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This paper addresses the problem of designing robust tracking controls for a class of switched
fuzzy (SF) systems with time delay. A switched fuzzy system, which differs from existing ones,
is firstly employed to describe a nonlinear system. Next, a fast switching controller consisting of
a number of simple subcontrollers is proposed. The smooth transition is governed by using the
fast switching controller. Tracking hybrid control schemes which are based upon a combination of
the H∞ tracking theory, fast switching control algorithm, and switching law design are developed
such that the H∞ model referent tracking performance is guaranteed. Since convex combination
techniques are used to derive the delay independent criteria, some subsystems are allowed to be
unstable. Finally, various comparisons of the elaborated examples are conducted to demonstrate
the effectiveness of the proposed control design approach. All results illustrate good control
performances as desired.

1. Introduction

Recent years have witnessed rapidly growing interest in switched systems which are an
important class of hybrid systems [1–6]. Time delays, due to the information transmission
between subsystems, naturally exist in switched systems, and the existence of the delay
is frequently a source of instability. So, much research has been devoted to the study of
switched systems with time delay [7–11]. Since switched systems with time-delay have
a strong engineering background, special attention has been attracted, and several useful
results have been reported in the literature such as the issues on stability analysis [12–15],
H∞ filtering [16], and tracking control [17].

From the middle of the 1980s, there have appeared a number of analysis problems
about T-S fuzzy systems [18–28], and recently, switched systems have been extended further
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to encompass fuzzy systems too. Very notably, the stabilizability conditions and smoothness
conditions for fuzzy switching control systems were reported. For the continuous-time case, a
combination of hybrid systems and fuzzymultiple model systemswas described, and an idea
of the fuzzy switched hybrid control was put forward [20]. Based on the T-S fuzzy systems,
Tanaka et al. [21–24] introduced new switching fuzzy systems for more complicated real
systems such as multiple nonlinear systems, switched nonlinear hybrid systems, and second-
order nonholomonic systems. Tanaka et al. also addressed why the switching fuzzy model
not the T-S fuzzy model is needed with a practical example in [21–23]. For the discrete-time
case, Choi gave some extensions in [21–23] to output control [25] and to guaranteed cost [26]
control designs. This class of the model [21–23] has two levels of structures. It will switch
between the second level region rules according to the first level region rules. In fact, it is a
type of switching for the same premise variable.

To effectively achieve nonlinear control, we propose the SF model [27]. The proposed
corresponding model of SF systems, presented below, differs from the existing ones in the
literature cited in the fact that each sub system is a T-S fuzzy system hence defining a class
of SF systems. Usually, this class of systems can precisely describe continuous and discrete
dynamics as well as their interactions in the complex real-world systems. It should be noted
this class inherits some essential features of hybrid systems [29] while retaining all the
information and knowledge representation capacity of fuzzy systems [30].

Comparing with the previous work [21–23], this model of SF system has not two
levels of structures, but it is switching between each of the subfuzzy systems directly, not
depending on region fuzzy rules. That is to say it is extended further for the switching fuzzy
systems. Furthermore, this model is used for the extra design of the switching law based on
the previous work [21–23]. In the case, stability analysis is often facilitated by the fact that
properties of each individual subfuzzy system are of concern only in the regions where this
subsystem is active, and the behavior of the sub fuzzy systems in other parts of the state
space has no influence on the SF system. It is possible to find a switching law that renders
the SF systems stable for instable sub fuzzy systems. Also, switching law can be designed
by arbitrary form, not only depending on fuzzy rules as [21–23]. To the authors’ knowledge,
the issue of tracking control, which has been well addressed for switched systems with delay
[17, 31] and fuzzy systems with delay [32–34], has been rarely investigated for SF systems
with time-delay. The recent paper [35] has investigated the adaptive robust tracking control
of SF systems; however, time delays are not considered. Tracking control for SF systems with
time delaywhich is based on designed switchingmethod is still an open and interesting issue.

On the other hand, traditional parallel distributed compensation (PDC) control [21–23,
36] is good at handling switching fuzzy systems subject. However, an undesired chattering
effect will occur. Throughout this paper, the fast switching controller, which consists of a
number of simple subcontrollers, is designed from sub fuzzy system of SF model. One of the
sub-controllers will be active at a time according to some switching laws derived from the
Lyapunov stability theory. Consequently, a fast switching controller, which provides good
system performance and has no chattering effect when the system state approaches the origin,
can be obtained. Furthermore, a switching function is employed to alleviate the chattering
effect during the transient period.

In this paper, we investigate the problem of tracking control for SF systems with time
delay by using a switching method. Sufficient conditions for the solvability of the tracking
control problem are given. We use single Lyapunov function technique and the fast switching
controller to design a tracking control law, such that the H∞ model reference tracking
performance is satisfied. Since convex combination techniques are used to derive the delay
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independent criteria, some subsystems are allowed to be unstable. It is highly desirable that
a nonswitched time-delay system cannot earn such property. Finally, the simulation example
shows the validity of the proposed methods.

This paper is organized as follows. Section 2 reviews a switching fuzzy system.
In Section 3, we describe the model of a SF system of time-delay case. In Section 4,
new stabilization and the fast switching controller are derived. Two compared example
simulations will be presented in Section 5. Finally, a conclusion will be drawn in Section 6.

2. Preliminaries

Consider a switching fuzzy model defined by Tanaka et al. as follows [21–23]:
region rule j:

if z1(t) is Nj1 and . . . and zp(t) is Njp (2.1)

then
local region rule i:

if z1(t) is Mji1 and . . . and zp(t) is Mjip

then

ẋ(t) = Ajix(t) + Bjiu(t),

y(t) = Cjix(t),

i = 1, 2, . . . , r, j = 1, 2, . . . , s.

(2.2)

z1(t), . . . , zp(t) are the premise variables. Mji1, . . . ,Mjip are the fuzzy sets. r is the number of
the if-then rules. This switching fuzzy model in [21–23] has two levels of structures: region
rule level and local fuzzy rule level. The region rule is crisply switched according to the
premise variables. s is the number of region partitioned on the premise variables space.
Njk(z(t)) is a crisp set.

Where

Njk(z(t)) =

{
1, z(t) ∈ Njk

0, otherwise.
(2.3)

The following final output of the switching fuzzy model (2.2) is inferred by Tanaka et
al. in [21–23]:

ẋ(t) =
s∑

j=1

r∑
i=1

vj(z(t))hji(z(t))
{
Ajix(t) + Bjiu(t)

}
,

y(t) =
s∑

j=1

r∑
i=1

vj(z(t))hji(z(t))Cjix(t),

(2.4)
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where

vj(z(t)) =

∏p

k=1Njk(zk(t))∑s
j=1

∏p

k=1Njk(zk(t))
, hji(z(t)) =

∏p

k=1Mjik(zk(t))∑r
i=1

∏p

k=1Mjik(zk(t))
,

vj(z(t)) =

{
1, z(t) ∈ Region j

0, otherwise,

Region 1 ∪ Region 2 ∪ · · ·Region S =
s⋃
j=1

Region j = X,

Region j1 ∩ Region j2 = φ,

j1 /= j2, j1 = 1, 2, . . . , s, j2 = 1, 2, . . . , s,

(2.5)

where X denotes the universe of discourse. When the variables z1(t), . . . , zp(t) satisfy the
condition of the region rule, the fuzzy model which belongs to the local region rule below the
region rule is active.

The idea of Tanaka et al. is simple and natural. They explain the idea through the
following example [21].

Example 2.1. Consider a switching fuzzy model with the membership functions in Regions 1
and 2 as shown in Figure 1.

Region rule 1: if x2(t) ≥ 1
then

local region rule 1: if x2(t) is h11(x2(t)) (2.6)

then ẋ(t) = A11x(t) + B11u(t)

local region rule 2: if x2(t) is h12(x2(t)) (2.7)

then ẋ(t) = A12x(t) + B12u(t)
Region rule 2: if x2(t) < 1

then

local region rule 1: if x2(t) is h21(x2(t)) (2.8)

then ẋ(t) = A21x(t) + B21u(t).

local region rule 2: if x2(t) is h22(x2(t)) (2.9)

then ẋ(t) = A22x(t) + B22u(t).
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Region 1 Region 2 

Rule 2 Rule 1 Rule 2 Rule 1 1

0
1 5−3

x2(t)

Figure 1: Membership functions of switching fuzzy systems in regions 1 and 2.

The membership functions of each local T-S fuzzy model are assigned as follows:

h11(x2(t)) =

⎧⎨
⎩

x2(t) − 1
4

, 1 < x2(t) ≤ 5

1, x2(t) > 5,

h12(x2(t)) =

⎧⎨
⎩

−x2(t) + 5
4

, 1 < x2(t) ≤ 5

0, x2(t) > 5,

h21(x2(t)) =

⎧⎨
⎩

x2(t) + 3
4

, −3 < x2(t) ≤ 1

0, x2(t) < −3,

h22(x2(t)) =

⎧⎨
⎩

−x2(t) + 1
4

−3 ≤ x2(t) < 1

1, x2(t) < −3.

(2.10)

It can be seen from Figure 1 that the connecting rules that bridge between region 1 and
region 2 are rule 2 in region 1 and rule 1 in region 2.

Differing from the existing switching fuzzy systems [21–24], we propose the SF model
[27]. Now we introduce the SF systems.

When subsystems of the switched systems are T-S fuzzy systems, the systems are
switched fuzzy systems. Sketch map of the switched fuzzy systems is depicted in Figure 2.
Ωi denote the state area of the ith switched subsystem. Ωil denotes the lth subfuzzy area in
Ωi. In fact, the switched fuzzy systems again partition the Ωi subarea into l subfuzzy areas
Ωi1, . . . ,Ωil, . . . ,Ωi� . There is local linear model in every subfuzzy area, namely, local linear
model in Ωil is ẋ(t) = Ailx(t) + Bilui(t). The model of every switched subarea Ω1, . . . ,Ωm is
composed of local linear model which is linked by fuzzy membership function. We design
the switching law for sub fuzzy area model to ensure stability of the switched fuzzy system.
When local model in subfuzzy area satisfies the switching law, we switch to the Ωith sub
system to ensure stability of the switched fuzzy system.

Now, we define SF model including Nσ(t) pieces of rules as follows:

Rl
σ(t): if xσ(t)1(t) is Ml

σ(t)1 . . . and xσ(t)p(t) is Ml
σ(t)p, (2.11)
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Ω1 Ωi Ωm

Ω11 Ω1l Ωi1 Ωil Ωiℓ Ωm1 Ωml ΩmℓΩ1ℓ

Figure 2: Sketch map of switched fuzzy system.

then

ẋ(t) = Aσ(t)lx(t) + Bσ(t)luσ(t)(t), l = 1, 2, . . . ,Nσ(t), (2.12)

with

σ(t) : M = {1, 2, . . . , m}, (2.13)

where is a piecewise constant function, called a switching signal.
Rl

σ(t) denotes the lth fuzzy inference rule, Nσ(t) are the number of inference rules,
uσ(t)(t) is the input variable, x(t) is the state variable vector, Aσ(t)l and Bσ(t)l are matrices
of appropriate dimensions, xσ(t)1, xσ(t)2, . . . , xσ(t)p are the vector of premise variables.

Comparing with the previous work [21–23], the SFmodel breaks through two levels of
structures, but it is switching between each of the sub fuzzymodel directly. Particularly, when
the parameters sudden change or discontinuous change, the switching rules can be designed
as any combinational function of variables, which make up the insufficiency of the switching
depending on the single variable of the switching fuzzy model. That is, the SF systems are
extended further for the switching fuzzy systems (2.2)–(2.4).

3. Novel Models of Switched Fuzzy Time-Delay Systems

So in here, we shall introduce an innovated representation modeling of SF time-delay
systems. In this model, each subsystem is a fuzzy time-delay system, namely, sub fuzzy time-
delay system.

Consider the SF time-delay model including Nσ(t) pieces of rules as follows:

Rl
σ(t): if xσ(t)1(t) is Ml

σ(t)1 . . . and xσ(t)p(t) is Ml
σ(t)p,

then ẋ(t) = Aσ(t)lx(t) +Dσ(t)lx(t − d) + Bσ(t)luσ(t)l(t) +ω, l = 1, 2, . . . ,Nσ(t),

y(t) = Cσ(t)lx(t), x(t) = ϕ(t), t ∈ [−τ, 0]

(3.1)

with

σ(t) : M = {1, 2, . . . , m}, (3.2)

where is a piecewise constant function, called a switching signal.
uσ(t)l(t) ∈ R

q is the control input, x(t) ∈ R
n and y(t) ∈ R

s denote the state vector
and the output vector, respectively, ω ∈ R

n is the bounded exogenous disturbance, Aσ(t)l and
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Dσ(t)l ∈ R
n×n are known system matrices, and Bσ(t)l ∈ R

n×q is the input matrix. Cσ(t)l ∈ R
s×n is

the output matrix, d is the constant bounded time delay in the state and it is assumed to be
0 < d ≤ τ , and the initial condition ϕ(t) is a differentiable function or constant vector.

It is readily seen that the ith sub fuzzy system can be represented as follows:

Rl
i : if xi1(t) is Ml

i1 . . . and xip(t) is Ml
ip, (3.3)

then

ẋ(t) = Ailx(t) +Dilx(t − d) + Biluil(t) +ω, l = 1, 2, . . . ,Ni, i = 1, 2, . . . , m. (3.4)

Therefore the global model of the ith sub fuzzy system is described by means of the
equation as follows:

ẋ(t) =
Ni∑
l=1

ηil(xi(t))[Ailx(t) +Dilx(t − d) + Biluil(t) +ω], (3.5)

along with

0 ≤ ηil(xi(t)) ≤ 1,
Ni∑
l=1

ηil(xi(t)) = 1,

wil(xi(t)) =
p∏

ρ=1

Ml
iρ

(
xiρ(t)

)
, ηil(xi(t)) =

wil(xi(t))∑Ni

l=1 wil(xi(t))
,

(3.6)

where Ml
iρ(xiρ(t)) denotes the membership function which xiρ(t) belongs to the fuzzy set

Ml
iρ.

4. Design of Fast Switching Controllers and Switching Law

Given a reference model

ẋr(t) = Arxr(t) + r(t), xr(0) = 0 (4.1)

and performance index

∫ tf

0
eTr (t)er(t)dt < γ2

∫ tf

0
ω̃T (t)ω̃(t)dt, (4.2)

where xr(t) ∈ R
n is reference state, Ar is a Hurwitz matrix, r(t) is bounded reference

input, er(t) = x(t) − xr(t) denotes the error between the real state of the switched fuzzy
time-delay system (3.1) and the reference state, tf is the control terminated time, (ω̃(t) =
(ωT (t) − rT (t) rT (t)))T , and γ > 0 is a prescribed attenuation level.
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Definition 4.1. The system (3.1) is said to be quadratically stable if there exists positive definite
matrix P and state-dependent switching law σ = σ(x) such that the quadratic Lyapunov
function V (x(t)) satisfies V̇ (x(t)) < 0 for any x(t)/= 0 along the system state trajectory from
arbitrary initial conditions.

It should be noted, in this definition the existence of state is dependent on switching
law σ = σ(x) and how to construct it. It is therefore that it can be pursued the way it is
most appropriate for the given class of plant system and the investigated control synthesis
so as to obtain the desirable design, preferably the one guaranteeing global asymptotic or
exponential stability [1–5]. It is this fact that has been exploited in the sequel in conjunction
with the choice of the switching laws in Theorems 4.3.

In here, for system (3.1), if there exist control input u = u(t) and switching signal
σ = σ(t) such that (3.1) is quadratically stable when ω̃ ≡ 0, and (4.2) is satisfied when ω̃ /= 0
under the initial conditions stated in (3.1) and (4.1), then the switched system (3.1) is said to
have H∞ model reference tracking performance.

Our purpose is to design a controller u = u(t) and a switching law such that system
(3.1) has the H∞ model reference tracking performance.

Remark 4.2. The H∞ tracking control problem for a switched fuzzy time-delay system is
solved by Theorems 4.3–4.6. When M = {1}, switched fuzzy time-delay system (3.1)
degenerates into a general fuzzy system, and the H∞ tracking control problem becomes the
standard H∞ tracking control problem for fuzzy systems.

Now a fast switching controller is employed to control the switched fuzzy time-delay
model of (3.1). The fast switching controller consists of some simple subcontrollers. These
sub-controllers will switch among each other to control the system of (3.1) according to an
appropriate switching scheme. It is shown in the sequel how to design controllers to achieve
quadratic stability in the closed loop and under the switching law.

The fast switching controller for the sub fuzzy time-delay system is described by

uil(t) = −
Ni∑
a=1

ρila(er(t))RBT
iaP11er(t), (4.3)

where ρila(er(t)) takes the value of 0 or 1 according to a switching scheme discussed later, R ∈
R

q×q and P11 ∈ R
n×n are symmetric positive definite matrices to be designed, and (·)Tdenotes

the transpose of a matrix or a vector.
Combining (3.1)with (4.1) and (4.3), we get the augmented system as follows:

[
ėr(t)
ẋr(t)

]
=

⎡
⎢⎣ Ni∑

l=1

ηilBil

(
−

Ni∑
a=1

ρilaRB
T
iaP11

)
+

Ni∑
l=1

ηilAil

Ni∑
l=1

ηilAil −Ar

0 Ar

⎤
⎥⎦
[
er(t)
xr(t)

]

+

⎡
⎢⎣

Ni∑
l=1
ηilDil

Ni∑
l=1

ηilDil

0 0

⎤
⎥⎦
[
er(t − τ)
xr(t − τ)

]
+

⎡
⎢⎣

Ni∑
l=1

ηilω − r

r

⎤
⎥⎦.

(4.4)
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Thus, the system (4.4) can be rewritten as

˙̃x(t) =
Ni∑
l=1

ηilÃilx̃(t) +
Ni∑
l=1

ηilD̃ilx̃(t − τ) +
Ni∑
l=1

ηilω̃(t), (4.5)

where

x̃(t) =
[
er(t)
xr(t)

]
, Ãil =

⎡
⎢⎣Bil

(
−

Ni∑
a=1

ρilaRB
T
iaP11

)
+Ail Ail −Ar

0 Ar

⎤
⎥⎦,

D̃il =
[
Dil Dil

0 0

]
, ω̃ =

[
ω − r
r

]
.

(4.6)

We have the following result.

Theorem 4.3. Suppose there exist positive definite symmetric matrixes P , S,Q, and constants λiji > 0
such that the following matrix inequalities are satisfied; then for a prescribed γ2, H∞ tracking control
performance in (4.2) is guaranteed via the state-feedback controller (4.3) as follows:

m∑
i=1

λiji

⎡
⎢⎣Ã

T
iji
P + PÃiji + S +Q PD̃iji P

∗ −S 0
∗ ∗ −γ2I

⎤
⎥⎦ < 0, ji = 1, 2 . . . ,Ni, i = 1, 2, . . . , m. (4.7)

And, the switching law is designed as

σ(t) = arg min

{
V i(t)

Δ= max
ji

{
ΞT (t)

[
ÃT

iji
P + PÃiji + S +Q + γ−2PP PD̃iji

D̃T
iji
P −S

]
Ξ(t) < 0,

ji = 1, 2, . . . ,Ni

}}
.

(4.8)

Proof. By Schur complement lemma, the condition (4.7) is equivalent to the following
inequality:

m∑
i=1

λiji

[
ÃT

iji
P + PÃiji + S +Q + γ−2PP PD̃iji

D̃T
iji
P −S

]
< 0. (4.9)

From (4.9)we know that for any Ξ(t)/= 0, it holds that

m∑
i=1

λijiΞ
T (t)

[
ÃT

iji
P + PÃiji + S +Q + γ−2PP PD̃iji

D̃T
iji
P −S

]
Ξ(t) < 0. (4.10)
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Note that (4.10) holds for any ji ∈ {1, 2, . . . ,Ni} and λiji > 0, then there exists at least an i such
that for any ji

ΞT (t)

[
ÃT

iji
P + PÃiji + S +Q + γ−2PP PD̃iji

D̃T
iji
P −S

]
Ξ(t) < 0. (4.11)

Thus, the switching law defined by (4.8) is well defined.
Now define a quadratic Lyapunov-Krasovskii functional candidate

V (x̃(t)) = x̃T (t)Px̃(t) +
∫ t

t−τ
x̃T (θ)Sx̃(θ)dθ. (4.12)

which is positive definite, since P and S are positive definite matrices.
First, we will prove that the system (4.5) is quadratically stable while ω̃(t) ≡ 0. The

time derivative of V (t) is

V̇ (x̃(t)) = ˙̃x
T
(t)Px̃(t) + x̃T (t)P ˙̃x(t) + x̃T (t)Sx̃(t) − x̃T (t − τ)Sx̃(t − τ)

=
Ni∑
l=1

ηilx̃
T (t)

(
ÃT

ilP + PÃil

)
x̃(t) +

Ni∑
l=1

ηilx̃
T (t)PD̃ilx̃(t − τ) +

Ni∑
l=1

ηilx̃
T (t − τ)D̃T

ilP x̃(t)

+ x̃T (t)Sx̃(t) − x̃T (t − τ)Sx̃(t − τ)

=
Ni∑
l=1

ηilΞT (t)

[
ÃT

ilP + PÃil + S PD̃il

D̃T
il
P −S

]
Ξ(t),

(4.13)

where Ξ(t) =
[

x̃(t)
x̃(t−τ)

]
.

Then from (4.11), it holds true that

ΞT (t)

[
ÃT

iji
P + PÃiji + S +Q + γ−2PP PD̃iji

D̃T
iji
P −S

]
Ξ(t)

= ΞT (t)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
ÃT

iji
P + PÃiji + S PD̃iji

D̃T
iji
P −S

]

+
[
Q + γ−2PP 0

0 0

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭
Ξ(t).

< 0

(4.14)

in which i = σ(t) given by (4.8). Taking (3.6), (4.11), and (4.14) into account we deduce
that (d/dt)V (x̃(t)) < 0, Ξ(t)/= 0. Therefore, system (4.5) is quadratically stable under the
switching law (4.8).
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Next, under the zero initial condition we prove

∫ tf

0
eTr (t)er(t)dt < γ2

∫ tf

0
ω̃T (t)ω̃(t)dt when ω̃(t)/= 0. (4.15)

Differentiating the Lyapunov-Krasovskii functional candidate along the trajectories
x̃(t) of the system (4.5) gives

V̇ (x̃(t)) =
Ni∑
l=1

ηilΞT (t)

[
ÃT

ilP + PÃil + S PD̃il

D̃T
ilP −S

]
Ξ(t) + 2

Ni∑
l=1

ηilx̃
T (t)Pω̃(t). (4.16)

So we get

2x̃T (t)Pω̃(t) ≤ γ−2x̃T (t)PPx̃(t) + γ2ω̃T (t)ω̃(t). (4.17)

then

V̇ (x̃(t)) =
Ni∑
l=1

ηilΞT (t)

[
ÃT

il
P + PÃil + S + γ−2PP PD̃il

D̃T
ilP −S

]
Ξ(t) +

Ni∑
l=1

ηilγ
2ω̃T (t)ω̃(t). (4.18)

By the switching law (4.11), when the ith subsystem is active, it gives that

ΞT (t)

[
ÃT

ilP + PÃil + S + γ−2PP PD̃il

D̃T
ilP −S

]
Ξ(t) < ΞT (t)

[−Q 0
0 0

]
Ξ(t). (4.19)

Substituting (4.19) into (4.18), we obtain

V̇ (x̃(t)) < −
Ni∑
l=1

ηilx̃
T (t)Qx̃(t) +

Ni∑
l=1

ηilγ
2ω̃T (t)ω̃(t), (4.20)

where

x̃T (t)Qx̃(t) =
[
er(t)
xr(t)

]T[
I 0
0 0

][
er(t)
xr(t)

]
= eTr (t)er(t). (4.21)

Substituting (4.21) into (4.20) results in

V̇ (x̃(t)) < −
Ni∑
l=1

ηile
T
r (t)er(t) +

Ni∑
l=1

ηilγ
2ω̃T (t)ω̃(t). (4.22)

It is easy to derive [37]

∫ tf

0
eTr (t)er(t)dt < γ2

∫ tf

0
ω̃T (t)ω̃(t)dt. (4.23)

That is (4.2), and the H∞ control performance is achieved with a prescribed γ2.
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It is noted that Theorem 4.3 gives the sufficient condition of ensuring the stability of
the SF time-delay system (3.1) and achieving the H∞ tracking performance (4.23). However,
it does not give the methods of obtaining the solution of a common positive matrix P for
(4.7). In general, it is not easy to analytically determine such a common positive matrix, and
fortunately (4.7) can be transferred into LMIs, which can be solved in a computationally
efficient manner using convex optimization techniques such as the interior point method
[38].

For the convenience of the design, we assume

P =
[
P11 0
0 P22

]
, S =

[
S11 0
0 S22

]
. (4.24)

We obtain

ΞT (t)

[
Ωil PD̃il

D̃T
il
P −S

]
Ξ(t) = x̃T (t)Ωilx̃(t) + x̃T (t − τ)D̃T

ilP x̃(t)

+ x̃T (t)PD̃ilx̃(t − τ) + x̃T (t − τ)(−S)x̃(t − τ),

(4.25)

where Ωil = ÃT
il
P + PÃil + S + γ−2PP +Q.

And

PD̃il =
[
P11 0
0 P22

][
Dil Dil

0 0

]
=

[
P11Dil P11Dil

0 0

]
,

ÃT
ilP + PÃil =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
−

Ni∑
a=1

ρilaRB
T
iaP11

)T

BT
il
P11 +AT

il
P11

+P11Bil

(
−

Ni∑
a=1

ρilaRB
T
iaP11

)
+ P11Ail

P11Ail − P11Ar

AT
il
P11 −AT

r P11 P22Ar +AT
r P22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D̃T
ilP =

⎡
⎣DT

il
0

DT
il

0

⎤
⎦[

P11 0
0 P22

]
=

⎡
⎣DT

il
P11 0

DT
il
P11 0

⎤
⎦,

x̃T (t)Ωilx̃(t) = eTr (t)Λiler(t) + xT
r (t)

(
AT

ilP11 −AT
r P11

)
er(t) + eTr (t)(P11Ail − P11Ar)xr(t)

+ xT
r (t)

(
P22Ar +AT

r P22 + S22 + γ−2P22P22

)
xr(t),

(4.26)

Λil =

(
−

Ni∑
a=1

ρilaRB
T
iaP11

)T

BT
ilP11 +AT

ilP11 + P11Bil

(
−

Ni∑
a=1

ρilaRB
T
iaP11

)

+ P11Ail + S11 + γ−2P11P11 + I.

(4.27)
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From (4.27), we have

eTr (t)Λiler(t)

= eTr (t)

⎡
⎣
(
−

Ni∑
a=1

ρilaRB
T
iaP11

)T

BT
ilP11 + P11Bil

(
−

Ni∑
a=1

ρilaRB
T
iaP11

)

+AT
ilP11 + P11Ail + S11 + γ−2P11P11 + I

]
er(t)

=eTr (t)

⎧⎨
⎩

⎡
⎣
(
−

Ni∑
a=1

ρilaRB
T
iaP11

)T

BT
ilP11−

Ni∑
a=1

ηia
(
BilRB

T
iaP11

)T
P11+

Ni∑
a=1

ηia
(
BilRB

T
iaP11

)T
P11

⎤
⎦

+ P11Bil

(
−

Ni∑
a=1

ρilaRB
T
iaP11

)
−

Ni∑
a=1

ηiaP11

(
BilRB

T
iaP11

)
+

Ni∑
a=1

ηiaP11

(
BilRB

T
iaP11

)

+AT
ilP11 + P11Ail + S11 + γ−2P11P11 + I

⎫⎬
⎭er(t)

= eTr (t)

{
−

Ni∑
a=1

ηia
(
BilRB

T
iaP11

)T
P11 −

Ni∑
a=1

(
ρila − ηia

)(
BilRB

T
iaP11

)T
P11

−
Ni∑
a=1

ηiaP11

(
BilRB

T
iaP11

)
−

Ni∑
a=1

(
ρila − ηia

)
P11

(
BilRB

T
iaP11

)

+AT
ilP11 + P11Ail + S11 + γ−2P11P11 + I

}
er(t).

(4.28)

Let

ρila =
1 + sgn

(
eTr (t)P11BilRB

T
iaP11er(t)

)
2

,

sgn(z) =

{
1 if z > 0
−1 otherwise.

(4.29)

From (4.28), we have

eTr (t)Λiler(t)

= eTr (t)

{
Ni∑
a=1

ηia
(
−P11BiaRB

T
ilP11 − P11BilRB

T
iaP11 +AT

ilP11 + P11Ail + S11 + γ−2P11P11 + I
)

−2
Ni∑
a=1

(
1 + sgn

(
eTr (t)P11BilRB

T
iaP11er(t)

)
2

− 1
2
−
(
ηia − 1

2

))(
BilRB

T
iaP11

)T
P11

}
er(t)
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= eTr (t)

{
Ni∑
a=1

ηia
(
−P11BiaRB

T
ilP11 − P11BilRB

T
iaP11 +AT

ilP11 + P11Ail + S11 + γ−2P11P11 + I
)

−2
Ni∑
a=1

(
sgn

(
eTr (t)P11BilRB

T
iaP11er(t)

)
2

−
(
ηia − 1

2

))(
BilRB

T
iaP11

)T
P11

}
er(t)

≤
Ni∑
a=1

ηiae
T
r (t)

(
−P11BiaRB

T
ilP11 − P11BilRB

T
iaP11 +AT

ilP11 + P11Ail + S11 + γ−2P11P11 + I
)
er(t)

− 2
Ni∑
a=1

(
1
2
−
(
ηia − 1

2

))∣∣∣eTr (t)P11BilRB
T
iaP11er(t)

∣∣∣
(4.30)

As ηia − 1/2 ∈ [ −1/2 1/2 ], due to the property of the switched fuzzy model with time-delay, it
can be shown that (4.30) satisfies the following inequality.

eTr (t)Λiler(t)

≤
Ni∑
a=1

ηiae
T
r (t)

(
−P11BiaRB

T
ilP11 − P11BilRB

T
iaP11 +AT

ilP11 + P11Ail + S11 + γ−2P11P11 + I
)
er(t).

(4.31)

Hence, we can conclude that the closed-loop system of (3.1) is quadratically stable and
achieve the H∞ tracking control performance, if the stability condition of (4.32) is satisfied,
and the switching scheme of (4.8) is applied. The analysis result is summarized by the
Theorem 4.5.

Remark 4.4. It can be seen from (4.3) that the fast switching controller uil(t) consists of 2Ni

tracking controllers which are linear combinations of −RBT
iaP11er(t), a = 1, 2, . . . ,Ni. Taking

into account the switching signal, in practice this controller is a hybrid switching-robust
controller.

Theorem 4.5. Suppose there exist positive definite matrixes R, P11, P22, S11, S22, and constants λiji >
0 such that the following matrix inequalities are satisfied; then for a prescribed γ2,H∞ tracking control
performance in (4.2) is guaranteed via the state-feedback controller (4.3), and the switching law is
designed as (4.8)

m∑
i=1

λiji

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P11BiϑiRP11 − P11BijiRB
T
iϑi
P11

P11Aiji − P11Ar P11Diji P11Diji

+AT
iji
P11 + P11Aiji + S11 + γ−2P11P11 + I

P22Ar +AT
r P22

AT
iji
P11 −AT

r P11 0 0
+S22 + γ−2P22P22

DT
iji
P11 0 −S11 0

DT
iji
P11 0 0 −S22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

ji = 1, 2 . . . ,Ni, ϑi = 1, 2 . . . ,Ni, i = 1, 2, . . . , m.

(4.32)
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In order words, we formulate the finding of R and P11 of (4.32) into LMI problem.
Considering (4.32) and multiplying both sides of (4.32) by the matrix diag{P−1

11 , I, I, I}, we
restate as follows.

Theorem 4.6. Suppose there exist positive definite matrixes R, P11, P22, S11, S22, and constants λiji >
0 such that the following matrix inequalities are satisfied; then for a prescribed γ2,H∞ tracking control
performance in (4.2) is guaranteed via the state-feedback controller (4.3), and the switching law is
designed as (4.8)

m∑
i=1

λiji

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−BiϑiRB
T
iji
− BijiRB

T
iϑi

Aiji −Ar Diji Diji P−1
11 0

+P−1
11 A

T
iji
+AijiP

−1
11 + γ−2I

∗ P22Ar +AT
r P22 + S22 0 0 0 P22

∗ ∗ −S11 0 0 0
∗ ∗ ∗ −S22 0 0
∗ ∗ ∗ ∗ −(I + S−1

11

)
0

∗ ∗ ∗ ∗ ∗ −γ2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

ji = 1, 2 . . . ,Ni, ϑi = 1, 2 . . . ,Ni, i = 1, 2, . . . , m
(4.33)

Once we have R, P11, P22, S11, and S22 from (4.33), the tracking controllers (4.3) can be
constructed.

Remark 4.7. It can be seen that (4.33) is an LMI. R and P11 can be solved readily by employing
some LMI tools. The analysis results, switching scheme and design of the fast switching
controller are summarized by Theorem 4.6.

5. Illustrative Examples and Results

In order to demonstrate the efficiency and feasible performance of the proposed control
synthesis, now we consider the model as follows:

R1
1: if x2(t) is M1

11, then ẋ(t) = A11x(t) +D11x(t − d) + B11u11(t) +ω,

R2
1: if x2(t) is M2

11, then ẋ(t) = A12x(t) +D12x(t − d) + B12u12(t) +ω,

R1
2: if x2(t) is M1

21, then ẋ(t) = A21x(t) +D21x(t − d) + B21u21(t) +ω,

R2
2: if x2(t) is M2

21, then ẋ(t) = A22x(t) +D22x(t − d) + B22u22(t) +ω.

Also, this model is used for the extra design of the switching law (4.8) of the state-
dependent form. For the purpose of comparing with SF system, Example 2.1 in [21] can be
described for

region rule 1: if x2(t) ≥ 1 then

Local Region Rule 1: if x2(t) is h11(x2(t))

then ẋ(t) = A11x(t) +D11x(t − d) + B11u(t) +ω, (5.1)
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Local Region Rule 2: if x2(t) is h12(x2(t))

then ẋ(t) = A12x(t) +D12x(t − d) + B12u(t) +ω. (5.2)

region rule 2: if x2(t) < 1then

Local Region Rule 1: if x2(t) is h21(x2(t))

then ẋ(t) = A21x(t) +D21x(t − d) + B21u(t) +ω, (5.3)

Local Region Rule 2: if x2(t) is h22(x2(t))

then ẋ(t) = A22x(t) +D22x(t − d) + B22u(t) +ω. (5.4)

Obviously, switching fuzzy system of Example 2.1 is switching between each of the sub fuzzy
systems and depending on region fuzzy rules.

We have

A11 =
[ −10.5 5
−0.943 −1.0493

]
, B11 =

[
0.1

−0.4926
]
, A12 =

[ −4.5 1
−0.132 −1.4529

]
,

B12 =
[

2
−0.1316

]
, A21 =

[−10 0.8
−0.8 −0.9

]
, B21 =

[
3

−0.01
]
,

A22 =
[−11 0.1
−2 −4.529

]
, B22 =

[
1

−0.1765
]
, Ar =

[ −9.8 0.02
−0.02 −4.5

]
,

D11 =
[
0.3 0.2
0.1 0.3

]
, D12 =

[
0.5 0.8
−0.1 −0.4

]
,

D21 =
[
0.2 0.3
−0.2 −0.3

]
, D22 =

[
0.2 0.4
0.1 0.4

]
.

(5.5)

The fuzzy sets of “M1
11,M

2
11,M

1
21, and M2

21” are represented by the following
membership functions, respectively.

M1
11(x2(t)) = h11(x2(t)) = 1 − 1

1 + e−2x2(t)
, M2

11(x2(t)) = h12(x2(t)) =
1

1 + e−2x2(t)
,

M1
21(x2(t))=h21(x2(t))=1− 1

1+e(−2(x2(t)−0.3)) , M2
21(x2(t))=h22(x2(t))=

1
1+e(−2(x2(t)−0.3)) .

(5.6)
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Figure 3: (a) Response evolution of system state variables with the fast switching controller. (b) Response
evolution of system error variables with the fast switching controller. (c) Control signal of the fast
switching controller.

Choosing λiji = 1,ji, ϑi = 1, 2, i = 1, 2 for (4.33), we can have the matrix

R = 0.1006, P11 =
[
1.3092 0.7438
0.7438 3.1293

]
, P22 =

[
1.6276 0.0062
0.0062 2.4938

]
,

S11 =
[
17.7120 0.1379
0.1379 18.1660

]
, S22 =

[
15.0209 −0.0077
−0.0077 8.2345

]
.

(5.7)

Taking the initial condition as x(0) = [−5, 5]T , with τ = 1, r(t) and ω(t) are generated
by pulse wave form. The simulation result for the fast switching controller of SF time-delay
system is depicted in Figure 3.
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Figure 4: (a) Response evolution of system state variables with the traditional PDC controller. (b) Response
evolution of system error variables with the traditional PDC controller. (c) Control signal of the traditional
PDC fuzzy controller.

To investigate the effectiveness of the proposed fast switching controller of the SF
system here, we now compare the traditional PDC controller [21–23, 36]. Obviously, the
global control of the traditional PDC fuzzy controller is

u(t) =
Ni∑
i=1

Ni∑
l=1

νihilKile(t). (5.8)

The state feedback gains of subsystems are obtained as

K11 =
[−0.332 −0.145], K12 =

[−0.0523 −5.573],
K21 =

[−2.3 −4.12], K22 =
[−2.34 −4.1]. (5.9)
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For the same data and the same initial condition x(0) = [−5, 5]T , the simulation result
is depicted in Figure 4. It should be noted that the fast switching controller can improve the
transient characteristic. Figures 3 and 4 indicate that the proposed method gives better results
in convergence.

6. Conclusion

In this paper, tracking control for SF systems with time delay is investigated. We use single
Lyapunov function technique and a switching law to design a tracking control law such
that the H∞ model reference tracking performance is satisfied. The fast switching controller
design problem can be solved efficiently by using linear matrix inequalities and convex
optimization techniques. Simulation example shows the validity of the switching control law.
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