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The estimation problem is investigated for a class of stochastic nonlinear systems with distributed
time-varying delays and missing measurements. The considered distributed time-varying delays,
stochastic nonlinearities, and missing measurements are modeled in random ways governed by
Bernoulli stochastic variables. The discussed nonlinearities are expressed by the statistical means.
By using the linear matrix inequality method, a sufficient condition is established to guarantee the
mean-square stability of the estimation error, and then the estimator parameters are characterized
by the solution to a set of LMIs. Finally, a simulation example is exploited to show the effectiveness
of the proposed design procedures.

1. Introduction

In the past decades, estimation techniques have been extensively investigated in many
complex dynamical processes of networks such as target tracking [1], advanced aircrafts,
and manufacturing processes. A number of estimation methods have been proposed in the
literature, most of them are under the assumption that the measurements always contain
true signals with the disturbances and the noises, see for example, [2–9]. But, in practical
applications, the measurements may contain missing measurements due to many reasons
such as the sensor temporal failures, network congestion, multipath fading, and high
maneuverability of the tracked targets. Because of the clear engineering signification, the
estimation problems with missing measurements have received attention, see for example
[10–22].
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Recently, with the rapid development of networks, novel methods and flexible
models have been devoted, but the research of missing measurements is still a challenge,
and the Bernoulli-based distributed model has still been a hot approach to modeling
the missing observation cases. For example, in [10], the missing probability for each
sensor is governed by an individual random variable satisfying a certain probabilistic
distribution over the interval [0 1]. Packet dropouts and communication delays are
considered simultaneously in [12]. The variance-constrained dissipative control problem
for a class of stochastic nonlinear systems with multiple degraded measurements in [13],
where the degraded probability for each sensor is governed by an individual random
variable satisfying a certain probabilistic distribution over a given interval. The H∞ filtering
problem has been addressed in [20] for a class of nonlinear systems with randomly
occurring incomplete information, where the considered incomplete information includes
both the sensor saturations and the missing measurements, a regional sensor model has
been designed to account for both the randomly occurring sensor saturation and missing
measurement in a unified representation, based on this sensor model, a newfangled H∞
filter with a certain ellipsoid constraint has been researched such that the filtering error
dynamics is locally mean-square asymptotically stable and the H∞-norm requirement is
satisfied.

On the other hand, time delays are frequently encountered in real-world application
such as communications, engineering, and biological systems. The occurrence of time delays
may induce instability, oscillation, and poor performance. Consequently, research on time-
delay systems has been a topic of recurring interest over the past decades. Current efforts
can be classified into several categories, for example, simple delay and multiple delays [12],
delay-independence [23, 24] and delay-dependence [5, 8, 25–30], time-varying delays [31, 32]
and constant delays, retarded-type delay and neutral-type delay [30, 33], and mixed delays
[34, 35]. However, in some applications, such as these systems connected over a wireless
networks/or neural networks, as pointed out in [36], networks usually have a spatial extent
due of the presence of a multitude of parallel pathways with a variety of axon sizes and
lengths, and therefore the propagation delays can be distributed over a period of time, so it is
essential to describe the distributed time delay under the probability framework as possible
as. In this paper, the probability distribution of the time-vary delays are described for Itô type
discrete-time stochastic distribution by a binary switching sequence satisfying the Bernoulli-
distributed model.

Motivated by the aforementioned discussions, in this paper, we model the stochastic
nonlinearities, the missing measurements, and the distributed time-vary delays by Bernoulli
distributed white sequence with known conditional probability distribution. We aim at
designing a estimator such that, for all possible measurements missing and distributed time-
vary delays to obtain the estimation error system mean-square stable. The solvability of the
addressed estimation problem can be expressed as the feasibility of a set of LMIs. Finally, a
numerical simulation example is exploited to show the effectiveness of the results derived.
The main contributions of this paper are summarized as the following: (1) a new estimation
problem is studied for the stochastic nonlinear systems with both distributed time-vary
delays and measurements missing phenomenon; (2) a mean-square stable performance is
taken into consideration for the addressed stochastic nonlinear systemswith distributed time-
vary delays and missing measurements.

The rest of this paper is organized as follows. Section 2 briefly introduces the problem
under consideration. In Section 3, a sufficient condition is established such that, for the
missing measurements, the randomly distributed time-varying delays and nonlinearities,
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the estimation error system is the mean-square stability. A numerical example is given in
Section 4. This paper is concluded in Section 5.

Notations. The notation used here is fairly standard except where otherwise stated. R
n, R

n×m,
and I

+ denote, respectively, the n-dimension Euclidean space, the set of all n×m real matrices,
and the set of nonnegative integers. (Ω,F, {Fk}k∈I+ ,P) is complete filtered probability space,
Ω is the sample space, F is the σ-algebra of subsets of the sample space, and P is the
probability measure on F. E{x} stands for the expectation of the stochastic variable x.
Prob{·} is used for the occurrence probability of the event “·”. The superscript “T” stands
for matrix transposition. P > 0 (P ≥ 0) means that matrix P is real symmetric and positive
definite (positive semi-definite). λmin(·) denotes the minimum eigenvalue of a matrix. I and 0
represent the identity matrix and the zero matrix with appropriate dimensions, respectively.
diag{X1, X2, . . . , Xn} stands for a block-diagonal matrix with matrices X1, X2, . . . , Xn on the
diagonal. In symmetric block matrices or long matrix expressions, we use “∗” to represent a
term, that is, induced by symmetry. Matrices, if their dimensions are not explicitly stated, are
assumed to be compatible for algebraic operations.

2. Problem Formulation and Preliminaries

Consider the following class of stochastic nonlinear system with distributed time-varying
delays:

x(k + 1) = Ax(k) + κ1(k)B
−1∑

m=−τ(k)
x(k +m) + κ2(k)f(x(k)) + E1x(k)w(k),

y(k) = κ3(k)Cx(k) + E2x(k)w(k),

z(k) = H1x(k),

(2.1)

where x(k) ∈ R
n is the state vector, y(k) ∈ R

m is the measured output vector, z(k) ∈ R
q

is the signal to be estimated, w(k) is a one-dimensional, zero-mean, Gaussian white noise
sequence on a probability space (Ω,F, {Fk}k∈I+ ,P)with E{ω2(k)} = 1,A, B, C, E1, E2, andH1

are known real constant matrices with appropriate dimensions, τ(k) denoting time-varying
delays are positive integers and bounded, namely, 0 < τl ≤ τ(k) ≤ τu, the stochastic variables
κ1(k) ∈ R, κ2(k) ∈ R, and κ3(k) ∈ R are Bernoulli distributed white sequence taking the
values of 0 and 1 with

Prob{κ1(k) = 1} = E{κ1(k)} := α1, (2.2)

Prob{κ1(k) = 0} := 1 − α1, (2.3)

Prob{κ2(k) = 1} = E{κ2(k)} := α2, (2.4)

Prob{κ2(k) = 0} := 1 − α2, (2.5)

Prob{κ3(k) = 1} = E{κ3(k)} := α3, (2.6)

Prob{κ3(k) = 0} := 1 − α3, (2.7)

where α1 ∈ [0 1], α2 ∈ [0 1], and α3 ∈ [0 1] are known positive scalars.
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Remark 2.1. The nonlinear stochastic f(x(k)) is assumed to have the following for all x(k):

E
{
f(x(k)) | x(k)} = 0,

E
{
f(x(k)) fT (x(k)) | x(k)} = 0, k /= j,

E
{
f(x(k)) fT (x(k)) | x(k)} ≤

q∑

i=1

Πix
T (k)Φix(k),

(2.8)

where q is a known nonnegative integer, Πi = ΠiΠ
T

i , Πi, Πi, and Φi (i = 1, . . . , q) are
known matrices with appropriate dimensions. For convenience, one assumes that f(x(k))
is unrelated with κ1(k), κ2(k), κ3(k), and ω(k).

In this paper, we aim at designing a linear estimator of the following structure:

xf(k + 1) = Afxf(k) +Aky(k), ẑ(k) = H2xf(k), ẑ(0) = 0, (2.9)

where xf ∈ R
n is the state estimate, ẑ(k) is the estimate output, H2 is a known real constant

matrix with appropriate dimension, and Af and Ak are estimator parameters to be deter-
mined.

By defining x̂(k) = [xT (k) xT
f
(k)]T , we have the following augmented system:

x̂(k + 1) = Ax̂(k) +Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m) + B

−1∑

m=−τ(k)
x̂(k +m)

+Nh(k) +Nh(k) + Ex̂(k)w(k),

(2.10)

where

A =
[

A 0
α3AkC Af

]
, A =

[
0 0

(κ3(k) − α3)AkC 0

]
, B =

[
α1B 0
0 0

]
,

B =
[
(κ1(k) − α1)B 0

0 0

]
, x̂(k + i) =

[
x(k + i)
xf(k + i)

]
, h(k) =

[
f(x(k))

0

]
,

E =
[

E1 0
AkE2 0

]
, N̂ =

[
I 0
0 0

]
, N = α2N̂, N = (κ2(k) − α2)N̂.

(2.11)

Observe the system (2.10) and let x̂(k;ϕ) denote the state trajectory from the initial
data x̂(s) = ϕ(s) on −ξM ≤ s ≤ −ξm. Obviously, x̂(k; 0) ≡ 0 is the trivial solution of system
(2.10) corresponding to the initial data ϕ = 0.

In what follows, we aim to design a linear estimator of the form (2.9) for system (2.1)
such that, for all admissible randomly occurring distributed time-varying delays, missing
measurements, stochastic nonlinearities, and estimation error system (2.10) is mean-square
stable.
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3. Main Results

The following lemmas are essential in establishing our main results.

Lemma 3.1 (Schur Complement). There are constant matrices Υ1, Υ2, and Υ3 where Υ1 = ΥT
1 and

Υ2 = ΥT
2 > 0, then Υ1 + ΥT

3 Υ−1
2 Υ3 < 0 if and only if

[
Υ1 ΥT

3
Υ3 −Υ2

]
< 0.

Lemma 3.2. Let W ∈ R
n×n be a positive semidefinite matrix, xi ∈ R

n be a vector, and ai ≥ 0 (i =
1, 2, . . .) be scalars. If the series concerned are convergent, then the following inequality holds [35]

(
+∞∑

i=1

aixi

)T

W
(

+∞∑

i=1

aixi

)
≤
(

+∞∑

i=1

ai

)
+∞∑

i=1

aix
T
i Wxi. (3.1)

In the following theorem, Lyapunov stability theorem and a LMI-based method are
combined together to deal with the stability analysis issue for the estimator design of the
discrete-time stochastic nonlinear system with distributed time-varying delays and missing
measurements. A sufficient condition is derived that ensures the solvability of the estimation
problem.

Theorem 3.3. Given the estimator parameters Af and Ak consider the estimation error system
(2.10). If there exist positive definite matrices P = PT > 0, Q = QT > 0, and positive scalars

i > 0 (i = 1, 2, . . . , q) such that the following matrix inequalities,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 −Q ∗ ∗ ∗ ∗ ∗ ∗
PE 0 −P ∗ ∗ ∗ ∗ ∗
β1Q 0 0 −Q ∗ ∗ ∗ ∗
PA PB 0 0 −P ∗ ∗ ∗
β3P 0 0 0 0 −P ∗ ∗
β4Φ̂ 0 0 0 0 0 −Ξ ∗
0 β2PF 0 0 0 0 0 −P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.2)

Δ =

[
−
iI ∗
PN̂Πi −P

]
< 0, i = 1, 2, . . . , q, (3.3)

hold, where

β1 =
(
τu +

1
2
(τu − τl)(τu + τl − 1)

)1/2

, β2 = (α1(1 − α1))1/2,

β3 = (α3(1 − α3))1/2, β4 = (α2)1/2, Φ̂ =
[

1Φ

1/2
1 , . . . , 
qΦ

1/2
q

]T
,

Φi =
[
Φi 0
0 0

]
, Πi =

[
π̂i

π̂i

]
, Ξ = diag

{

1I, . . . , 
qI

}
, F =

[
B 0
0 0

]
,

(3.4)

then the estimation error system (2.10) is mean-square stable.
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Proof. Define the following Lyapunov functional candidate for system (2.10):

V (x̂(k), k) = x̂T (k)Px̂(k) +
−1∑

i=−τ(k)

k−1∑

j=k+i

x̂T(j
)
Qx̂

(
j
)

+
−τl−1∑

i=−τu

−1∑

j=i+1

k−1∑

n=k+j

x̂T (n)Qx̂(n).

(3.5)

By calculating the difference of the Lyapunov functional (3.5), based on Lemma 3.2,
one has,

E{�V (x̂(k), k)}
= E{V (x̂(k + 1), k + 1) | x̂(k)} − V {(x̂(k), k)}

=

⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

+ E

⎧
⎪⎨

⎪⎩

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

⎫
⎪⎬

⎪⎭
+ α3(1 − α3)x̂T (k)Px̂(k)

+ x̂T (k)ETPEx̂(k) + α2E
{
hT (k)N̂TPN̂h(k)

}
− x̂T (k)Px̂(k)

+
−1∑

i=−τ(k+1)

k∑

j=k+i+1

x̂T(j
)
Qx̂

(
j
) −

−1∑

i=−τ(k)

k−1∑

j=k+i

x̂T(j
)
Qx̂

(
j
)

+
−τl−1∑

i=−τu

−1∑

j=i+1

⎡

⎣
k∑

n=k+j+1

−
k−1∑

n=k+j

⎤

⎦x̂T (n)Qx̂(n)

=

⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

+ E

⎧
⎪⎨

⎪⎩

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

⎫
⎪⎬

⎪⎭
+ α3(1 − α3)x̂T (k)Px̂(k)

+ x̂T (k)ETPEx̂(k) + α2E
{
hT (k)N̂TPN̂h(k)

}
− x̂T (k)Px̂(k)

+
−1∑

i=−τ(k+1)

⎡

⎣
k−1∑

j=k+i+1

x̂T(j
)
Qx̂

(
j
)
+ x̂T (k)Qx̂(k)

⎤

⎦

−
−1∑

i=−τ(k)

⎡

⎣
k−1∑

j=k+i+1

x̂T(j
)
Qx̂

(
j
)
+ x̂T (k + i)Qx̂(k + i)

⎤

⎦

+
−τl−1∑

i=−τu

−1∑

j=i+1

[
x̂T (k)Qx̂(k) − x̂T(k + j

)
Qx̂

(
k + j

)]
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≤
⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

+ E

⎧
⎪⎨

⎪⎩

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

⎫
⎪⎬

⎪⎭
+ α3(1 − α3)x̂T (k)Px̂(k)

+ x̂T (k)ETPEx̂(k) + α2E
{
hT (k)N̂TPN̂h(k)

}
− x̂T (k)Px̂(k)

+
−τl−1∑

i=−τu

k−1∑

j=k+i+1

x̂T(j
)
Qx̂

(
j
)
+

−1∑

i=−τl

k−1∑

j=k+i+1

x̂T(j
)
Qx̂

(
j
)

+ τux̂
T (k)Qx̂(k) −

−1∑

i=−τl

k−1∑

j=k+i+1

x̂T(j
)
Qx̂

(
j
) −

−1∑

i=−τ(k)
x̂T (k + i)Qx̂

(
k + j

)

+
1
2
(τu − τl)(τu + τl − 1)x̂T (k)Qx̂(k) −

−τl−1∑

i=−τu

k−1∑

j=k+i+1

x̂T(j
)
Qx̂

(
j
)

=

⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

+ E

⎧
⎪⎨

⎪⎩

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

⎫
⎪⎬

⎪⎭
+ α3(1 − α3)x̂T (k)Px̂(k)

+ x̂T (k)ETPEx̂(k) + α2E
{
hT (k)N̂TPN̂h(k)

}
− x̂T (k)Px̂(k)

+ τux̂
T (k)Qx̂(k) −

−1∑

i=−τ(k)
x̂T (k + i)Qx̂(k + i)

+
1
2
(τu − τl)(τu + τl − 1)x̂T (k)Qx̂(k)

≤
⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

+ E

⎧
⎪⎨

⎪⎩

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

⎫
⎪⎬

⎪⎭
+ α3(1 − α3)x̂T (k)Px̂(k)

+ x̂T (k)ETPEx̂(k) + α2E
{
hT (k)N̂TPN̂h(k)

}
− x̂T (k)Px̂(k)

+ τux̂
T (k)Qx̂(k) +

1
2
(τu − τl)(τu + τl − 1)x̂T (k)Qx̂(k)

−
−1∑

i=−τ(k)
x̂T (k + i)Qx̂(k + i)
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≤
⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣Ax̂(k) + B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

+ E

⎧
⎪⎨

⎪⎩

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

⎫
⎪⎬

⎪⎭
+ α3(1 − α3)x̂T (k)Px̂(k)

+ x̂T (k)ETPEx̂(k) + α2E
{
hT (k)N̂TPN̂h(k)

}
− x̂T (k)Px̂(k)

+ τux̂
T (k)Qx̂(k) +

1
2
(τu − τl)(τu + τl − 1)x̂T (k)Qx̂(k)

− τ−1u

⎛

⎝
−1∑

i=−τ(k)
x̂T (k + i)

⎞

⎠Q

⎛

⎝
−1∑

i=−τ(k)
x̂(k + i)

⎞

⎠.

(3.6)

From (2.8), it can be seen that

E

{
hT (k)N̂TPN̂h(k)

}
≤

q∑

i=1

[
x̂T (k)Φix̂(k)

]
tr
(
N̂ΠiN̂TP

)
, (3.7)

where Πi := ΠiΠ
T

i with Φi and Πi defined in (3.4).
Furthermore,

E

⎧
⎪⎨

⎪⎩

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦
T

P

⎡

⎣B
−1∑

m=−τ(k)
x̂(k +m)

⎤

⎦

⎫
⎪⎬

⎪⎭

≤ β22

−1∑

m=−τ(k)
x̂T (k +m)FTPF

−1∑

m=−τ(k)
x̂(k +m),

(3.8)

where β2 is defined in (3.4).
From (3.6)–(3.8), one has

E{�V (x̂(k), k)} ≤ E

{
ηT (k)Θη(k)

}
, (3.9)

where η(k) = [x̂T (k),
∑−1

i=−τ(k) x̂
T (k + i)]T and

Θ =
[
Θ1 APB
∗ Θ2

]
, (3.10)
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whereΘ1 = −P + ETPE + (τu+(1/2)(τu−τl)(τu+τl−1))Q +ATPA + β24
∑q

i=1 Φi tr(N̂ΠiN̂TP) +
β23P,Θ2 = −(1/τu)Q + BTPB + β22FTPF, β3, β4, F are defined in (3.4).

From Lemma 3.1, (3.10) holds if and only if tr(N̂ΠiN̂TP). Furthermore, by Lemma 3.1,
one can obtain from (3.2), (3.3) that Θ < 0 and, subsequently,

E{�V (x̂(k), k)} < −λmin(Θ)|x̂(k)|2. (3.11)

Thus, the augmented estimation system (2.10) is mean-square stable.

The following theorem is focused on the design of the desired estimation parameters
Af and Ak by using the results in Theorem 3.3.

Theorem 3.4. Consider the augmented estimation system (2.10) with given estimator parameters. If
there exist positive-definite matrices S = ST > 0, R = RT > 0, Q = QT > 0, matrices Ãf , Ãk, and
positive scalars
i > 0, (i = 1, 2, . . . , q) such that the following linear matrix inequalities holds

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−S ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
−S −R ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 −Q ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

SE1 E1 0 −S ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
φ1 φ2 0 −S −R ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
β1Q β1Q 0 0 0 −Q ∗ ∗ ∗ ∗ ∗ ∗ ∗
SA SA α1SB 0 0 0 −S ∗ ∗ ∗ ∗ ∗ ∗
φ3 φ4 α1RB 0 0 0 −S −R ∗ ∗ ∗ ∗ ∗
β3S β3S 0 0 0 0 0 0 −S ∗ ∗ ∗ ∗
β3S β3R 0 0 0 0 0 0 −S −R ∗ ∗ ∗
Φ̃ Φ̃ 0 0 0 0 0 0 0 0 −Ξ ∗ ∗
0 0 β2SB 0 0 0 0 0 0 0 0 −R ∗
0 0 β2RB 0 0 0 0 0 0 0 0 −S −R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.12)

⎡
⎢⎣

−
iI ∗ ∗
Sπ̂i −S ∗

Rπ̂i + Ãf π̂i −S −R

⎤
⎥⎦ < 0, i = 1, 2, . . . , q, (3.13)

S − R < 0 (3.14)

hold, where α1 is defined in (2.2), β1, β2, β3, and β4 are defined in (3.4),

Φ̃T =
[
β4
[

1Φ

1/2
1

]T
, . . . , β4

[

qΦ1/2

q

]T]
,

φ1 = RE1 + ÃfE2, φ2 = RE1 + ÃfE2,

φ3 = RA + α2ÃfC + Ãk, φ4 = RA + α2ÃfC,

(3.15)
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then the estimator parameters are designed as

Ak = X−1
12 Ãf , Af = X−1

12 ÃkS
−1
(
YT
12

)−1
, (3.16)

where X12, Y12 are any square and nonsingular matrices satisfying X12Y
T
12 = I − RS−1 < 0, then the

estimation error system (2.10) is mean-square stable.

Proof. Recall that our goal is to derive the expression of the estimator parameters from (2.9).
To do this, we partition P and P−1 as

P =
[
R X12

XT
12 X22

]
, P−1 =

[
S−1 Y12

YT
12 Y22

]
, (3.17)

where the partitioning of P and P−1 is compatible with that of A defined in (2.11), that is,
R ∈ Rn×n, X12 ∈ Rn×n, X22 ∈ Rn×n, S ∈ Rn×n, Y12 ∈ Rn×n, and Y22 ∈ Rn×n. Define

T1 =
[
S−1 I
YT
12 0

]
, T2 =

[
I R
0 XT

12

]
(3.18)

which imply that PT1 = T2 and TT
1 PT1 = TT

1 T2.
By applying the congruence transformations diag{T1, I, T1, I, T1, T1, I, . . . , I, T1} and the

congruence transformations diag{S, I, I, S, I, I, S, I, S, I, I, . . . , I, S, I} to (3.2), we have (3.12).
Again, performing the congruence transformation diag{I, T1} to (3.3) lead to (3.19)

⎡

⎣
−
iI ∗ ∗
π̂i −S−1 ∗

Rπ̂i +X12Akπ̂i −I −R

⎤

⎦ < 0, i = 1, 2, . . . , q. (3.19)

Then, one uses congruence transformation diag{I, S, I} to (3.19) and we have

⎡

⎣
−
iI ∗ ∗
Sπ̂i −S ∗

Rπ̂i +X12Akπ̂i −S −R

⎤

⎦ < 0, i = 1, 2, . . . , q. (3.20)

Furthermore, if (3.12) is feasible, we have
[ −S −S
−S −R

]
< 0 or

[ −S−1 I
I R

]
> 0.

It follows directly from XX−1 = I that I − RS−1 = X12Y
T
12 < 0. Hence, one can always

find square and nonsingular X12 and Y12 [37]. Therefore, this completes the proof.
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4. Numerical Example

In this section, an example is presented to illustrate the usefulness and flexibility of the
estimator design method developed in this paper. The system data of (2.1)–(2.9) are the
following:

A =
[
0.15 0
0.2 0.1

]
, B =

[
0.09 0
0 0.09

]
, C =

[
1.2 0
0 1.2

]
,

E1 =
[
0.12 0
0 0.12

]
, E2 =

[
0.12 0
0 0.12

]
, H1 = H2 =

[
0.6 0
0 0.6

]
,

(4.1)

where n = q = 2, τ(k) = 1 + (1 + (−1)k), τl = 1, τu = 3.
f(x(k)) describes the stochastic nonlinear function of the states in (2.1), which is

bounded as follows:

E

{
f(x(k))f(x(k))T | x(k)

}
=
[
0.22
0.22

][
0.22
0.22

]T
xT (k)

[
0.11 0
0 0.11

]
x(k). (4.2)

Let α1 = 0.2, α2 = 0.3, and α3 = 0.9. Using Matlab LMI Toolbox to solve the LMIs in (3.12)–
(3.14), one has

S =
[
0.6726 −0.0035
−0.0035 0.6563

]
, R =

[
1.8796 −0.0041
−0.0041 1.8411

]
,

Q =
[
0.0668 −0.0013
−0.0013 0.0693

]
, 
1 = 1.0776, 
2 = 1.3335.

(4.3)

Thus, we can calculate the estimator parameters as follows:

Af =
[
0.1325 0.0486
0.0462 −0.1465

]
, Ak =

[−0.9144 −0.1677
−0.1684 −0.8160

]
. (4.4)

Remark 4.1. Seldom of the estimation literature explicitly introduce the effects of the
estimators by the digits in the graphs, for example [18]. In this paper, some digits are marked
in Figures 1–4. Figures 1–2 show the actual measurements and ideal measurements. Figures
3–4 plot the estimation errors. From these digits in the graphs, it can be seen that the designed
estimator performs well.

5. Conclusions

In this paper, we research the estimation problem for a class of stochastic nonlinear systems
with both the probabilistic distributed time-varying delays and missing measurements. The
distributed time-varying delays and missing measurements are assumed to occur in random
ways, and the occurring probabilities are governed by Bernoulli stochastic variables. A
linear estimator is designed such that, for the admissible random distributed delays, the
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Figure 1: Actual Measurements y1(1, k) and ideal Measurements y2(1, k).
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Figure 2: Actual Measurements y1(2, k) and ideal Measurements y2(2, k).
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Figure 3: Estimation Errors z̃(1, k).
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stochastic disturbances, and the stochastic nonlinearities, the error dynamics of the estimation
process is mean-square stable. At last, an illustrative example has been exploited to show the
effectiveness of the proposed approach. In the future, we plan to consider the estimation
problem with Markovian switching is in the finite-horizon case, and the nonlinearities are in
more general forms.
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