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An optimized explicit modified Runge-Kutta (RK) method for the numerical integration of the
radial Schrödinger equation is presented in this paper. This method has frequency-depending
coefficients with vanishing dispersion, dissipation, and the first derivative of dispersion. Stability
and phase analysis of the new method are examined. The numerical results in the integration of
the radial Schrödinger equation with the Woods-Saxon potential are reported to show the high
efficiency of the new method.

1. Introduction

In this paper, we are concerned with the numerical integration of the one-dimensional
Schrödinger equation of the form

y′′(x) = (v(x) − E)y(x), (1.1)

where the real number E is the energy and the function v(x) is the effective potential satisfying
v(x) → 0 as x → ∞. Two boundary conditions are associated with this equation: one
is y(0) = 0, and the other imposed at large x is determined by physical considerations.
The form of this second boundary condition depends crucially on the sign of the energy
E. Such problems are frequently encountered in a variety of scientific fields and engineering
applications [1–9]. Concerning the oscillatory character of the solution to the Schrödinger
equation (1.1), there have appeared a lot of numerical integrators of adapted type, a
pronounced class of which is based on important properties such as the phase lag and
the amplification (see [10–18]). These are actually two different kinds of truncation errors.
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The first is the angle between the analytical solution and the numerical solution, and the
second is the distance from a standard cyclic solution. If a good frequency is estimated
in advance, then it is a good choice to construct numerical methods with zero dispersion
or/and zero dissipation. These techniques are called phase fitted or/and zero dissipation.
Related work can be founded in [19–21]. For Runge-Kutta methods, Simos and Aguiar [18]
constructed amodified Runge-Kutta method for the numerical integration of the Schrödinger
equation by phase fitting based on the fifth-order RK method. Recently, Van de Vyver [16]
gave an embedded pair of modified RK methods by nullifying the phase-lags of the fifth-
order method and the fourth-order method. And in [22], Tsitouras and Simos constructed
phase-fitted and zero dissipation fifth-order Runge-Kutta method for the numerical solution
of oscillatory problems.

In this paper, inspired by the ideas in [23–28], we construct a new kind of modified
fifth-order Runge-Kutta method by nullifying the dispersion, the dissipation, and the first
derivative of the dispersion. In Section 2, the preliminaries of the phase properties of explicit
modified Runge-Kutta methods are introduced. In Section 3, the coefficients of a new kind
of optimized modified RK method are obtained. Section 4 examines the stability and phase
properties of the new method. In Section 5, the numerical experiments are reported.

2. Preliminaries

We begin by considering the numerical integration of the initial value problem (IVP) of first-
order differential equations in the following form:

y′(x) = f
(
x, y

)
, y(x0) = y0, (2.1)

whose solution shares an oscillatory character. We follow the convention to assume that the
frequency is known to be ω in advance or can be accurately estimated. An s-stage-modified
explicit Runge-Kutta (RK)method has the following scheme:

Yi = γiyn + h
i−1∑

j=1

aijf
(
xn + cjh, Yj

)
, i = 1, . . . , s,

yn+1 = yn + h
s∑

i=1

bif(xn + cih, Yi),

(2.2)

where the coefficients aij , ci, bi, i = 1, . . . , s are constants, h is the step size, and the parameters
γi, i = 1, . . . , s are even functions of ν = hω. It is convenient to express the modified RK
method (2.2) by the Butcher tableau as follows:

c1 γ1
c2 γ2 a21
...

...
...

. . .
cs γs as1 · · · ass−1

b1 · · · bs−1 bs

(2.3)

or simply by (c, γ,A, b). The extra-frequency-depending parameters γi(ν), ν = hω, i = 1, . . . , s
are introduced to tune the traditional RK method to the special oscillatory structure of
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the problem. We assume that limν→ 0γi(ν) = 1, i = 1, . . . , s so that as ν → 0, the modified
RK method (2.2) reduces to a traditional RK method. An alternative approach adopted by,
for example, exponential/trigonometric fitting techniques, is to let some of the coefficients
aij , ci, bi, i = 1, . . . , s be functions of ν = hω (see [16, 18, 29]).

Applying the modified RK method (2.2) to the test equation as follows:

y′ = iωy, ω > 0 (2.4)

yields

yn+1 = R(iν)yn, ν = ωh. (2.5)

A comparison of the numerical solution with the exact solution leads to the notions of phase-
lag and dissipation error defined as follows.

Definition 2.1. The following two quantities are called the phase lag (or dispersion) and the
amplification factor error (or dissipation error), respectively:

P(ν) = ν − arg(R(iν)), D(ν) = 1 − |R(iν)|. (2.6)

The method is said to be dispersive of order q and dissipative of order p if

P(ν) = O
(
νq+1

)
, D(ν) = O

(
νp+1

)
. (2.7)

If P(ν) = 0 and D(ν) = 0, the method is called phase fitted (zero dispersive) and amplification-
fitted (zero dissipative), respectively.

For modified RK method (2.2), we have

R(iν) = U
(
ν2
)
+ iνV

(
ν2
)
, (2.8)

where

U
(
ν2
)
= 1 − t2ν

2 + t4ν
4 + · · · , V

(
ν2
)
= 1 − t3ν

2 + t5ν
4 + · · · (2.9)

are polynomials in ν2, which are completely defined by the Runge-Kutta coefficients c, A, γ ,
and b. Therefore, we have

P(ν) = ν − arctan

(

ν
V
(
ν2
)

U(ν2)

)

, D(ν) = 1 −
√
(U(ν2))2 + ν2(V (ν2))2. (2.10)

Based on the fifth algebraic order six-stage Dormand and Prince Runge-Kutta method,
Simos and Aguiar [18] obtained an explicit modified RK method with one parameter γ2
(taking the orthers γ1 = γi = 1 for i = 3, . . . , 6) determined by nullifying the quantity
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tan(ν) − ν((V (ν2))/(U(ν2))). In [22], Tsitouras and Simos presented an optimized Runge-
Kutta method by nullifying the dispersion and the dissipation. In this paper, we construct
a new optimized Runge-Kutta method by nullifying the dispersion, the dissipation, and the
first derivative of the dispersion.

3. Construction of the New Method

In this section, we are concerned with the following Runge-Kutta method given by the
Butcher tableau as follows:

0 1 0

1
5

γ2
1
5

0

3
10

γ3
3
40

9
40

0

4
5

γ4
44
45

−56
15

32
9

0

8
9

1
19372
6561

−25360
2187

64448
6561

−212
729

0

1 1
9017
3168

−355
33

46732
5247

49
176

− 5103
18656

0

35
384

0
500
1113

125
192

−2187
6784

11
84

0

(3.1)

If we choose γ2 = γ3 = γ4 = 1, the classical Runge-Kutta method with order fifth derived by
Dormand and Prince [30] is recovered.

In order to construct the new embedded RK pair, we set γ2, γ3, γ4 free and keep the
rest of the coefficients. Motivated by the ideas in [23–28], we obtain the dispersion, the
dissipation, and the first derivative of the dispersion of this method, which depend on
ν, γ2, γ3, γ4 as follows:

P(ν) = tan(ν) − M

N
,

d(ν) = 1 −
√
M2 +N2,

der · P(ν) = sec2(ν) − M′N −MN ′

N2
,

(3.2)

where

M = 15ν
(
474651 − 688905γ5 − 96460ν2 + 17808γ2ν4

−11130γ4
(
2ν2 − 125

)
− 640γ3

(
371ν2 − 1500

))
,

N = −7
(
225

(
1855 + 6400γ3 + 2650γ4 − 729γ5

)
ν2 − 4579200

+21200
(
3γ2 − 8γ3 − 4

)
ν4 + 7632ν6

)
.

(3.3)
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Now, solving (3.2), we get γ values in terms of ν. Instead of giving the very complicated
expressions for γi, for the purpose of practical computation, we present their Taylor
expansions as follows:

γ2 = 1 − 24179ν2

698950
− 491109813ν4

279160630000
− 3747105974663311ν6

8278634104933500000

− 5235134512534020593713ν8

50148377999575005150000000
+ · · · ,

γ3 = 1 +
901ν4

998500
− 146822137ν6

8973020250000
+

390542419221781ν8

39422067166350000000

− 3826206167449731276763ν10

1074608099990892967500000000
+ · · · ,

γ4 = 1 − 1088ν4

1747375
+

1151652176ν6

3925696359375
+

5225984025866ν8

239543810906640625

+
52283859929609197732ν10

9794605078041993193359375
+ · · · .

(3.4)

In order to check the algebraic order of the newly obtained modified RK method, we
note that the order conditions listed in [31] for traditional RK methods are not sufficient for
the modified RK method (2.2). Writing

γi = 1 + γ
(2)
i ν2 + γ

(4)
i ν4 + γ

(6)
i ν6 + · · · , (3.5)

we obtain the following additional conditions for the modified RK method (2.2) to be of up
to order five (see [16]):

(i) order 3 requires:

∑

i

biγ
(2)
i = 0; (3.6)

(ii) order 4 requires in addition:

∑

i

biciγ
(2)
i = 0,

∑

ij

biaijγ
(2)
j = 0; (3.7)

(iii) order 5 requires in addition:

∑

i

bi
(
γ
(2)
i

)2
= 0,

∑

i

biγ
(4)
i = 0,

∑

i

bic
2
i γ

(2)
i = 0,

∑

ij

biciaijγ
(2)
j = 0,

∑

ij

biaijcjγ
(2)
j = 0,

∑

ij

biaijajkγ
(2)
k

= 0.
(3.8)
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By simple calculation, it is verified that the new method is of algebraic order fifth. We denote
the new method as MODRK5PLDPLAM.

4. Analysis of Stability and Phase Properties

In this section, we are interested in the stability and phase properties of the new method.
Lambert and Watson’s stability theory [32] was reformulated by Coleman and Ixaru [33] for
the periodicity of exponentially fitted symmetric methods for y′′ = f(x, y). Van de Vyver [34]
adapted this theory to RKmethods. Following Van de Vyver’s approach, we consider the test
equation as follows:

y′ = iλy, λ > 0. (4.1)

Applying the modified RK method (2.2) to test (4.1) yields the difference equation

yn+1 = M(iθ, ν)yn, θ = λh, (4.2)

where

M(iθ, ν) =
det

(
I − iθA + iθγ(ν)bT

)

det(I − iθA)
(4.3)

with I the s × s identity matrix.

Definition 4.1 (see [34]). For the modified RK method (2.2) with stability function M(iθ, ν),
the region in the θ-ν plane

Ω := {(θ, ν) : |M(iθ, ν)| ≤ 1} (4.4)

is called the region of imaginary stability. And any closed curve defined by |M(iθ, ν)| = 1 is a
stability boundary of the method.

In Figure 1 we plot the region of imaginary stability for the method
MODRK5PLDPLAM.

Definition 4.2 (see [34]). For the modified RK method (2.2) with stability function M(iθ, ν),
the quantities

P̃(θ, ν) = θ − arg(M(iθ, ν)), D̃(θ, ν) = 1 − |M(iθ, ν)| (4.5)
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Figure 1: Regions of imaginary stability of the MODDPHARK5 method.

are called the phase lag (dispersion) and amplification factor error (dissipation), respectively.
If

P̃(θ, ν) = cφθ
q+1 +O

(
θq+3

)
, D̃(θ, ν) = cdθ

p+1 +O
(
θp+3

)
, (4.6)

the method is said to be of phase-lag order q and dissipation order p, respectively, where the cφ
and cd are called the phase-lag constant and dissipation constant, respectively.

We note that, by definition, when ν = θ (ω = λ), it must be true that P̃(θ, ν) = 0
and D̃(θ, ν) = 0. In general, ω/=λ since the fitting frequency ω is just an estimate of the true
frequency. Therefore the order of P̃(θ, ν) = 0 and D̃(θ, ν) = 0 in Definition 4.2 measure to
what extent a modified RK method is accurate in phase and dissipation. Denoting the ratio
r = ν/θ = ω/λ, we obtain the following expressions for the phase lag and the dissipation
error of the new method MODRK5PLDPLAM:

P̃(θ, rθ) = −
(
r2 − 1

)2(29955 + 11552r2
)

62905500
θ7 +O

(
θ9
)
,

D̃(θ, rθ) =

(
r2 − 1

)(−13979 + 10200r2
)

50324400
θ6 +O

(
θ8
)
.

(4.7)

Thus, the methodMODRK5PLDPLAM has a phase lag of order six and a dissipation of order
five.

5. Numerical Experiments

In this section, we test the numerical performance of the new fifth-order method in the
integration of the radial Schrödinger equation with the well-known Woods-Saxon potential,
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Figure 2: Efficiency curves for E = 53.588872.

respectively. We compare the new method with some existing highly efficient methods in the
literature.

The methods we choose for comparison are as follows:

(i) PHARK5S: the phase-fitted fifth-order RK method given by Simos in [17],

(ii) MODPHARK5S: the modified phase-fitted fifth-order RK method given by Simos
and Aguiar in [18],

(iii) MODPHARK5V: the higher-order method of the modified phase-fitted embedded
RK5 (2.4) pair given by Van de Vyver in [16],

(iv) ARK5: an adapted fifth-order RK method given by Fang et al. in [35],

(v) PHADISRK5S: the phase-fitted and zero dissipation fifth-order RK method given
by Tsitouras and Simos in [22],

(vi) MODRK5PLDPLAM: the phase-fitted fifth-order method derived in this paper.

We consider the numerical integration of the Schrödinger equation (1.1)with the well-known
Woods-Saxon potential

v(x) = c0z(1 − a(1 − z)), (5.1)

where z = (exp(a(x − b) + 1))−1, c0 = −50, a = 5/3, b = 7. The problem is solved in the
interval [0, 15]. Following [16, 36–38], we choose the fitting frequency

ω =

{√
50 + E, x ∈ [0, 6.5],√
E, x ∈ [6.5, 15].

(5.2)
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Figure 3: Efficiency curves for E = 163.215341.
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Figure 4: Efficiency curves for E = 341.495874.

In the numerical experiment we consider the resonance problem (E > 0), the numerical
results Ecalculated are compared with the analytical solution Eanalytical of the Woods-Saxon
potential, rounded to six decimal places. In Figures 2, 3, 4, and 5, we plot the error
−log10|Eanalytical − Ecalculated| versus N (with the integration step-size 1/2N) for Eanalytical =
53.588872, 163.215341, 341.495874, and 989.701916, respectively.
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Figure 5: Efficiency curves for E = 989.701916.

6. Conclusions and Discussions

Based on the classical fifth RK method of Dormand and Prince [30], a new optimized explicit
modified RKmethod with modifying parameters is obtained by nullifying the dispersion, the
dissipation, and the first derivative of the dispersion. The numerical results stated in Figures
2–5 illustrate the higher efficiency of the new method compared to some highly efficient
methods in the recent literature [16–18, 22, 35].
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