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A method estimating the queue length in city street networks was proposed using the data of
roll time occupancy. The key idea of this paper is that when the queue length in front of the
queue detector becomes longer, the speeds of the following vehicles to pass through the detector
will become smaller, resulting in higher occupancy with constant traffic intensity. Considering the
relationship between queue lengths and roll time occupancy affected by many factors, such as link
length, lane width, lane number, and bus ratio, twelve different conditions were designed, and
the traffic data under different conditions was obtained using VISSIM simulation. Based on the
analysis of simulation data, an S-type logistic model was decided to develop for the relationship
between queue lengths and roll time occupancy, and the fitting equations were obtained under
the twelve simulation situations. The average model for the relationship between queue lengths
and roll time occupancy was presented by successive multiple linear regression with the fitting
equation parameters and simulation parameters, and the estimation model for queue length was
presented through analyzing the equation of the average relation model.

1. Introduction

With traffic congestion worsening in urban areas, a growing number of signalized intersec-
tions are being operated in oversaturated conditions, and the queue lengths at some roads
are even approaching the link lengths during peak hours, leading to spillovers [1, 2]. As the
influence of spillovers in city street networks is significant [3], monitoring the traffic state of
the roads and estimating the conditions under which a spillover will occur are important.

It has long been recognized that the queue length can represent the road traffic state
intuitively, and it is the most common index to identify spillovers. Over the years, many
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Figure 1: Location of queue detector.

researchers have dedicated themselves to this topic and three types of queue estimation
models have been developed. The first one, which is based on the behavior of traffic
shockwaves, was first proposed by Lighthill and Whitham for uninterrupted flow [4] and
later improved and expanded by a number of researchers to signalized intersections [5–8].
The second one demonstrated by Webster [9] is based on the analysis of cumulative traffic
input-output to a signal link. Later, it was improved by some researchers including Daganzo
[10], Akcelik [11], and Vigos et al. [12]. As high-resolution traffic signal data, such as second-
by-second detector data, vehicle-detector actuation events, and signal phase change events,
is becoming increasingly available in recent years; a new model for estimating the maximum
queue length during every cycle was developed by Liu et al. [13, 14].

Known probability distribution of traffic flow arrival rule is the premise for the first
kind methods to estimate the queue length, and they seemly become no more applicable if
the change of traffic state is very complicated or the traffic flow arrival rule does not suit to
any known probability distribution. The second class methods can be used to estimate queue
length both for macroscopic and microscopic levels; however, constructing the cumulative
curve and solving the queue length in these methods are very arduous. In the third type
models, the three break points which indicate a change in traffic state are difficult to identify
if the residual queue length at the beginning of the red phase is greater than the distance
between the stop line and the detector location. Moreover, traffic-wave theory, with its
premise of continuous flow, is not suitable for practical application, as the discontinuity of
traffic flow in urban street networks is significant under the influence of signal controls [15];
thus, methods taking traffic-wave theory as their basis are impracticable.

To close these gaps mentioned above, this paper analyzes the relationship between
queue length and roll time occupancy, using the data collected by VISSIM simulations, and
then develops a newmethod to estimate the queue length using the data of roll time occupan-
cy. The finding of this paper may provide oversaturated arterials a basis to identify spillover
conditions.

2. Computation of Roll Time Occupancy

With the aim of obtaining traffic data for predicting the road traffic state, fixed loop detectors
are placed sufficiently upstream from the intersection stop line in SCOOT (Split, Cycle, and
Offset Optimization Technique) and other systems [16]. These detectors can be called as
queue detectors or advanced detectors, whose locations can be illustrated as in Figure 1.

The most common type of queue detector is a loop detector, which can provide traffic
flow information in the form of pulse data, and is shown in Figure 2. The upper bars represent
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Figure 2: Pulse information from a loop detector.

the state where the detector is occupied by one vehicle, and the duration corresponds to
occupancy time of this vehicle; the lower bars stand for the gaps between the rear of the
forward vehicle and the start of the following vehicle. The sum of the durations of an upper
and the following lower bars is the headway between two successive vehicles.

tu,k, the occupancy time of the kth vehicle, can be obtained from the vehicle length and
average speed data using:

tu,k =

(
Lk + Lq

)

uk
, (2.1)

where uk is the average speed of the kth vehicle when passing through the queue detector
(m/s); Lk is the length of vehicle k (m); Lq is the length of queue detector (m), which is about
2.0m in actual application.

As shown in (2.1), the lower the value of uk, the higher the value of tu,k; meanwhile,
the expected speed of all drivers is the free flow speed, and a lower speed indicates a higher
queue length (i.e., the state on the road is congested). As a consequence, it can be deduced
that the occupancy time of one vehicle may characterize the traffic condition around the
queue detector at the time when the vehicle is passing through and the queue length can
be estimated by analyzing the data of occupancy.

Occupancy is the ratio of the sum of the durations of the upper bars during a given
period (denoted as T) to the entire duration of that period. Aiming to identify the traffic
condition and estimate the queue length at some roads instantaneously, the idea of roll time
occupancy is proposed, which could indicate the traffic condition around a queue detector
continuously within an interval ofΔt. Figure 3 illustrates the statistical method of calculating
occupancy time, taking T = 5Δt as an example.

The roll time occupancy in period i, oi, is given by

oi =
ti
T
. (2.2)

Here, Δt is the time of rolling step (s), usually set to 1s in order to obtain the traffic
state around the queue detector each second; T is the time length of each period for counting
roll time occupancy (s), which is usually set to 5s in real application; ti is the time for which
queue detectors are occupied by vehicles in period i (s).

As mentioned above, the traffic condition will become congested around the queue
detectors as the increasing of occupancy, and there is a positive correlation between roll time
occupancy and queue length for known traffic intensity. Thus, the queue length on some
roads can be estimated by analyzing the data of roll time occupancy.
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Figure 4: Experimental road grid for the simulation.

3. Relationship between Queue Length and Roll Time Occupancy

Generally, higher roll time occupancy corresponds to a longer queue length, and the
relationship between the two can be obtained from traffic data.

3.1. Date Collection and Relevant Parameters

Traffic data collected by a queue detector over a given period of time can vary wildly under
the influence of different traffic flow and road conditions. In this paper, traffic data was
collected using a VISSIM simulation under different conditions. The experimental road grid
is shown in Figure 4.

Here, i + 1 is the downstream intersection, and Li+1,3 is the link of interest, where a
queue detector is placed at the inside lane. The distance between the queue detector and the
upstream intersection is 50m, and the link lengths of the six approaches, other than Li+1,3 and
Li,3, whose parameters vary and are given later, are listed in Table 1.

The signal timings of the two intersections are also presented in the Table 1, with
phases 1, 2, 3, and 4 representing the East-West through phase, the East-West left turn phase,
the South-North through phase, and the South-North left turn phase, respectively. The key
parameters in VISSIM are set as follows: (1) the expected speeds of cars and buses are 15m/s
and 10m/s, respectively; (2) the saturated flow is 1,800 veh/h for all lanes; (3) the traffic
volume is set to be 1,200 veh/h for all approaches; (4) the length of channelization segment
is 71m for all approaches; (5) the ratio of right-turning to through to left-turning vehicles on
all approaches is 1 : 2 : 1; (6) the random seed is 41; (7) when the speed is less than 0.28m/s,



Mathematical Problems in Engineering 5

Table 1: Link lengths and phase sequences of the two intersections.

Intersection Link length (m) Green time (s)
Approach

no. 1
Approach

no. 2
Approach

no. 4
Phase no.

1
Phase no.

2
Phase no.

3
Phase no.

4
i 550 550 550 32 20 36 20
i + 1 550 580 550 24 21 32 31

Table 2: Parameters relating to link no. 3 in the simulation environment.

Condition number L (m) n wd (m) r (%) Condition number L (m) n wd (m) r (%)
1 300 2 3.5 5 7 300 2 3.5 5
2 350 2 3.5 5 8 300 2 3.5 10
3 400 2 3.5 5 9 300 2 3.5 15
4 350 1 3.5 5 10 300 2 3 5
5 300 2 3.5 5 11 300 2 3.5 5
6 300 3 3.5 5 12 300 2 3.75 5

we define the queue as building-up, and when the speed is greater than 1.39m/s, we define
the queue as dissipating; (8) the simulation time is 3,600 s.

With known traffic demand, the operational characteristics of the traffic flow on the
stretch of road Li+1,3 will differ depending on the parameters in VISSIM, including link length
(L), lane width (w), number of lanes (n), and bus ratio (r). A total of twelve simulation
conditions were designed for this paper; the parameters of which are listed in Table 2.

The following section will collect the traffic data under different conditions and
analyze the relationship between the queue lengths on the interest link and roll time
occupancy collected by queue detectors; Sections 3.3 and 3.4 will discuss the relationship
between the parameters of the new model and these four simulation parameters mentioned
above.

3.2. Queue Length and Roll Time Occupancy

The signal timing plans of the two intersections were set using the VAP module of VISSIM,
and the traffic data was obtained regarding the roll time occupancy and maximum queue
length with a rolling step of Δt by adjusting the data output interval. Figure 5 illustrates the
relationship between roll time occupancy and queue length under simulation condition no.
1.

Similar relationship models between queue length and roll time occupancy can be
obtained by changing the simulation conditions, and then an S-type logistic model for the
relationship was developed based on the analysis of the points in Figure 5. The conceptual
shape of the logistic model is shown in Figure 6 and is devised as follows:

o = omin +
omax − omin

1 + e[−b(l−lw)]
, (3.1)

where omin is the minimum roll time occupancy; omax is the maximum roll time occupancy; l
is the queue length of a road where spillovers appear regularly (m); lw is the queue length at
the deflection point of the curve and b determines the slope of the curve.
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Figure 5: Relationship between l and o with wd = 3.5m.
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Figure 6: Conceptual shape of l versus o.

It is necessary to define the upper and lower values of the asymptotes, that is, the
values of omax and omin. omin is the smallest roll time occupancy under a given simulation
environment. The parameter, omax, which is calculated based on the simulation conditions, is
the maximum roll time occupancy. It is equal to 1, which can be confirmed from the definition
of roll time occupancy. Given the initial parameters and the assumed form of the model, it is
possible to calibrate the model of each simulation environment by applying the best-fitting
parameters, based on the data collected under each of the twelve simulation conditions. The
result of this calibration for the simulation situation in Figure 5 is shown in Figure 7.

The S-shape of the curve is also superimposed over the entire range of queue length,
up to 300m. The data points for the simulation environment are presented in order to show
the “goodness-of-fit” of the model to the data. In this study, the fitting relationship between
o and l is

o = 0.2858 +
0.7142

1 + e[−0.0552(l−251.3985)]
, R = 0.7529. (3.2)

Using the same method, equations were fitted for the twelve simulation situations, as
given in Table 3.
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Figure 7: Calibration of S-curve between l and o.

Table 3: Fitting equations and correlation coefficients under different simulation conditions.

Number Fitted equations R Number Fitted equations R

1 o = 0.2858 +
0.7142

1 + e[−0.0552(l−251.3985)]
0.7529 7 o = 0.2858 +

0.7142
1 + e[−0.0552(l−251.3985)]

0.7529

2 o = 0.2801 +
0.7199

1 + e[−0.0516(l−299.76)]
0.8716 8 o = 0.3082 +

0.6918
1 + e[−0.0953(l−247.7518)]

0.8000

3 o = 0.2499 +
0.7501

1 + e[−0.0375(l−327.7079)]
0.8319 9 o = 0.3349 +

0.6651
1 + e[−0.0949(l−252.7541)]

0.7671

4 o = 0.3223 +
0.6777

1 + e[−0.0572(l−278.2494)]
0.7652 10 o = 0.2917 +

0.6998
1 + e[−0.0552(l−253.8729)]

0.7409

5 o = 0.303 +
0.696

1 + e[−0.086(l−249.0782)]
0.7758 11 o = 0.3330 +

0.667
1 + e[−0.0979(l−255.6569)]

0.7416

6 o = 0.2917 +
0.7083

1 + e[−0.0797(l−251.7239)]
0.7847 12 o = 0.2805 +

0.7195
1 + e[−0.0749(l−247.9341)]

0.7953

Analyzing the fitting equations under different simulation conditions, the values of
omin are similar in each case; however, the values of b and lw vary greatly. Consequently, the
four parameters, L, wd, n, and r can be said to strongly influence the values of b and lw, and
it is thus necessary to obtain the relationship between o and l under normal conditions.

3.3. Regression Analysis for Parameter b

Parameter b represents the geometric complexity for constant traffic intensity. The complexity
is calculated from the link length, lane width, number of lanes, and bus ratio. A macroscopic
model was developed for parameter b through a multiple-stepwise linear regression of
the four parameters under each simulation situation. Two models were produced by the
statistical software, SPSS [17]; a summary of which is presented in Table 4.
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Table 4:Model summaries for parameter b.

Model R R2 Adjusted R2 Std. error
1 0.663a 0.440 0.384 0.0258196
2 0.813b 0.661 0.586 0.0121482
aPredictors: (constant), bus ratio; bPredictors: (constant), bus ratio, link length.

Table 5: ANOVA for parameter b.

Model Sum of squares df Mean square F Sig.

1 Regression 0.002 1 0.002 7.855 0.019a
Residual 0.002 10 0.000
Total 0.004 11

2 Regression 0.003 2 0.001 8.785 0.008b
Residual 0.001 9 0.000
Total 0.004 11

aPredictors: (constant), bus ratio; bPredictors: (constant), bus ratio, link length.

Table 6: Coefficients for parameter b.

Model Unstandardized coefficients Standardized coefficients t Sig.
B Std. Error β

1 Constant 0.041 0.010 4.151 .002
Bus Ratio 0.403 0.144 0.663 2.803 .019

2
Constant 0.134 0.039 3.428 .008
Bus Ratio 0.337 0.121 0.555 2.787 .021
Link length 0.00028 0.000 −0.483 −2.425 .038

As the determination coefficient (R2) of model no. 1 is less than 0.5, the goodness-of-fit
is not acceptable. However, the determination coefficient of model no. 2 is 0.586, indicating
an acceptable goodness-of-fit [18]. The variance analysis is presented in Table 5.

From the variance analysis of model no. 2 in Table 5, it can be seen that the model has
very high precision (F = 8.785,P = 0.008 < 0.01). Moreover, all of the values of P for the
three terms in t-test are less than 0.05 (see Table 6), which indicates that all three regression
coefficients are significant with α =0.05. The regression coefficients are tabulated in Table 6.

In model no. 2, the regression coefficients of r, L, and the constant term are 0.337,
0.00028, and 0.134, respectively. Therefore, the regression equation can be expressed as, which
indicates that the value of b is only affected by L and r the following:

b = −0.000228L + 0.337r + 0.134. (3.3)

3.4. Regression Analysis for Parameter lw

It is also necessary to replace the value of lw (the queue length at the inflection point of the
S-curve in Figure 6)with a regression model with the four aforementioned parameters under
the twelve simulation situations. One model is produced by SPSS, as summarized in Table 7.

The determination coefficient (R2) of this model is 0.959; the goodness-of-fit is
acceptable. The variance analysis is listed in Table 8.
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Table 7: Model summary for parameter lw.

Model R R2 Adjusted R2 Std. error
1 0.979a 0.959 0.955 5.3884779
aPredictors: (constant), link length.

Table 8: ANOVA for parameter lw.

Model Sum of squares df Mean square F Sig.

1 Regression 6737.63 1 6737.63 232.05 .000a
Residual 290.36 10 29.04
Total 7027.99 11

aPredictors: (constant), bus ratio; bPredictors: (constant), bus ratio, link length.

Table 9: Coefficients for parameter lw.

Model Unstandardized coefficients Standardized coefficients t Sig.
B Std. error β

1 (Constant) 23.378 15.874 1.473 .172
Link length 0.760 0.050 0.979 15.233 .000

The values of F and P in this model are 232.047 and 0.000, respectively, which indicates
that the precision of this regression model is very high. Moreover, the constant term does not
affect lw significantly (P = 0.172 > 0.05) with α = 0.05 (as shown in Table 9), so it could be
deduced that the constant term should be rejected from the regression model. The coefficients
of parameter lw are listed in Table 9.

The coefficients of the constant term and link length are 23.378 and 0.0760, respectively,
and the regression equation is given as follows:

lw = 0.706L, R2 = 0.9793. (3.4)

Equation (3.4) suggests that lw is only affected by L.
When there is no real-time data on queue length, it is possible to utilize an average

model to determine the relationship between roll time occupancy and queue length, which
may represent the average conditions of a variety of links and provide a method to estimate
the queue length in general conditions. In this study, the mean of omin was used in the twelve
cases as the general value, and substitute (3.3) and (3.4) into (3.1), then, the average model
for the roll time occupancy can be obtained:

o = 0.3056 +
1 − 0.3056

1 + e[−(0.000228L+0.337r+0.134)(l−0.760L)]
. (3.5)

When the link length is 300m, the number of lanes is 1, and the bus ratio is 5%, the
average inflection roll time occupancy (i.e., the corresponding roll time occupancy when l is
equal to lw) is found to be 0.6662.
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Figure 9: Influence of bus ratio.

4. Queue Length Model with Roll Time Occupancy

An estimation model for queue length using the data of roll time occupancy can be obtained
by transforming (3.5), which gives

li = 0.706L +
1

0.000228L − 0.337r − 0.134
ln
(

1 − oi
oi − 0.3056

)
. (4.1)

With known traffic conditions of one road, the influences of link length and bus ratio
on the relationship between queue length and roll time occupancy are shown in Figures 8
and 9. (The bus ratio in Figure 8 is 5%; the link length in Figure 9 is 350m).
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The analysis of Figures 8 and 9 shows that

(1) the relation forms between queue length and roll time occupancy keep invariant
under the influence of link length and bus ratio;

(2) the queue length is directly proportional to the link length when other parameters
are constant, and the influence degree will become higher with roll time occupancy
becoming greater;

(3) with lower roll time occupancy, the influence of bus ratio on the relationship is
insignificant. The reason may be that lower roll time occupancy represents lower
traffic flow, and the difference of occupancy time between buses and cars when
they passing through the queue detector is not obvious, which indicates that the
occupancy time in every interval is almost uniform;

(4) high roll time occupancy may be caused by two conditions: (a) the queue length
approaches to the link length, and all vehicles pass through the detector with
congested speed; (b) if the farthest point of queues is close to the queue detector, the
speeds of vehicles passing through the detector should approach to the congested
speed, and the average occupancy time per vehicle will become larger under the
influence of bus ratio; based on the latter condition, it is concluded that the queue
length will decrease with the increasing of bus ratio with an identically higher roll
time occupancy (seen as in Figure 9).

Furthermore, in order to validate the queue length estimation model proposed in
this paper, another simulation was finished with the same experimental road grid and
signal timing scheme except that the bus ratio and interest length link are 8% and 375m,
respectively. The estimated value of queue length can be calculated based on (4.1) and the
roll time occupancy collected by VISSIM. The average error of the 3,600 data series is about
23.14%, which indicates the precision of this new model is accepted.

5. Conclusions

In this paper, a method of estimating queue length based on fixed detector outputs was
proposed, by focusing on the relationship between the roll time occupancy at a particular
position and the queue length on one road. Twelve simulation conditions were designed
using different combinations of these four parameters, including link length, lane width,
number of lanes, and bus ratio. Based on the analysis of the simulation data, an S-type
logistic model was chosen to represent the relationship between queue lengths and roll
time occupancy, and equations were fitted for the twelve simulation situations. Then, the
average model for roll time occupancy was achieved using successive multiple-stepwise
linear regressions with the parameters of the fitting equations and simulation environments.
Finally, a new estimation model of queue length based on roll time occupancy was obtained
by transforming the average model, which can provide oversaturated arterials a basis to
identify spillover conditions.

Considering the effect of traffic signal control, vehicles departed from the upstream
intersection will pass through the detector with strong discontinuity and the queue detector
would be idled for a long interval, which may bring the result that some lower roll time
occupancy corresponds to higher queue length. Furthermore, there may be lane changing
near the queue detector. The detector may not be occupied even if the queue length is larger
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than the distance between the stop line and the queue detector, which also can lead to lower
roll time occupancy corresponding to higher queue length. The estimation accuracy of the
method for estimating queue length proposed in this paper can be improved, if the invalid
data caused by the two factors mentioned above can be eliminated accurately.
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