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The multiobjective vehicle routing problem considering customer satisfaction (MVRPCS) involves
the distribution of orders from several depots to a set of customers over a time window. This
paper presents a self-adaptive grid multi-objective quantum evolutionary algorithm (MOQEA)
for the MVRPCS, which takes into account customer satisfaction as well as travel costs. The
degree of customer satisfaction is represented by proposing an improved fuzzy due-time window,
and the optimization problem is modeled as a mixed integer linear program. In the MOQEA,
nondominated solution set is constructed by the Challenge Cup rules. Moreover, an adaptive grid
is designed to achieve the diversity of solution sets; that is, the number of grids in each generation
is not fixed but is automatically adjusted based on the distribution of the current generation of
nondominated solution set. In the study, the MOQEA is evaluated by applying it to classical
benchmark problems. Results of numerical simulation and comparison show that the established
model is valid and the MOQEA is effective for MVRPCS.

1. Introduction

The vehicle routing problem (VRP) is one of the most important and widely studied com-
binatorial optimization problems, with many real-world applications in logistic distribution
and transportation [1]. Since the VRP was firstly proposed by Dantzig and Ramser in 1959
[2], it has been focused in the field of operational research and combinatorial optimization
[3–5].

The aim of VRP is to find optimal routes for a fleet of vehicles serving a set of customers
with known demands. Each customer is serviced exactly once and must be assigned a
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satisfactory vehicle without exceeding vehicle capacities. A solution for this problem is to
find out a set of minimum cost routes that are used to represent vehicles distribution and
clients’ permutation. However, current studies on VRP [6, 7] are mainly focused on the single
objective problem and the objective is to optimize the number of vehicles dispatched and the
travel distance, that is, reducing the service costs of the provider.

Actually, to achieve competitive advantage, a service provider needs to consider not
only service costs but also service quality that can determine customers’ satisfaction. Most
of the research on multiobjective VRP (MOVRP) does not take into account this objective,
only focusing on the traditional objectives of minimum costs and the length of the longest
route [8, 9]. Hong and Park [10] constructed a linear goal programming (GP) model for
the biobjective vehicle routing with time window constraints (BVRPTW) and proposed a
heuristic algorithm to relieve the computational burden inherent to the application of the GP
model. Zitzler and Thiele [11] proposed a multiobjective evolutionary algorithm based on
the Pareto approach for VRP. Lim and wang [12] proposed a method to deal with MOVRP by
assigning different weights of the objectives. Tan et al. [13] proposed a hybrid multiobjective
evolutionary algorithm (HMOEA) that incorporates various heuristics for local exploitation
in the evolutionary search and the concept of Pareto’s optimality for solving multiobjective
optimization in vehicle routing problem with time window constraints (VRPTW). Garcia-
Najera and Bullinaria [14] studied an improved multiobjective evolutionary algorithm for
VRP with time windows.

The VRPTW is developed from VRP and has been widely studied in the last decade
[15–19]. In the VRPTW, each customer has a time window with values about the deadline
and the earliest time constraints for the service he/she requires. Thus this problem involves
a routing combination and scheduling component. Routes must be designed to minimize the
total cost, but, at the same time, scheduling must be performed to ensure time feasibility.

In practice, this time window actually does not well describe customers’ satisfaction.
A major reason is that customers are asked to provide a fixed time window for service, but in
reality they really hope to be served at a desired time. Cheng and Gen [20, 21] called such a
desired time the due-time and proposed to use the concept of fuzzy due-time to replace this
time window because, as they claimed, it can describe customers’ satisfaction better. Thus
customers’ satisfaction can be also described as a convex fuzzy number [22–24].

Cheng andGen [20, 21] introduced the fuzzy due-time, used triangle fuzzy numbers to
describe customers’ satisfaction, and solved the VRP by genetic algorithms (GAs). Zhang et
al. [25] proposed a multiobjective fuzzy VRP and used trapezoid fuzzy numbers to describe
customers’ satisfaction. Jia [26] used multiobjective hybrid GA for this problem. Wu [27]
studied the open VRP based on customers’ satisfaction. Lin [28] proposed a GA-based
multiobjective decision-making method for optimal vehicle transportation, which is focused
on a fuzzy vehicle routing and scheduling problem (FVRSP) based on five attributes, namely,
space utility, service satisfaction, waiting time, delay time, and transportation distance. Wang
and Li [29] proposed a hybrid algorithm based on GA and incorporated some methods
based on greedy algorithms to solve the MOP model for which depot desires and clients
expectations are considered simultaneously.

The above studies use the weighted sums of objectives to solve the multiobjective
problem; the higher an objective’s importance, the larger its corresponding weight coefficient.
In general, no single solution can attain the optimum of all objectives at the same time.
Therefore, it is desirable to obtain a set of Pareto optimal solution, that is, the Pareto set.
The points in the objective space that correspond to the results in the set are usually called
the Pareto front.
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Figure 1: Traditional time windows.

In this paper, a self-adaptive grid multiobjective quantum evolutionary algorithm
(MOQEA) is proposed to solve the MVRPCS problem. In particular, the quantum
evolutionary algorithm (QEA) is used in the MOQEA due to its high efficiency, convergence
speed, strong full-searching optimization ability [30]. With the MOQEA, an optimal or a
nearly optimal set of vehicle routes solution with the minimal total travel cost and maximal
customers’ satisfaction can be obtained by decoding the chromosome and simultaneously
obtains several solution sets. This method can support the dispatcher to more efficiently
determine how to distribute the shipment to serve customers by available vehicles.

The remainder of the paper is organized as follows. Section 2 presents the mathemat-
ical model for the MVRPCS with consideration of customer satisfaction. Section 3 describes
the proposed MOQEA in detail. In Section 4, the application of the proposed algorithm to a
classic problem is introduced and the simulation results are discussed and compared with an
early algorithm. Finally, conclusions are given in Section 5.

2. Model for the MVRPCS

2.1. Representation of Customer Satisfaction

In traditional VRP, customers’ time constraints are represented by time windows as shown
in Figure 1. For this method, if the customer is serviced at a time within the window, then
the satisfaction degree is 100%, otherwise the satisfaction degree is 0. It is really unrealistic
to measure the degree of satisfaction accordingly based on time window because customer
satisfaction is not necessarily the same if they are serviced at different times within the
window. In fact, service time can be divided into two categories; namely, the service time
can be tolerated and the desirable service time.

Fuzzy due-time windows have been introduced to describe different degrees of
satisfaction. Generally, the tolerable service time for customer i can be described as [Ei,Li],
where Ei is the earliest time and Li is the latest time. For example, in [20, 25] customers
satisfaction is represented by the triangular fuzzy number, as shown in Figure 2. When the
desirable service time is taken into account, customer satisfaction can be described using
trapezoidal fuzzy number. In [26], this method is used and the desirable service time is
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described by the due-time [ai, bi], as shown in Figure 3. In this case, customer satisfaction
is zero no matter vehicles arrive early or late if the expected service time slot is not achieved.

In this paper, an improved fuzzy due-time window is proposed, as shown in Figure 4.
In this method, if a customer is served at the desired time, the degree of satisfaction is 1;
otherwise, the degree of satisfaction decreases as the difference between the actual service
time and the desired time increases. The degree of satisfaction for the cases in which vehicles
arrive early than the earliest expected time is not zero, but equals to that of the case when
the earliest expected time is met. The degree of customer satisfaction is represented by
the membership function of the improved fuzzy due-time window, that is, an improved
trapezoidal fuzzy number. For customer i, mark his/her satisfaction as μi(ti) for a given
service time ti. Then the degree of satisfaction can be calculated using the membership
function as follows:

μi(ti) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

exp k(Ei − ai), ti < Ei

exp k(ti − ai), Ei < ti < ai

1, ai < ti < bi

exp k(bi − ti), bi < ti < Li

0, ti > Li.

(2.1)

2.2. Mathematics Model

The MVRPCS can be described as follows: there are M depots each of which has Km(m =
1, 2, . . . ,M) vehicles with a capacity of bk. These vehicles will be dispatched to L customers
to meet their demands.

Mark the demand of customer i as di(i = 1, 2, . . . ,L), and assume di < bk. Each
customer can be served by any vehicles from a depot, but the service will only take place
once. In addition, each vehicle can complete the shipping task without having to return to the
original depot. Thus an appropriate vehicle scheduling program is required to meet the needs
of all customers. The meanings of variables used in this research are described as follows.

Customer number is 1, 2, . . . ,L. Depot number is L + 1,L + 2, . . . ,L +M.
Fixed cost of sending a vehicle is Fk(m ∈ {L + 1,L + 2, . . . ,L +M}; k ∈ {1, 2, . . . , Km}).
Distribution cost from customer i to customer j is cij , and i, j ∈ (1, 2, . . . ,L,L+1, . . . ,L+

M).
Time window of customer i is [Ei,Li]; the arrival time of customer i is ti; the travel

time from i to j is tij , s i is the service time of customer i and μi(ti) is the degree of satisfaction
for customer i.

If vehicle k travels directly from customer i to customer j and arrives too early at j, it
will wait;wj(tj) is the waiting time of customer j for a vehicle. Thus, the MVRPCS model can
be established, as discussed in detail in the following paragraphs. Two decision variables are
defined as follows:

xmijk =

{
1 vehicle k from i to j of depot m,
0 other,

ymk =

{
1 vehicle k dispatched from depot m,
0 other.

(2.2)
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Figure 3: Trapezoidal fuzzy number.

This problem has two objectives that are determined by both the service quality and the
service costs. Considering the two objectives can help the dispatcher make better decision
without compromising any of the two objectives. The dispatcher can still have preferences on
different objectives by selecting different parameters.

The service quality objective is to maximize average customers satisfaction:

max
1
L

L∑

i=1

μi(ti). (2.3)

This objective is equivalent to minimizing the average customer dissatisfaction:

min

(

1 − 1
L

L∑

i=1

μi(ti)

)

. (2.4)

The other objective of the service costs is to minimize travel cost, fixed cost and
waiting cost. For this objective, the fixed cost of sending a vehicle is considered because
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Figure 4: Improved trapezoidal fuzzy number.

vehicles in operation have depreciation and fuel consumption. Also the fixed cost is related
to the number of vehicle, that is, the more vehicles, the higher fixed cost. To the best of our
knowledge, no previous work has been done to take into account this fixed cost when solving
multiobjective VRP with fuzzy due-time. Based on the above discussion, the mathematical
model for the MVRPCS can be established as follows:

minZ =
L+M∑

i=1

L+M∑

j=1

Km∑

k=1

M∑

m=1

xmijkcij +
Km∑

k=1

M∑

m=1

ymk Fk +
L∑

i=1

wi(ti) (2.5)

s.t.,

L∑

i=1

L+M∑

j=1

xmijkdi ≤ bk, m ∈ {L + 1,L + 2, . . . ,L +M}; k ∈ {1, 2, . . . Km}, (2.6)

L∑

j=1

Km∑

k=1

xmijk ≤ Km, i = m ∈ {L + 1,L + 2, . . . ,L +M}, (2.7)

L+M∑

j=1

Km∑

k=1

M∑

m=1

xmijk = 1, i ∈ {1, 2, . . . ,L}, (2.8)

L+M∑

i=1

Km∑

k=1

M∑

m=1

xmijk = 1, j ∈ {1, 2, . . . ,L}, (2.9)

tj =

{
ti + si + tij , ti ≥ Ei,
Ei + si + tij , ti < Ei,

(2.10)

tj < Lj , (2.11)

wj

(
tj
)
= Max

{
0,Ej − tj

}
. (2.12)
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In themodel, formula (2.6) assures the carrying capacity of each vehicle; formula (2.7) assures
the number of vehicles that are dispatched from each depot does not exceed the capacity of
the depot; formulas (2.8) and (2.9) assure each client is served only by one vehicle; formulas
(2.10), (2.11), and (2.12) assure customers can be served within time windows; and from
(2.10) and (2.12), the waiting cost for the vehicle can be obtained.

3. MOQEA for the MVRPCS

In this research, the multiobjective optimization method of Pareto optimal solution [31] is
used. Its main advantage is to approximate the Pareto front in order to provide a set of
equivalent solutions to the decision maker [32, 33]. The algorithm to solve multiobjective
optimization problem of Pareto optimality involves two main questions:

(i) how to construct a Pareto optimal solution set, namely non-dominated solutions
set, and make it close to the Pareto optimal front as much as possible?

(ii) how to attain the diversity and variety of solutions?

To address these two issues, a self-adaptive grid multiobjective quantum evolutionary
algorithm (MOQEA) to solve the MVRPCS problem is proposed. The method of constructing
non-dominated solution set and attaining the diversity and variety of solutions is described
in the following sections.

3.1. Constructing Nondominated Solution Set

In this paper, the Challenge Cup rule [34] is used to construct non-dominated solution set.
Assuming P is an evolution group and Q is a constructed set, let Q = P initially. Assume
Ndset is a non-dominated set which is empty initially. The basic idea of this rule is to take any
individual x fromQ, followed by comparison with all other individuals y inQ : if x � y, then
clear y fromQ; if y � x, then use y to replace x, and then y is the new champion and continues
to be compared with other individuals. After a comparison, cluster(x) = {y | x � y, x, y ∈ P}
is formed, where x is the smallest element. Add x toNdset and continue the comparison until
Q is empty.

3.2. Method of Attaining the Diversity and Variety of Set Based on
Self-Adaptive Grid

To attain the variety of the set, the individual space is divided into several small areas each
of which is a called a grid, as shown in Figure 5. Thus each individual is associated with a
grid in the figure, and the number of individuals in each grid can be defined as extrusion
coefficient.

A grid is used in many different ways to maintain the diversity and variety of
solutions. Knowles and Crone [35] proposed a pareto archived evolution strategy for pareto
multiobjective optimization. Corne et al. [36] proposed a pareto envelope-based selection
algorithm for multiobjective optimization.

When a grid contains more than one individual, these individuals are treated as the
same solution. As such, the size of grid is very important. When the grid is too large, multiple
individuals will exist in the same grid, and the resultant solution distribution is not accurate.
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Figure 5: Individual space divided by grid.

When the grid is too small, it is likely that there are no individuals in some grids, and
so it takes longer computation time though the resultant solution distribution is accurate.
Therefore, computation time and accuracy must be traded off when determining the grid
size.

There are two objective functions in this optimization problem. The range of the
customers’ satisfaction is [0, 1], and the range of travel costs and waiting costs is changed
with the experimental data. The boundaries of the grid in the target space can be determined
by the range of the above two objective functions.

In this paper, the number of grids is not fixed in each generation but automatically
adjusted based on the distribution of the current generation of non-dominated solution set.
The grid boundary is a fixed value. In the process of each evolutionary generation, the
number of grid is adjusted by the D-value between the maximum and minimum values
of each dimension in the non-dominated solution set. The method of self-adaptive grid is
designed as follows.

The two objections can be described by k = {1, 2}. Mark the number of each dimension
grid in generation 1 asN1,k,Ndset1 as the non-dominated solutions set in generation 1, and
Ndsett as the non-dominated solutions set in generation t. If ft,k is the objection of each
dimension, then the D-value of each dimension can be described as follows:

generation 1: ∀k = {1, 2}

Diffence1,k = max
{
f1,k | f1 ∈Ndset1

} −min
{
f1,k | f1 ∈Ndset1

}
, (3.1)

generation t : ∀k = {1, 2}

Diffencet,k = max
{
ft,k | ft ∈Ndsett

} −min
{
ft,k | ft ∈Ndsett

}
. (3.2)
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The number of each dimension grid in generation t is

Nt,k =
[

N1,k ∗
Diffence1,k
Diffencet,k

]

, where [ ] means being rounded. (3.3)

To keep the diversity and variety of the non-dominated solution set, choose the individual
with the maximum extrusion coefficient and delete it form the non-dominated solution set.

3.3. Representation

Quantum evolutionary algorithm (QEA) [37] is based on the concept and principles of
quantum computing such as a quantum bit and superposition of states. Instead of binary
and numeric representation, QEA uses a Q-bit chromosome as a probabilistic representation
and a Q-bits individual is modeled by a string of Q-bits.

The smallest unit of information stored in two-state quantum computer is called a Q-
bit, which may be in the “1” state, or in the “0” state, or in any superposition of the two. The
state of a Q-bit can be represented as follows

∣
∣ψ
〉
= α|0〉 + β|1〉, (3.4)

where α and β are complex numbers. |α|2 and |β|2 donate the probabilities that the Q-bit will
be found in the “0” state and in the “1” state, respectively. Normalization of the state to unity
is used to meet |α|2 + |β|2 = 1.

So a Q-bit individual with a string of m Q-bits can be expressed as follows

[
α1
β1

∣
∣
∣
∣
α2
β2

∣
∣
∣
∣ · · ·

αm
βm

]

, (3.5)

where |αi|2 + |βi|2 = 1, i = 1, 2, . . . , m.
The main advantage of the representation is that any linear superposition of solutions

can be represented. For example, a three-Q-bit system can contain the information of eight
states. QEA with Q-bit representation has a better characteristic of population diversity than
other representations, as it can represent linear superposition of state’s probabilities.

In this paper, a method of converting integer representation to Q-bit representation
is designed. For the MVRPCS with L customers, the representation of customers route is
described as the permutation of 1 ∼ L. Note the permutation of 1 ∼ L is (g1, g2, . . . , gL),
and represent each gene gj(j = 1, 2, . . . ,L) as a string of r-Q-bit, then L groups n-Q-bit are
obtained. So, a quantum individual is described as a rL×2 Q-bit matrix. Here r = {m}, where
{m} is the smallest integer not less thanm and 2m ≥ L, thus we can getm ≥ log2L.

3.4. Decoding Method

The “Customers permutation Route First, Vehicles distribution Cluster Second” rule is
adopted for decoding.
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Table 1: Lookup table of rotation angle.

ri yi f(y) � f(r) Δθi
s(αi, βi)

αiβi > 0 αiβi < 0 αi = 0 βi = 0
0 0 False 0 0 0 0 0
0 0 True θ +1 −1 0 ±1
0 1 False 0 0 0 0 0
0 1 True θ −1 +1 ±1 0
1 0 False θ −1 +1 ±1 0
1 0 True θ −1 +1 0 ±1
1 1 False 0 0 0 0 0
1 1 True θ −1 +1 0 ±1

(1) Firstly, get the customers permutation route. The solution of MVRPCS is a
permutation of all customers and Q-bit representation cannot be evaluated directly.
So it should be converted to permutation for evaluation.

The Q-bit string is firstly converted to binary string γ . Specifically, a random
number η between [0, 1] is generated, if the ith bit αi of Q-bit string satisfied
|αi|2 > η, then let the corresponding bit γi of the binary string γ be 1, otherwise
let it be 0. Then the binary representation is converted to integer representation,
which is viewed as random key representation [38], and customer permutation
is constructed based on the generated random key. If two random key values
are different, the smaller random key denotes the customer with smaller number;
otherwise, let the one that first appears denote the customer with smaller number.

(2) Secondly, distribute the vehicles and get the subroute. A vehicle is dispatched to
service customers according to the customers’ permutation route, if the vehicle
cannot serve the next customer when it cannot meet the time window or loading
capacity constraints, a new vehicle will be dispatched. For example, the customers’
permutation route is [8 5 9 3 4 1 2 6 7], the 3 depots notes [10 11 12], use
this decoding method, the subroute is: Route 1: 11-8-5-9; Route 2: 10-3-4-1; Route 3:
12-2-6-7.

3.5. Strategy of Updating by Q-Gate

In the MOQEA, a Q-gate is an evolution operator which is the same as the QEA in [39]. A
rotation gate is often used to update a Q-bit individual, as shown in (3.6)

[
α′i
β′i

]

= U(θi)
[
αi
βi

]

=
[
cos(θi) − sin(θi)
sin(θi) cos(θi)

][
αi
βi

]

, (3.6)

where [αi,βi]
T is the ith Q-bit and θi is the rotation angle of each Q-bit. θi = s(αi, βi)Δθi.

The lookup table of θi is shown in Table 1. In this paper, a non-dominated solution
is randomly selected as the current objective solution from the non-dominated solution set.
In the multiobjective optimization, it is unable to find the optimal value with all objectives
met. So we need to choose an objective solution y for each individual r only to find the non-
dominated solution set.
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Table 2: Optimization results of coefficient k (s = 0.2).

Problem pr02 (96, 4) pr07 (72, 6)
k VN CS Cost VN CS Cost
0.08 16 0.402 4539 15 0.492 4116
0.06 15 0.378 4045 14 0.424 3904
0.05 14 0.355 3906 13 0.399 3331
0.02 15 0.364 3998 14 0.431 3969

Table 3: Optimization results of constant s (k = 0.06).

Problem pr02 (96, 4) pr07 (72, 6)
s VN CS Cost VN CS Cost
0.1 15 0.381 4013 14 0.435 3391
0.2 14 0.357 3902 13 0.389 3367
0.3 15 0.361 3926 15 0.486 4124
0.4 16 0.411 4625 15 0.498 4102

In the above table, Δθi is the magnitude of rotation angle. s(αi, βi) is the sign of θi
that determines the direction. ri and yi are the ith Q-bit of the binary solution in individual
r and the objective solution y respectively. f(•) is the objective. θ is the rotation angle of
size, which affects the convergence speed and search capability. In this paper, a method of
dynamically adjusting the rotation angle is proposed, that is; θ will be changed with the
extrusion coefficient as discussed in Section 3:

θ =
0.5s
n

π, (3.7)

where n is the extrusion coefficient. s is a constant in the range [0, 1]. From (3.7), we can
see when the extrusion coefficient n is small, the rotation angle θ is big to accelerate the
convergence speed; when the Extrusion Coefficient n is big, and the search step size will be
reduced to enhance the solution diversity.

3.6. Procedure of MOQEA

The flow chart of the MOQEA for this problem is illustrated in Figure 6.
The detailed procedure of the MOQEA is as follows.

Step 1. Let t = 0 and randomly generate an initial population Q(t) = {qt1, qt2 · · · qtn} =
{

αt
1

βt
1

∣
∣
∣
∣
αt

2
βt

2

∣
∣
∣
∣ · · ·

αtn
βtn

}

, that is, randomly generate any value in [0, 1] for αi and βi, where qtj denotes

the jth individual in the tth generation. At the same time, construct initially empty external
set O(t)with size ofm.

Step 2. Convert Q(t) to binary population R(t), then convert it to integer population P(t).

Step 3. According to the decoding method to get the subroute, evaluate the objectives to get
the MVRPCS solution set M(t) = {(f t11, f t21) · · · (f t1n, f t2n)}, where (f t1j , f

t
2j) is the jth value of

the two objectives in the tth generation. And letM(t) be the construction set.
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Table 4: The distance and demand of each client.

CN Coordinate/km ST De/t TW

1 −29.730 64.136 2 12 [399 525]

2 −30.664 5.463 7 8 [121 299]

3 51.642 5.469 21 16 [389 483]

4 −13.171 69.336 24 5 [204 304]

5 −67.413 68.323 1 12 [317 458]

6 48.907 6.274 17 5 [160 257]

7 5.243 22.260 6 13 [170 287]

8 −65.002 77.234 5 20 [215 321]

9 −4.175 −1.569 7 13 [80 233]

10 23.029 11.639 1 18 [90 206]

11 25.482 6.287 4 7 [397 525]

12 −42.615 −26.392 10 6 [271 420]

13 −76.672 99.341 2 9 [108 266]

14 −20.673 57.892 16 9 [340 462]

15 −52.039 6.567 23 4 [226 377]

16 −41.376 50.824 18 25 [446 604]

17 −91.943 27.588 3 5 [444 566]

18 −65.118 30.212 15 17 [434 557]

19 18.597 96.716 13 3 [319 460]

20 −40.942 83.209 10 16 [192 312]

21 −37.756 −33.325 4 25 [414 572]

22 23.767 29.083 23 21 [371 462]

23 −43.030 20.453 20 14 [378 472]

24 −35.297 −24.896 10 19 [308 477]

25 −54.755 14.368 4 14 [329 444]

26 −49.329 33.374 2 6 [269 377]

27 57.404 23.822 23 16 [398 494]

28 −22.754 55.408 6 9 [257 416]

29 −56.622 73.340 8 20 [198 294]

30 −38.562 −3.705 10 13 [375 467]

31 −16.779 19.537 7 10 [200 338]

32 −11.560 11.615 1 16 [456 632]

33 −46.545 97.974 21 19 [72 179]

34 16.229 9.320 6 22 [182 282]
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Table 4: Continued.

CN Coordinate/km ST De/t TW

35 1.294 7.349 4 14 [159 306]

36 −26.404 29.529 13 10 [321 500]

37 4.352 14.685 9 11 [322 430]

38 −50.665 −23.126 22 15 [443 564]

39 −22.833 −9.814 22 13 [207 348]

40 −71.100 −18.616 18 15 [457 588]

41 −7.849 32.074 10 8 [203 382]

42 11.877 −24.933 25 22 [75 167]

43 −18.927 −23.730 23 24 [459 598]

44 −11.920 11.755 4 3 [174 332]

45 29.840 11.633 9 25 [130 225]

46 12.268 −55.811 17 19 [169 283]

47 −37.933 −21.613 10 21 [115 232]

48 42.883 −2.966 17 10 [414 531]

Step 4. Use the formulas (2.4) and (2.5) to evaluate the domination of each (f t1j , f
t
2j) in

construction setM(t) and use themethod of Challenge Cup rules to construct non-dominated
solution set NDset(t).

Step 5. When t = 0, reproduce NDset(0) to the external set O(t). When t > 0, if a certain
individual in NDset(t) dominates one solution in O(t) delete the solution and join the
individual into the O(t), and if a solution in O(t) dominates a certain individual in NDset(t),
the solutions inO(t) does not change; otherwise, join the individual ofNDset(t) into theO(t).

Step 6. Adjust the size of O(t) to the number of m and satisfy the distribution of the non-
dominated solution set. The method is discussed in detail as follows. If the size of O(t) is
less than m, randomly select individual of NDset(t) into the O(t) until the size of O(t) is m;
otherwise, use the self-adaptive grid method to keep the diversity and variety ofO(t), divide
the individual space of O(t) into several small grids, choose the grid with the maximum
extrusion coefficient, and randomly delete a solution set from it.

Step 7. If the stopping condition is satisfied, then output the Pareto set; otherwise, go on to
the following steps.

Step 8. Randomly select some individuals from the Q-bit Q(t), which is instated of the
individuals from Q(t) corresponding to O(t).

Step 9. Use (3.6) to perform rotation operation for Q(t) to generate Q(t + 1).

Step 10. Let t = t + 1 and go back to Step 2.
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Set t = 0, randomly generate initial Q-bit

population Q(t) of size n, and constructe
initially empty external set O(t)

Convert Q-bit population Q(t) to binary
population R(t), then convert it to integer

population P(t)

Decode according to decoding method to
get the solutions set M(t), and take M(t) as

constructions set

Nondominated solutions set
is constructed by M(t)

When t = 0,
reproduce to O(t)

t = t + 1

Adjust the O(t) scale to make it reach the number of
predetermined nondominated solutions set and meet

the distribution

Use rotation gate

to generate
Q(t + 1)

Reproduce the Q-
bit population

corresponding 
O(t) to Q(t)

Is the stopping
criterion satisfied

Output the Pareto set

t > 0, when a certain individual in
dominates the solution

in O(t), delete the solution, and
join the individual into the O(t)

N

Y

NDset (t)

NDset (0)
NDset (t)

U(θ) and update Q(t)

Figure 6: Flow chart of MOQEA.

4. Experiment Results and Comparisons

4.1. Experimental Data

There are few studies on multi-VRP taking into account customers’ satisfaction. Among
the studies that have taken into account customer satisfaction, most of them are evaluated
using randomly generated test cases. Therefore, there is no standard test cases library. The
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Table 5: The distance of each depot.

Depot no. Coordinate/km Service time Demand/t Time windows

49 4.163 13.559 0 0 [0 1000]

50 21.387 17.105 0 0 [0 1000]

51 −36.118 49.097 0 0 [0 1000]

52 −31.201 0.235 0 0 [0 1000]

Table 6: Optimization results of pr01.

Pareto set
The solution of maximum

satisfaction
The solution of minimizing travel cost, fixed

cost, and waiting cost
(472, 4532) (630, 3523)

VN 9 11

Route

52 21 36 31 27 6 24 52 43 21 14 13
51 28 13 44 25 52 30 45 44 38
51 5 39 17 50 6 40 48 47 17

49 32 19 20 18 42 49 7 37 11 32 26 16 36 42
51 4 11 41 26 1 29 22 52 12 41 15 2 4
51 14 12 43 16 33 51 33 18 3
50 3 45 8 40 10 37 51 1 35 20 39

52 23 34 46 38 30 15 47 51 8 29 9 22
49 7 9 35 48 2 51 5 34 24 23

51 19 27 28 10 31 25

49 46

tests data used in this research is from the benchmark problems in the standard example
library of MDVRPTW (multiple depot vehicle routing problem with time windows), and all
examples can be downloaded from http://neo.lcc.uma.es/radi-aeb/WebVRP/. [Ei,Li] is the
time windows in initial data, as the tolerable time in this paper. [ai, bi] is the desirable service
time, which can be computed using the following formula [27]:

ai = Ei + rand() ∗ 0.5 ∗ (Li − Ei),
bi = Li − rand() ∗ 0.5 ∗ (Li − Ei).

(4.1)

4.2. Parameters Discussion of MOQEA

The parameters involved in the MOQEA include coefficient k in formula (2.1) and constant
s in formula (3.7). The proposed MOQEA for different parameters was discussed and
analyzed results are shown in Tables 2 and 3. VN is the vehicle numbers. CS is the customer
nonsatisfaction. These tables only list the solution that the total cost is the least. From the
tables we can see when s = 0.2 and k = 0.05, the resultant vehicle number is the smallest.
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Table 7: Comparisons of the MOQEA to the HMOEA in [34].

Algorithm Project 1 Project 2
MOQEA HMOEA in [34]

Problems VN CS Cost VN CS Cost
pr02 (96, 4) 14 0.355 3906 15 0.391 4005
pr07 (72, 6) 13 0.399 3331 13 0.402 3397

450

500

550

600

650

3400 3600 3800 4000 4200 4400 4600
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ti
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Figure 7: Pareto optimal solution set.

4.3. Simulation Experiments

All the programs in this research are developed using the JAVA language and run on a PC
with Dual 2.8GHz CPU and 1.0GB of memory. A manufacturing company has 4 warehouses
and provides goods to 48 vendors. The actual distribution process can be attributed to the
open, capacity constraints, and multidepot VRP. The capacity is 20 t. The proposed MOQEA
is used to solve this problem, and the distance and demand of each client and depot are
shown in Tables 4 and 5. CN is the customer NO. ST is the service time. De is the demand.
TW is the time windows.

The results obtained are shown in Table 6 and Figure 7. Specifically, the number of
iterations is 2000, and the population size is 30. The coefficient k is set as 0.06. The constant
s in formula (4.1) is 0.2. The Pareto optimal solution set is (630, 3523), (593, 3879), (556,
4164), (543, 4203), (538, 4261), (525, 4302), (516, 4365), (495, 4498), (472, 4532). The value of
non-satisfaction magnified 1000 times. It can be seen from Figure 7 that the Pareto front that
is close to the axis forms a more satisfactory solution set. Comparing the leftmost and the
rightmost points, we can see that in this instance, it would be possible to decrease the total
cost by 20% at the expense of an increase in the non-satisfaction which is about 25%.

4.4. Comparison and Discussion

In order to evaluate the performance of the algorithm, the proposed MOQEA is compared
with the hybrid multiobjective evolutionary algorithm (HMOEA) developed in [34]. In the
HMOEA, feasible individuals are constructed as the initial population by using the push-
forward insertion heuristic (PFIH), and the GA is used to update these populations to obtain
the new subpopulation and to improve the individuals of the subpopulation by the local
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search method of λ-interchange with variable probability, then non-dominated solution set is
constructed by using the Challenge Cup rule.

Table 7 shows the comparison of the results obtained from the two algorithms. Because
the calculation result is a solution set, this table only lists the solutions in which the total cost
is the least. VN is the vehicle numbers. CS is the customer non-satisfaction. From the table
we can see for these two multidepot VRPs obtained from the proposed MOQEA the total
cost is smaller than that from the HMOEA, and the customers’ satisfaction obtained from the
MOQEA is greater than that from the HMOEA.

5. Conclusions

This paper presents the modeling of vehicle scheduling problem that takes into account
customer satisfaction and the development of the MVRPCS. Specifically, an improved
trapezoidal fuzzy number is proposed to represent customers’ satisfaction and the MOQEA
for this problem is developed. The MOQEA can get multiple solutions, namely, the Pareto
optimal solution set, according to his own expectations. These solutions will be used by the
decision maker to choose the best one on the basis of different preferences on satisfaction
maximization and travel costs minimization. In the MOQEA, the Challenge Cup rule is
constructed for non-dominated solution set and a method for attaining keeping the variety of
the solution set, is designed, based on self-adaptive grid. Simulation results and comparisons
show that theMOQEA is an effective method. In our future work, wewill focus on improving
the algorithm and test it on other datasets.
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