.2 and 5.1,
IF r = |C| + 1 or |U| == 1 or PosC(D) == φ or |VD| == 1 THEN

return;
END IF

Step 2 (Compute non-empty labels based on divide and conquer method). Let
NonEmptyLabel[] be an array used to store the solution.

Step 2.1. IF |V{cr}| > 1 THEN
Denote non-empty label attribute: NonEmptyLabel[r] = 1;

END IF

Mathematical Problems in Engineering 13

Step 2.2 (Divide). Divide S into S1, S2, . . . , Sk by U/IND({cr});
Step 2.3 (Conquer sub-problems). FOR i = 1 TO k DO

NonEmptyLabelAttr(Si, r + 1);
END FOR.

Step 2.4 (Merge the solutions). Here, there is no operation because the solutions are stored in
the array NonEmptyLabel[].

END Function 1.

Using the above recursive function, an algorithm for computing the non-empty label
attribute set of a decision table is developed.

Algorithm 4.3. Computation of The Non-empty Label Attribute Set L(SO)
Input: A decision table S and an attribute order SO : c1 ≺ c2 ≺ · · · ≺ c|C|
Output: The non-empty label attribute set R1 of S.

Step 1. R1 = φ; r = 1;
FOR j = 1 TO |C| DO
NonEmptyLabel[j] = 0;

END FOR

Step 2. NonEmptyLabelAttr(S, 1);

Step 3. FOR j = 1 TO |C| DO
IFNonEmptyLabel[j] == 1 THEN R1 = R1 ∪ {cj};

END FOR

Step 4. RETURN R1.

Suppose n = |U|, m = |C|. According to the conclusion of literature [45], the average
time and space complexities of the Algorithm 4.3 are T = O(n×(m+ logn)) and S = O(m+n).

Obviously, Algorithm 4.3 is an instance of Algorithm 3.13. Given an attribute order of
the conditional attributes in a decision table, using the Algorithm 4.3 and divide and conquer
method, an efficient attribute reduction algorithm is developed.

Algorithm 4.4. Computation of Attribute Reduction Based on Divide and Conquer Method
Input: A decision table S = 〈U,A, V, f〉 and an attribute order SO : c1 ≺ c2 ≺ · · · ≺ c|C|
Output: Attribute reduction R of S.

Step 1. U1
1 = U, R = φ.

Step 2. Compute the positive region PosC(D), according to Algorithm 3.14.

Step 3. Compute the non-empty label attribute set R1 by Algorithm 4.3.

Step 4. //Suppose cN be the maximum label attribute of R1.
R = R ∪ {cN ′ };R1 = R1 − R;
IF R1 == φ THEN RETURN R;
ELSE

14 Mathematical Problems in Engineering

Generate a new attribute order:
c11 ≺ c12 ≺ · · · ≺ c1|R| ≺ c21 ≺ c22 ≺ · · · ≺ c2|R1|;
Compute new non-empty label attribute set R1 of S by Algorithm 4.3;
GOTO Step 4.

END IF

Suppose n = |U| and m = |C|, the average time complexity of the Algorithm 4.4 is
O(n ×m × (m + logn)). Its space complexity is O(m + n).

In Algorithm 4.4, Step 1 is the initialization. In Step 2 of Algorithm 4.4, divide and
conquer method is used to compute equivalence classes and positive region, thus Step 2
is an instance of Algorithm 3.13. In Step 3, Algorithm 4.3 is used to compute non-empty
label attribute set (Algorithm 4.3 is also an instance of Algorithm 3.13). Step 4 is responding
to Step 5 of Algorithm 3.13. In Step 4, Algorithm 4.3 is called repeatedly to reduce the
redundant attribute set. That is, Algorithm 4.4 is composed of instances of Algorithm 4.3,
which illustrates that Algorithm 4.4 is implemented by divide and conquer method. Basically,
divide and conquer method is used primarily to compute equivalence classes, positive
region, and non-empty label attribute set and delete element cells in discernibility matrix
in Algorithm 4.4.

5. A Fast Algorithm for Value Reduction Based on Divide
and Conquer Method

Proposition 5.1. Given a decision table S = 〈U,A, V, f〉, for all x ∈ PosC(D), a certain rule can be
induced by object x.

Proposition 5.2. Given a decision table S = 〈U,A, V, f〉, let us denote byDR a certain rule set of S.
∀di∈DR(1≤i≤|DR|)di, di must be induced by x (x ∈ PosC(D)).

Proposition 5.3. Given a decision table S〈U,A, V, f〉, let us denote by DR certain rule set of S.
For all x ∈ PosC(D), let us denote by d1 the certain rule by x. Let M1 = {Bs

xy | y ∈ U}. Then,
∀α∈M1(M1 /=φ) ⇒ ∃c∈(d1|C)(c ∈ α).

According to Algorithm 3.13, Propositions 5.1, 5.2, and 5.3, a recursive function and an
algorithm for value reduction based on divide and conquer method are developed as follows.

Function 2

DRAVDAC(S, cr)
//Denote by array CoreValueAttribute[] the result of value reduction of cr .
//The values of array CoreValueAttribute[] are all 0 initially.

Step 1 (Ending Condition).
IF there is contradiction on S, THEN
return;

END IF

Step 2 (Value reduction on cr based on divide and conquer method).
Step 2.1 (Divide).

Mathematical Problems in Engineering 15

Divide S into k sub-decision tables S1, S2, . . . , Sk on attribute cr by using tolerance
relation.

Step 2.2 (Conquer sub-problems recursively).
Denote by array Solui[|Ui|] the solution of Si.
Where, Si = 〈Ui, (C − {cr}) ∪D,V, f〉.
FOR i = 1 TO k DO

Solui = DRAVDAC(Si);
END FOR

Step 2.3 (Merge the solutions).
FOR j = 1 TO |U| DO
FOR i =1 TO k DO

IF Solui[j] == 1 THEN break; END IF
END FOR
IF i == k + 1 THEN CoreValueAttribute[j] =1 END IF

END FOR
END Function 2.

Using Function 2, we present an algorithm for value reduction based on divide and
conquer method (see Algorithm 5.4).

Algorithm 5.4. An Algorithm for Value Reduction Based on Divide and Conquer Method
Input: A decision table S = 〈U,A, V, f〉
Output: The certain rule set DR of S.

Step 1 (Initiation). ASet = φ, DR = φ.

Step 2 (Compute the positive region). According to Algorithm 3.14, compute the positive
region PosC(D) of S.

Step 3 (Compute the non-empty label attribute). Assume the order for dividing decision table
be c1, c2, . . . , cm (m = |C|).

Compute the non-empty label attribute set ASet by using Function 1.

Step 4 (Value reduction on attribute set ASet). Let ASet = {c′1, c′2, . . . , c′|ASet|} and the divide
order be c′1, c

′
2, . . . , c

′
|ASet|.

FOR i = |ASet| TO 1 DO
FOR j = 1 TO |U| DO
CoreValueAttribute[j] = 0.

END FOR
C = ASet.
Invoke Function 2: DRAVDAC(S, {c′i).
Update S, according to the array CoreValueAttribute[].

END FOR.

Step 5 (Get the rule set).
FOR i = 1 TO |U| DO
IF xi ∈ PosC(D) THEN
Construct a rule di in terms with xi; DR = DR ∪ {di};

16 Mathematical Problems in Engineering

ENE IF
END FOR

Step 6. RETURN DR.

Suppose |C| = m, |U| = n. The time complexity of Step 1 is O(m + n). The average time
complexities of Steps 2 and 3 areO(n× (m+ logn)) [45]. The time complexities of Steps 5 and
6 are both O(m × n). Now, let us analyze the time complexity of Step 4.

In Step 4, let the number of non-empty label attribute set be u. Then, the time
complexity of Step 4 is O(u × (2n + T(1, n))), where T(1, n) is an instance of T(r, n) which
can be expressed by the following recursive equation:

T(r, n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1. n == 1
2n. r ≥ u

2n + T(r + 1, n). ∀x,y∈U
(
TB

(
x, y

))
, (B = {c1, c2, . . . , cr})

pn + T(r, n1 + n′) + T(r, n2 + n′) + · · · + T
(
r, np + n′).

(
n1 + n2 + · · · + np + n′) = n, p = |{cr(x) | cr(x)/= ∗, x ∈ U}|.

(5.1)

T(1, n) is between O(u × n) and T(p1 × p2 × · · · × pu × n). So the time complexity of Step 4 is
betweenO(u2 ×n) and T(u×p1 ×p2 × · · · ×pu ×n). Thus, the time complexity of Algorithm 5.4
is between max(O(n × (m + logn)), O(u2 × n)) and O(u × n × p1 × p2 × · · · × pu).

Suppose the data obey the uniform distribution. The time complexity of Algorithm 5.4
is O(nlog((p+1)/2)p × m) + O(n × m) = O(nlog((p+1)/2)p × m). When p ≥ 2, the time complexity of
Algorithm 5.4 is less than O(n2 × m). When p ≥ 5, the time complexity of Algorithm is less
than O(n1.5 ×m).

The space complexity of Algorithm 5.4 is O(m × n).

6. Experimental Evaluations

In order to test the efficiency of knowledge reduction based on divide and conquer method,
some experiments have been performed on a personal computer. The experiments are shown
as follows.

6.1. The Experimental Evaluations on UCI Data Sets

In this experiment, some experimental evaluations are done to present the efficiency and
recognition results of Algorithms 4.4 and 5.4. In the mean time, some famous approaches for
data mining are used to compare with our methods.

The test course is as follows. First, 11 uci data sets (Zoo, Iris, Wine, Machine, Glass,
Voting, Wdbc, Balance-scale, Breast, Crx, and Tic-tac-toe) are used. Second, our methods: the
algorithm for discretization [14] (it is an improved one based on the discretization method in
[28]), the algorithm for attribute reduction (Algorithm 4.4), and the algorithm for attribute
value reduction (Algorithm 5.4) are used to test the 11 uci data sets. Third, 5 methods (KNN,
SVM, C4.5, Naive Bayes, and CART) are also used to test the data sets, which belong to
the “top 10 algorithms in data mining” [44], and their source codes are afforded by Weka
software. Weka (http://en.wikipedia.org/wiki/Weka (machine l earning)) is used as the

Mathematical Problems in Engineering 17

0

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
R

ec
og

ni
ti

on
 r

es
ul

ts

Zoo Iris Wine Machine Glass Voting Wdbc Balance Breast Crx Tic-tac-toe

UCI data sets

Figure 2: Recognition result on uci data sets.

Table 1: Specifications of 11 uci data sets.

Data sets Number of records Number of attributes Number of decision values
Zoo 101 17 7
Iris 150 4 3
Wine 178 13 3
Machine 209 7 8
Glass 214 9 7
Voting 435 16 2
Wdbc 569 28 2
Balance scale 625 4 5
Breast 684 9 2
Crx 690 15 2
Tic-tac-toe 958 9 2

experimental plat and “Java EclipseWeka” as the developing tool. The test method is LOOCV
(Leave One Out Cross Validation). The specifications of the experimental computer are an
Intel(R) Core(TM2) Quad CPU Q8200 @2.33GHz CPU, 2GB RAM, and Microsoft Windows
7. The specifications of 11 data sets and the experimental results are as follows.

From Table 1 and Figure 2, it can be found that the recognition results of our methods
on the 11 uci data sets are closed to the ones of KNN and CART, which are better than Naive
Bayes, C4.5, and SVM.

18 Mathematical Problems in Engineering

Table 2: The recognition of 6 algorithms on uci data sets.

Data sets KNN SVM C4.5 Naive bayes CART Our methods
Zoo 0.9208 0.9603 0.8713 0.9702 0.9109 0.9208
Iris 0.9600 0.9467 0.9600 0.9533 0.9533 0.9467
Wine 0.9719 0.4887 0.8483 0.9775 0.8652 0.9607
Machine 0.8461 0.6490 0.8173 0.8173 0.8173 0.8894
Glass 0.7009 0.6963 0.5935 0.4953 0.7009 0.7149
Voting 0.9149 0.9333 0.9517 0.9425 0.9563 0.9333
Wdbc 0.9490 0.6274 0.9367 0.9349 0.9332 0.9139
Balance scale 0.9024 0.952 0.7488 0.9088 0.7920 0.7712
Breast 0.9570 0.3462 0.9399 0.9613 0.9399 0.9341
Crx 0.8710 0.5565 0.8232 0.7522 0.8406 0.7754
Tic-tac-toe 0.6952 1.0000 0.7328 0.7150 0.8779 0.9624
Average 0.8808 0.7415 0.8385 0.8571 0.8716 0.8839

Table 3: The recognition of 6 algorithms on KDDCUP99 data sets (≤104 records).

Number of records KNN SVM C4.5 Naive bayes CART Our methods
1000 0.9950 0.9550 0.9800 0.9800 0.9870 0.9950
2000 0.9980 0.9700 0.9935 0.9925 0.9920 0.9935
3000 0.9977 0.9850 0.9947 0.9753 0.9950 0.9947
4000 0.9967 0.9750 0.9940 0.9483 0.9935 0.9940
5000 0.9984 0.9770 0.9956 0.9760 0.9958 0.9954
6000 0.9986 0.9791 0.9968 0.9553 0.9965 0.9975
7000 0.9980 0.9850 0.9958 0.9905 0.9951 0.9956
8000 0.9985 0.9831 0.9958 0.9555 0.9956 0.9965
9000 0.9983 0.9877 0.9970 0.9690 0.9955 0.9964
10000 0.9986 0.9880 0.9971 0.9449 0.9968 0.9971

6.2. The Experimental Results on KDDCUP99 Data Sets

In order to test the efficiency of our methods for processing large data sets, some experiments
are done on KDDCUP99 data sets with 4898432 records, 41 condition attributes, and
23 decision classifications (http://kdd.ics.uci.edu/databases//kddcup99/kddcup99.html).
Our methods consist of the discretization algorithm [14], Algorithms 4.4, and 5.4 still. Weka
is used as the experimental plat and “Java EclipseWeka” as the developing tool (Table 2). The
test method is 10 cross-validation. The specifications of the experimentation computer are an
Intel(R) Core(TM2) Quad CPU Q8200 @2.33GHz CPU, 4GB RAM, and Microsoft Windows
Server 2008. The experimental results are as follows.

First, the experiments are done on 10 data sets (≤104 records) from the original
KDDCUP99 data sets. The experimental evaluations are showed in Tables 3, 4, and 5, where
the time unit is “ms” in Tables 4 and 5.

From Tables 3, 4, and 5, it can be found that it will cost much time to train by SVM,
which shows that SVM is not a good way to process KDDCUP99 data sets with large records.
Thus, in the following experiments, SVM will be not tested.

Second, the experiments are done on 10 data sets (≤105 records) from the original
KDDCUP99 data sets. The experimental evaluations are showed in Tables 6 and 7, where
“Tr” is the training time, “Te” is the test time, and the time unit is “ms” in Table 7.

Mathematical Problems in Engineering 19

Table 4: The training time of 6 algorithms on KDDCUP99 data sets (≤104 records).

Number of records KNN SVM C4.5 Naive bayes CART Our methods
1000 3 87 50 9 120 143
2000 3 259 47 12 173 78
3000 2 631 18 16 280 130
4000 0 1071 125 22 384 192
5000 0 1731 173 31 543 226
6000 0 2467 223 41 672 311
7000 0 3617 281 129 861 541
8000 2 4591 329 70 1155 822
9000 2 6171 364 178 1262 1261
10000 3 7496 378 96.7 1629 1415

Table 5: The test time of 6 algorithms on KDDCUP99 data sets (≤104 records).

Number of records KNN SVM C4.5 Naive bayes CART Our methods
1000 41 6 0 25 2 0

2000 122 9 0 34 0 0

3000 279 18 0 50 0 0

4000 495 40 0 67 0 0

5000 782 59 2 81 0 0

6000 1197 89 0 94 0 2

7000 1805 131 2 125 0 0

8000 2289 154 2 249 2 0

9000 2880 207 0 178 0 0

10000 3588 271 2 162 0 0

From Tables 6 and 7, it can be found that the recognition is lower than others by Naive
Bayes and much test time is needed for KNN. Thus, Naive Bayes and KNNwill be not tested
in the following experiments.

Third, the experiments are done on 10 data sets (≤106 records) from the original
KDDCUP99 data sets. The experimental evaluations are showed in Table 8, where “RRate”
is the recognition rate, “Tr” is the training time, “Te” is the testing time, and the time unit is
“ms” in Table 8.

Fourth, the experiments are done on 10 data sets (< 5 × 106 records) from the original
KDDCUP99 data sets. The experimental results are showed in Table 9, where “RRate” is the
recognition rate, “Tr” is the training time, “Te” is the testing time, “-” is the overflow of
memory, and the time unit is “second” in Table 9.

From Tables 8 and 9, it can be found that C4.5 is the best one and our method is
the second best one among C4.5, CART, and our method. Due to the high complexity for
discretization, our method can not complete the knowledge reduction of 4898432 records in
this experiment.

20 Mathematical Problems in Engineering

Table 6: The recognition of 5 algorithms on KDDCUP99 data sets (≤105 records).

Number of records KNN C4.5 Naive bayes CART Our methods
10000 0.9985 0.9969 0.9804 0.9970 0.9973
20000 0.9987 0.9979 0.9490 0.9980 0.9980
30000 0.9990 0.9985 0.9560 0.9987 0.9987
40000 0.9989 0.9988 0.9365 0.9987 0.9989
50000 0.9991 0.9989 0.9613 0.9989 0.9989
60000 0.9992 0.9989 0.9627 0.9990 0.9989
70000 0.9992 0.9992 0.9438 0.9990 0.9990
80000 0.9992 0.9992 0.9249 0.9992 0.9992
90000 0.9992 0.9993 0.9097 0.9991 0.9992
100000 0.9992 0.9992 0.9118 0.9991 0.9992

Table 7: The running time of 5 algorithms on KDDCUP99 data sets (≤105 records).

Number of records KNN C4.5 Naive bayes CART Our methods
Tr Te Tr Te Tr Te Tr Te Tr Te

10000 2 3622 412 0 100 164 1632 0 1496 3
20000 3 15045 1225 0 281 321 4984 0 4367 0
30000 6 34592 2225 2 474 557 8964 0 8165 0
40000 9 60845 3582 5 704 774 15833 2 12815 5
50000 13 95023 5527 2 930 1045 19140 2 20003 6
60000 17 139299 7920 6 1167 1148 28805 2 30450 9
70000 22 196827 10084 9 1422 1438 31774 3 34909 2
80000 28 248624 12069 5 1688 2073 40056 3 39407 9
90000 27 310826 14461 10 1959 1716 44023 3 47688 6
100000 33 386018 16673 13 2185 2044 54288 3 49394 8

6.3. The Conclusions of Experimental Evaluations

Now, we will give some conclusions for our approaches compared with KNN, SVM, C4.5,
Naive Bayes, and CART, according to the LOOCV experimental results on the uci data sets
and 10 cross-validation experimental results on KDDCUP99 data sets.

(1) Compared with KNN, SVM, and Naive Bayes, the LOOCV recognition results by
our methods on uci data sets are better than KNN, SVM, and Bayes. Furthermore,
our methods on KDDCUP99 data sets have higher efficiency than KNN, SVM, and
Naive Bayes, while they also have good recognitions results.

(2) Compared with CART, the LOOCV recognition results by our methods on uci data
sets are closed to CART. But our methods can process larger data sets than CART
on KDDCUP99 data sets, while they both have good recognition results.

(3) Compared with C4.5, the LOOCV recognition results by our methods on uci data
sets are better than C4.5. Furthermore, the test time by our methods on KDDCUP99
data sets is less than C4.5, while C4.5 can process larger data sets than our methods.
After these two methods are analyzed, we find that our methods are more complex
than C4.5, due to the complex discretization (C4.5 can process the decision table
with continuous values directly, while the discretization should be necessary for

Mathematical Problems in Engineering 21

Table 8: The experimental results of 3 algorithms on KDDCUP99 data sets (≤106 records).

Number of records C4.5 CART Our methods
RRate Tr Te RRate Tr Te RRate Tr Te

100000 0.9992 18730 31 0.9991 56208 8 0.9992 51692 24

200000 0.9997 52971 32 0.9994 113297 8 0.9995 113496 16

300000 0.9997 78118 47 0.9997 182997 0 0.9997 178769 31

400000 0.9998 111026 86 0.9997 327640 23 0.9997 313085 40

500000 0.9997 163746 94 0.9998 391179 16 0.9997 410342 55

600000 0.9998 218152 110 0.9996 446004 16 0.9997 538169 55

700000 0.9998 226879 125 0.9997 610749 24 0.9998 719630 78

800000 0.9999 387911 148 0.9999 1015165 32 0.9999 1143149 109

900000 0.9998 304466 195 0.9999 1595899 382 0.9998 1512619 133

1000000 0.9999 303403 203 0.9997 1583910 367 0.9998 1590494 140

Table 9: The experimental results of 3 algorithms on KDDCUP99 data sets (<5 × 106 records).

Number of records C4.5 CART Our methods
RRate Tr Te RRate Tr Te RRate Tr Te

489843 0.9998 158 0.124 0.9997 386 0.031 0.9998 499 0.063
979686 0.9999 330 0.187 0.9998 1517 0.312 0.9998 1472 0.141
1469529 0.9999 706 0.312 0.9999 5851 5.554 0.9999 4026 0.156
1959372 0.9999 883 0.499 — — — 0.9999 6650 0.421
2449216 0.9999 1143 0.624 — — — 0.9999 11446 0.476
2939059 0.9999 1176 0.655 — — — 0.9999 14023 0.578
3428902 0.9999 1849 0.827 — — — 0.9999 35361 0.606
3918745 0.9999 2043 0.923 — — — — — —
4408588 0.9999 2567 1.106 — — — — — —
4898432 0.9999 2916 1.217 — — — — — —

our methods). As a coin has two sides, enough learning contributes to the better
rule sets, thus less test time is needed by our methods than C4.5.

Therefore, the knowledge reduction approaches based on divide and conquer method
are efficient to process large data set, although they need to be improved further in the future.

7. Conclusions

In this paper, the abstract process of knowledge reduction based on divide and conquer
method is concluded, which is original from the approaches under the equivalence relation
and the one under the tolerance relation. Furthermore, an example for computing positive
region of the decision table is introduced. After that, two algorithms for knowledge reduction
based on divide and conquer method, including an algorithm for attribute reduction and an
algorithm for attribute value reduction, are presented, respectively. The proposed algorithms
are efficient to process the knowledge reduction on uci data sets and KDDCUP99 data set,
according to the experimental evaluations. Therefore, the divide and conquer method is an

22 Mathematical Problems in Engineering

efficient and, therefore, suitable method to be used to knowledge reduction algorithms in
rough set theory. With this efficiency, widespread industrial application of rough set theory
may become possible.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (NSFC)
under Grants no. 61073146, no. 61272060, no. 61203308, and no. 41201378, Scientific and
Technological Cooperation Projects between China and Poland Government, under Grant
no. 34-5, Natural Science Foundation Project of CQ CSTC under Grant no. cstc2012jjA1649,
and Doctor Foundation of Chongqing University of Posts and Telecommunications under
Grant no. A2012-08.

References

[1] A. Bargiela andW. Pedryc,Human-Centric Information Processing Through Granular Modelling, Springer,
Berlin, Germany, 1997.

[2] W. Pedrycz, A. Skowron, and V. Kreinovich,Handbook of Granular Computing, Wiley Interscience, New
York, NY, USA, 2007.

[3] J. T. Yao, Novel Developments in Granular Computing, Applications for Advanced Human Reasoning and
Soft Computation, Information Science Reference, Herskey, Pa, USA, 2010.

[4] J. Yao, “A ten-year review of granular computing,” in Proceedings of the IEEE International Conference
on Granular Computing (GRC ’07), pp. 734–739, November 2007.

[5] Y. Y. Yao, “Granular computing: past, present and future,” in Proceedings of the IEEE International
Conference on Granular Computing, pp. 80–85, 2008.

[6] Y. Y. Yao and J. G. Luo., “Top-down progressive computing,” in Proceedings of the RSKT, pp. 734–742,
Springer, Regina, Canada, 2011.

[7] Z. Pawlak, “Rough sets,” International Journal of Computer and Information Sciences, vol. 11, no. 5, pp.
341–356, 1982.

[8] Z. Pawlak and A. Skowron, “Rudiments of rough sets,” Information Sciences, vol. 177, no. 1, pp. 3–27,
2007.

[9] Z. Pawlak and A. Skowron, “Rough sets: some extensions,” Information Sciences, vol. 177, no. 1, pp.
28–40, 2007.

[10] Z. Pawlak and A. Skowron, “Rough sets and boolean reasoning,” Information Sciences, vol. 177, no. 1,
pp. 41–73, 2007.

[11] J. W. Grzymala-Busse, “A new version of the rule induction system LERS,” Fundamenta Informaticae,
vol. 31, no. 1, pp. 27–39, 1997.

[12] F. Hu and G. Y. Wang, “A quick reduction algorithm based on attribute order,” Chinese Journal of
Computers, vol. 30, no. 8, pp. 1430–1435, 2007 (Chinese).

[13] F. Hu, G. Wang, and Y. Xia, “Attribute core computing based on divide and conquer method,”
in Proceedings of the International Conference on Rough Sets and Intelligent Systems Paradigms (RSEISP
’07), M. Kryszkiewicz et al., Ed., Lecture Notes in Artificial Intelligence 4585, pp. 310–319, springer,
Warsaw, Poland, 2007.

[14] F. Hu, G. Wang, and J. Dai, “Quick discretization algorithm for rough set based on dynamic
clustering,” Journal of Southwest Jiaotong University, vol. 45, no. 6, pp. 977–983, 2010 (Chinese).

[15] K. Hu, Y. Lu, and C. Shi, “Feature ranking in rough sets,” AI Communications, vol. 16, no. 1, pp. 41–50,
2003.

[16] X. Hu, N. Cercone, and N. Cercone, “Learning in relational databases: a rough set approach,”
Computational Intelligence, vol. 11, no. 2, pp. 323–338, 1995.

[17] M. Kryszkiewicz and H. Rybinski, “Computation of reducts of composed information systems,”
Fundamenta Informaticae, vol. 27, no. 2-3, pp. 183–195, 1996.

Mathematical Problems in Engineering 23

[18] D. F. Li, G. B. Li, and W. Zhang, “U/a partition based smallest reduction construction,” Journal of
Wuhan University, vol. 51, pp. 269–272, 2005 (Chinese).

[19] T. Y. Lin andN. Cercone, Eds.,Rough Sets and DataMining-Analysis of Imperfect Data, Kluwer Academic
Publishers, Boston, Mass, USA, 1997.

[20] Q.-H. Liu, F. Li, F. Min, M. Ye, and G.-W. Yang, “Efficient knowledge reduction algorithm based on
new conditional information entropy,” Control and Decision, vol. 20, no. 8, pp. 878–882, 2005 (Chinese).

[21] S. W. Liu, Q.-J. Sheng, B. Wu, Z.-Z. Shi, F. Hu et al., “Research on efficient algorithms for rough set
methods,” Chinese Journal of Computers, vol. 40, pp. 637–642, 2003 (Chinese).

[22] D. Miao, C. Gao, N. Zhang, and Z. Zhang, “Diverse reduct subspaces based co-training for partially
labeled data,” International Journal of Approximate Reasoning, vol. 52, no. 8, pp. 1103–1117, 2011.

[23] J. M. Mikhail, P. Marcin, and Z. Beata, “On partial covers, reducts and decision rules with weights,”
in Proceedings on Transactions on Rough Sets 6, vol. 4374 of Lecture Notes in Computer Sciences 4374, pp.
211–246, Springer, Berlin, Germany, 2007.

[24] R. C. Michal, J. W. Grzymala-Busse, W. P. Neil, and T. Soe, “The rule induction system LERSa
new version for personal computers,” in Proceeding of the International Workshop on Rough Sets and
Knowledge Discovery (RSKD ’93), Alberta, Canada, 1993.

[25] J. M. Moshkov, A. Skowron, and Z. Suraj, “On minimal rule sets for almost all binary information
systems,” Fundamenta Informaticae, vol. 80, no. 1–3, pp. 247–258, 2008.

[26] H. S. Nguyen, “From optimal hyperplanes to optimal decision trees,” Fundamenta Informaticae, vol.
34, no. 1-2, pp. 145–174, 1998.

[27] H. S. Nguyen, “A soft decision tree,” in Proceedings of the Intelligent Information Systems (IIS ’02), M. A.
Klopotek, S. Wierzchon, andM.Michalewicz, Eds., Advanced in Soft Computing, pp. 57–66, Springer,
Berlin, Germany, 2002.

[28] H. S. Nguyen, “Approximate Boolean reasoning: foundations and applications in data mining,” in
Transactions on Rough Sets 5, vol. 4100, pp. 334–506, Springer, Berlinm Germany, 2006.

[29] H. S. Nguyen, A. Skowron, and P. Synak, “Discovery of data patterns with applications to
decomposition and classification problems,” in Rough sets in knowledge discovery 2, L. Polkowski and
A. Skowron, Eds., vol. 19, pp. 55–97, Physica, Berlin, Germany, 1998.

[30] S. H. Nguyen and H. S. Nguyen, “Some efficient algorithms for rough set methods,” in Proceedings
of the Conference of Information Processing and Management of Uncertainty in Knowledge-Based Systems
(IPMU ’96), pp. 1451–1456, Granada, Spain, 1996.

[31] S. H. Nguyen and H. S. Nguyen, “Pattern extraction from data,” Fundamenta Informaticae, vol. 34, no.
1-2, pp. 129–144, 1998.

[32] S. K. Pal, L. Polkowski, andA. Skowron,Rough-Neural Computing: Techniques for Computing withWords,
Cognitive Technologies, Springer, Berlin, Germany, 2004.

[33] Y. Qian, J. Liang, W. Pedrycz, and C. Dang, “An efficient accelerator for attribute reduction from
incomplete data in rough set framework,” Pattern Recognition, vol. 44, no. 8, pp. 1658–1670, 2011.

[34] A. Skowron and C. Rauszer, “The discernibility functions matrics and functions in information
systems,” in Intelligent Decision Support—Handbook of Applications and Advances of the Rough Sets Theory,
R. Slowinski, Ed., pp. 331–362, Kluwer Academic Publisher, Dordrecht, The Netherlands, 1992.

[35] A. Skowron, Z. Pawlak, J. Komorowski, and L. Polkowski, “A rough set perspective on data and
knowledge,” in Handbook of KDD, W. Kloesgen and J. Zytkow, Eds., pp. 134–149, Oxford University
Press, Oxford, UK, 2002.

[36] G. Y. Wang, Rough Set Theory and Knowledge Acquisition, Xi’an Jiaotong University Press, 2001.
[37] G. Y. Wang, H. Yu, and D. C. Yang, “Decision table reduction based on conditional information

entropy,” Chinese Journal of Computers, vol. 25, no. 7, pp. 759–766, 2002 (Chinese).
[38] Jue Wang and Ju Wang, “Reduction algorithms based on discernibility matrix: the ordered attributes

method,” Journal of Computer Science and Technology, vol. 16, no. 6, pp. 489–504, 2001.
[39] Y. Yao and Y. Zhao, “Discernibility matrix simplification for constructing attribute reducts,”

Information Sciences, vol. 179, no. 7, pp. 867–882, 2009.
[40] H.-Z. Yang, L. Yee, and M.-W. Shao, “Rule acquisition and attribute reduction in real decision formal

contexts,” Soft Computing, vol. 15, no. 6, pp. 1115–1128, 2011.
[41] M. Zhao, The data description based on reduct [Ph.D. dissertation], Institute of Automation, Chinese

Academy of Sciences, Bejing, China, 2004.

24 Mathematical Problems in Engineering

[42] J. Zhou, D. Miao, W. Pedrycz, and H. Zhang, “Analysis of alternative objective functions for attribute
reduction in complete decision tables,” Soft Computing, vol. 15, no. 8, pp. 1601–1616, 2011.

[43] W. Ziarko, N. Cerone, and X. Hu, “Rule discovery from database with decision matrices,” in
Proceedings of the 9th International Symposium on Foundation of Intelligent Systems (ISMIS ’96), pp. 653–
662, Zakopane, Poland, May 1996.

[44] X. Wu, V. P. Kumar, R. S. Quinlan et al. et al., “Top 10 algorithms in data mining,” Knowledge and
Information Systems, vol. 14, no. 1, pp. 1–37, 2008.

[45] F. Hu and G. Y. Wang, “Analysis of the complexity of quick sort for two-dimensional tables,” Chinese
Journal of Computers, vol. 30, no. 6, pp. 963–968, 2007 (Chinese).

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

