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de Vera s/n, 46022 Valencia, Spain

Correspondence should be addressed to Himer Avila-George, hiavgeo@posgrado.upv.es

Received 24 February 2012; Revised 15 June 2012; Accepted 7 July 2012

Academic Editor: John Gunnar Carlsson

Copyright q 2012 Himer Avila-George et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

A covering array (CA) is a combinatorial structure specified as a matrix of N rows and k columns
over an alphabet on v symbols such that for each set of t columns every t-tuple of symbols is
covered at least once. Given the values of t, k, and v, the optimal covering array construction
problem (CAC) consists in constructing a CA (N; t, k, v) with the minimum possible value of N.
There are several reported methods to attend the CAC problem, among them are direct methods,
recursive methods, greedy methods, and metaheuristics methods. In this paper, There are three
parallel approaches for simulated annealing: the independent, semi-independent, and cooperative
searches are applied to the CAC problem. The empirical evidence supported by statistical analysis
indicates that cooperative approach offers the best execution times and the same bounds as the
independent and semi-independent approaches. Extensive experimentation was carried out, using
182 well-known benchmark instances of ternary covering arrays, for assessing its performance
with respect to the best-known bounds reported previously. The results show that cooperative
approach attains 134 new bounds and equals the solutions for other 29 instances.

1. Introduction

A covering array, denoted by CA(N; t, k, v), is a matrix M of size N × k which takes values
from the set of symbols {0, 1, 2, . . . , v − 1} (called the alphabet), and every submatrix of size
N × t contains each tuple of symbols of size t (or t-tuple), at least once. The value N is the
number of rows of M, k is the number of parameters, where each parameter can take v
values, and the interaction degree between parameters is described by the strength t. Each
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combination of t columns must cover all the vt t-tuples. Given that there are
(
k
t

)
sets of t

columns inM, the total number of t-tuples inM must be vt
(
k
t

)
. When a t-tuple is missing in

a specific set of t columns, we will refer to it as a missing t-wise combination. Then, M is a
covering array if the number of missing t-wise combinations is zero.

When a matrix has the minimum possible value of N to be a CA(N; t, k, v), the value
N is known as the covering array number. The covering array number is formally defined
as CAN(t, k, v) = min{N : ∃ CA(N; t, k, v)}. Given the values of t, k, and v, the optimal
covering array construction problem (CAC) consists in constructing a CA(N; t, k, v) such
that the value of N is minimized.

A major application of covering arrays (CAs) arises in software interaction testing
[1], where a covering array can be used to represent an interaction test suite as follows. In
a software test, we have k components or factors. Each of these parameters has v values or
levels. A test suite is an N × k array where each row is a test case. Each column represents a
component, and a value in the column is the particular configuration. By mapping a software
test problem to a covering array of strength t, we can guarantee that we have tested, at
least once, all t-way combinations of component values [2]. Thus, software testing costs can
be substantially reduced by minimizing the number of test cases N in the covering array.
Please observe that software interaction testing is a black-box testing technique, and thus
it exhibits weaknesses that should be addressed by employing white-box testing techniques.
For a detailed example of the use of covering arrays in software interaction testing, the reader
is referred to [3].

In this paper, we aim to develop an enhanced sequential simulated annealing (ESSA)
algorithm for finding near-optimal covering arrays. Simulated annealing algorithm is a
general-purpose stochastic optimization technique that has proved to be an effective tool
for approximating globally optimal solutions to many optimization problems. However, one
of the major drawbacks of the technique is the time it requires to obtain good solutions
(moreover, when the evaluation function requires too much time). To address this drawback,
we propose three parallel simulated annealing approaches to solve the CAC problem. The
objective is to find the best bounds to some ternary covering arrays by using parallelism. To
our knowledge, the application of parallel simulated annealing to the CAC problem has not
been reported in the literature. Some methods of parallelization of simulated annealing are
discussed in [4–8].

The remainder of this paper is organized as follows. Some techniques that have been
used for constructing covering arrays are presented in Section 2. Section 3 describes the
components of our sequential annealing algorithm. In Section 4, three parallel simulated
annealing approaches are discussed. Section 5 describes the experimental results. Finally,
Section 6 presents the conclusions derived from the research presented in this paper.

2. Review of Covering Arrays Construction Methods

Because of the importance of the construction of (near) optimal covering arrays, much
research has been carried out in developing effective methods for constructing them. There
are several reported methods for constructing these combinatorial models. Among them are
(1) direct methods; (2) recursive methods; (3) greedy methods; (4) metaheuristics methods.

Chateauneuf and Kreher [9] introduced a new method to construct covering arrays of
strength three. This construction uses the structure of covering arrays and the repetition in
covering arrays. The idea is to construct a covering array from a small array, a starter vector,
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and a group. This construction builds the covering array column by column by considering
the group acting on the columns of the starter vector. Meagher and Stevens [10] extended
the idea exhibited in [9], presenting a strategy for obtaining the starter vector by local search
and the selection of a group action. Recently, Lobb et al. [11] presented a generalization of
this method to permit any number of fixed points, permit an arbitrary group acting on the
symbols, and permit an arbitrary group acting on the columns. With all these generalizations
were obtained new bounds for covering arrays of strength two.

Tang and Woo [12] used constant weight vectors to construct test suites to be applied
to logic circuit testing. Martinez-Pena et al. [13] introduced a new method for constructing
covering arrays using trinomial coefficients, and they improved the results presented in [12].
Martinez-Pena et al. used the trinomial coefficients for the representation of the search space
in the construction of ternary covering arrays. It is clear that any covering array is formed by
a row set. In this sense, a trinomial coefficient represents a particular subset of rows which
may belong to a ternary covering array.

Hartman [3] presented a recursive construction which gives a method of squaring the
number k of columns in a covering array of strength t while multiplying the rows N by a
factor dependent only on t and v, but independent of k. This factor is related to the Turan
numbers T(t;v) that are defined to be the number of edges in the Turan graph.

Colbourn et al. [14] presented a product construction for t = 2. In general, the product
of two covering arrays where t = 2 consists in obtaining a new covering array where the
number of columns is equal to the product of the columns of the ingredients, and the number
of rows is equal to the sum of the rows of each ingredient.

The majority of commercial and open-source test data generating tools use greedy
algorithms for covering arrays construction (AETG, TCG, ACTS, DDA, among others).

Cohen et al. [1] presented a strategy called AETG. In AETG, covering arrays are
constructed one row at a time. To generate a row, the first t-tuple is selected based on the
one involved in most uncovered pairs. Remaining factors are assigned levels in a random
order. Levels are selected based on the one that covers the most new t-tuples. For each
row that is actually added to the covering array, there are a number of, M, candidate rows
that are generated, and only a candidate that covers the most new t-tuples is added to the
covering array. Once a covering is constructed, a number, R, of test suites are generated and
the smallest test suite generated is reported. This process continues until all pairs are covered.

Tung and Aldiwan [15] proposed a tool called TCG. In TCG, one row is added at a
time to a covering array until all pairs are covered. Before each row is added, a number of
up toM candidate rows are generated, and the best candidate (covering the most new pairs)
is added. M is defined to be the maximum cardinality of factors (the maximum number of
levels associated with any factor). To construct each row, factors are assigned levels in an
order based on a nonascending order of the cardinality of each factor. Each level for the factor
is evaluated, and a count of the number of pairs that are covered is used to determine whether
or not to select a level for a factor.

Bryce and Colbourn [16] presented an algorithm called DDA. The DDA constructs one
row of a covering array at a time using a steepest ascent approach. Factors are dynamically
fixed one at a time in an order based on density. New rows are continually added until all
interactions have been covered.

Lei and Tai [17] introduced a new algorithm called IPO, for pairwise testing. For a
system with two or more input parameters, the IPO strategy generates a pairwise test set for
the first two parameters, extends the test set to generate a pairwise test set for the first three
parameters, and continues to do so for each additional parameter. Contrary to many other
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algorithms that build covering arrays one row at a time, the IPO strategy constructs them one
column at a time. Lei et al. [18] introduced an algorithm for the efficient production of covering
arrays, called IPOG, which generalizes the IPO strategy from pairwise testing to multiway
testing. The main idea is that covering arrays of k − 1 columns can be used to efficiently build
a covering array with degree k.

Ronneseth and Colbourn [19] introduced a new algorithm for constructing covering
arrays, the BBA. The BBA’s fundamental idea is to combine smaller covering arrays by
reordering the rows and then to append additional rows for the remaining uncovered pairs.

Some stochastic algorithms in artificial intelligence, such as tabu search [20, 21],
simulated annealing [22], generic algorithms, and ant colony optimization algorithm [23], provide
an effective way to find approximated solutions. In these algorithms, the optimization focuses
on one value of N at a time, attempting to find a covering array for that size.

A simulated annealing metaheuristic (henceforth called SAC) has been applied by
Cohen et al. in [22] for constructing covering arrays. SAC starts with a randomly generated
initial solution M whose cost c(M) is measured as the number of uncovered t-tuples. In
their implementation, Cohen et al. use a simple geometric function Tn = 0.9998Tn−1 with an
initial temperature fixed at Ti = 0.20. At each temperature, 2000 neighboring solutions are
generated. The algorithm stops either if a valid covering array is found, or if no change in
the cost of the current solution is observed after 500 trials. The authors justify their choice
of these parameter values based on some experimental tuning. They conclude that their
simulated annealing implementation is able to produce smaller covering arrays than other
computational methods, sometimes improving upon algebraic constructions.

Torres-Jimenez and Rodriguez-Tello [24] introduced a new simulated annealing
implementation for constructing binary covering arrays.

3. Sequential Simulated Annealing

In this section, we briefly review simulated annealing (SA) algorithm and propose an
enhanced sequential simulated annealing (ESSA) implementation to solve the CAC problem.
ESSA is an extension of the simulated annealing presented in [24] for constructing covering
arrays for v > 2 and mixed-level covering arrays.

Simulated annealing is a randomized local search method based on the simulation of
annealing of metal. The acceptance probability of a trial solution is given by (3.1), where T is
the temperature of the system,ΔC is the difference of the costs between the trial and the current
solutions (the cost change due to the perturbation), and (3.1) means that the trial solution is
accepted by nonzero probability e−ΔC/T even though the solution deteriorates (uphill move)

(P) =

{
1 if ΔC < 0,
e−ΔC/T otherwise.

(3.1)

Uphill moves enable the system to escape from the local minima; without them, the
system would be trapped into a local minimum. Too high of a probability for the occurrence
of uphill moves, however, prevents the system from converging. In simulated annealing,
the probability is controlled by temperature in such a manner that at the beginning of the
procedure the temperature is sufficiently high, in which a high probability is available, and
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as the calculation proceeds, the temperature is gradually decreased, lowering the probability
[25].

The following paragraphs will describe each of the components of the implementation
of our simulated annealing implementation. The description is done given the matrix rep-
resentation of a covering array.

3.1. Internal Representation

Let M be a potential solution in the search spaceM, that is, a covering array CA(N; t, k, v)
of size N, strength t, degree k, and order v. Then M is represented as an N × k array on v
symbols, in which the element mi,j denotes the symbol assigned in the test configuration i to
the parameter j. The size of the search spaceM is then given by

|M| = vNk. (3.2)

3.2. Initial Solution

The initial solution M is constructed by generating M as a matrix with maximum Hamming
distance. The Hamming distance d(x, y) between two rows x, y ∈ M is the number of
elements in which they differ. Let ri be a row of the matrix M. To generate a random matrix
M of maximum Hamming distance, the following steps are performed:

(1) generate the first row r1 at random,

(2) generate s rows c1, c2, . . . , cs at random, which will be candidate rows,

(3) select the candidate row ci that maximizes the Hamming distance according to (3.3)
and added to the ith row of the matrix M,

(4) repeat from step 2 until M is completed;

g(ri) =
i−1∑

s=1

k∑

v=1

d(ms,v,mi,v), where d(ms,v,mi,v) =

{
1 if ms,v /=mi,v,

0 otherwise.
(3.3)

An example is shown in (3.4); the number of symbols different between rows r1 and c1
is 4 and between r2 and c1 is 3 summing up 7. Then, the Hamming distance for the candidate
row c1 is 7:

Rows

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r1 =
{
2 1 0 1

}

r2 =
{
1 2 0 1

}

c1 =
{
0 2 1 0

}
, Distances

⎧
⎪⎪⎨

⎪⎪⎩

d(r1, c1) = 4
d(r2, c1) = 3
g(c1) = 7

, (3.4)

Equation (3.4) is an example of the Hamming distance between two rows r1, r2 that
are already in the matrix M and a candidate row c1.
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3.3. Evaluations Function

The evaluation function C(M) is used to estimate the goodness of a candidate solution. Pre-
viously reported metaheuristic algorithms for constructing covering arrays have commonly
evaluated the quality of a potential solution (covering array) as the number of combination
of symbols missing in the matrix M [20, 22, 23]. Then, the expected solution will be zero
missing. In the proposed simulated annealing implementation, this evaluation function
definition was used. Its computational complexity is equivalent to O(N

(
k
t

)
).

3.4. Neighborhood Function

Given that ESSA is based on local search (LS), then a neighborhood function must be defined.
The main objective of the neighborhood function is to identify the set of potential solutions
which can be reached from the current solution in a local search (LS) algorithm. In case two or
more neighborhoods exhibit complementary characteristics, it is then possible and interesting
to create more powerful compound neighborhoods. The advantage of such an approach is
well documented in [26]. Following this idea, and based on the results of our preliminary
experimentations, a neighborhood structure composed by two different functions is proposed
for ESSA.

The neighborhood function N1(s) makes a random search of a missing t-tuple and
then tries by setting the jth combination of symbols in every row of M. The neighborhood
function N2(s) randomly chooses a position (i, j) of the matrix M and makes all possible
changes of symbol. During the search process, a combination of both N1(s) and N2(s)
neighborhood functions is employed by ESSA algorithm. The former is applied with
probability P, while the latter is employed at a (1 − P) rate. This combined neighborhood
functionN3(s, x) is defined in (3.5), where x is a random number in the interval [0, 1]:

N3(s, x) =

{
N1(s) if x ≤ P,

N2(s) if x > P.
(3.5)

3.5. Cooling Schedule

The cooling schedule determines the degree of uphill movement permitted during the search
and is thus critical to the ESSA algorithm’s performance. The parameters that define a cooling
schedule are an initial temperature, a final temperature or a stopping criterion, the maximum
number of neighboring solutions that can be generated at each temperature, and a rule for
decrementing the temperature. The literature offers a number of different cooling schedules,
see, for instance, [4, 27]. ESSA uses a geometrical cooling scheme mainly for its simplicity.
It starts at an initial temperature Ti which is decremented at each round by a factor α using
the relation Tk = αTk−1. For each temperature, the maximum number of visited neighboring
solutions is L. It depends directly on the parameters (N, k, and v) of the studied covering
array. This is because more moves are required for covering arrays with alphabets of greater
cardinality.
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(1) INITIALIZE(M,T, L) /∗ Create the initial solution. ∗/
(2) M� ←M; /∗Memorize the best solution. ∗/
(3) T = T0; /∗ Initial temperature of SA. ∗/
(4) repeat
(5) for i← 1 to L do
(6) Mi ← GENERATE (M); /∗ Perturb current state. ∗/
(7) ΔC ← C(Mi) − C(M); /∗ Evaluate cost function. ∗/
(8) x ← random; /∗x in the range [0,1). ∗/
(9) if ΔC < 0 or e−ΔC/T > x then
(10) M ←Mi; /∗ Accept new state.∗/
(11) if C(M) < C(M�) then
(12) M� ←M; /∗Memorize the best solution. ∗/
(13) end if
(14) end if
(15) end for
(16) CALCULATE CONTROL(T, φ)
(17) until termination condition is satisfied;

Algorithm 1: Sequential simulated annealing for the CAC problem.

3.6. Termination Condition

The stop criterion for ESSA is either when the current temperature reaches Tf , when it ceases
to make progress, or when a valid covering array is found. In the proposed implementation,
a lack of progress exists if after φ (frozen factor) consecutive temperature decrements the
best-so-far solution is not improved.

3.7. Simulated Annealing Pseudocode

Algorithm 1 presents the simulated annealing heuristic as described above. The meaning of
the three functions is obvious: INITIALIZE computes a start solution and initial values of
the parameters T and L; GENERATE selects a solution from the neighborhood of the current
solution, using the neighborhood function N3(s, x); CALCULATE CONTROL computes a
new value for the parameter T (cooling schedule) and the number of consecutive temperature
decrements with no improvement in the solution.

This is unlike the classical method which takes as a solution to the problem the last
value obtained in the annealing chain [28]. We memorize the best solution found during the
whole annealing process (see lines 2 and 12).

In the next section, it is presented three parallel simulated annealing approaches for
solving the CAC problem.

4. Parallel Simulated Annealing

Parallelization is recognized like a powerful strategy to increase algorithms efficiency;
however, simulated annealing parallelization is a hard task because it is essentially a sequen-
tial process.
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In evaluating performance of a parallel simulated annealing (PSA), it needs to
consider solution quality as well as execution speed. The execution speed may be quantified
in terms of speed-up (S) and efficiency (E). The S is defined as the ratio of the execution time
(on one processor) by the sequential simulated annealing to that by the PSA (on P processors)
for an equivalent solution quality. In the ideal case, S would be equal to P . The E is defined
as the ratio of the actual S to the ideal S(P).

Next, we propose three parallel implementations of the simulated annealing algorithm
described in Section 3. For these cases, let P denote the number of processors and L the length
of Markov chain.

4.1. Independent Search Approach

A common approach to parallelizing simulated annealing is the ISA [4, 6, 29]. In this
approach, each processor independently perturbs the configuration, evaluates the cost, and
decides on the perturbation. The processors Pi, i = 0, 1, . . . , P − 1 carry out the independent
annealing searches using the same initial solution and cooling schedule as in the sequential
algorithm. At each temperature, Pi executesN × k ×v2 annealing steps. When each processor
finishes, it sends its results to processor P0. Finally, processor P0 chooses the final solution
among the local solutions.

We have implemented a simulated annealing algorithm using ISA approach for
constructing covering arrays. In the developed implementation, the processors do not interact
during individual annealing processes until all processors find their final solution. Then, the
best of the solutions is saved and the others are discarded.

4.2. Semi-Independent Search Approach

Aarts and van Laarhoven [4] introduced a new parallel simulated annealing algorithm
named division algorithm. In the division algorithm, the number of iterations at each
temperature is divided equally between the processors. After a change in temperature,
each processor may simply start from the final solution obtained by that processor at
the previous temperature. The best solution from all the processors is then taken to be
the final solution. Another variant of this approach is to communicate the best solution
from all the processors to each processor every time the temperature changes. Aarts
and van Laarhoven [4] found no significant differences in the performance of these two
variants.

We have developed an implementation of division algorithm; we named the
implementation SSA. In SSA, parallelism is obtained by dividing the effort of generation
a Markov chain over the available processors. A Markov chain is divided into P
subchains of the length �L/P�. In this approach, the processors exchange local information
including intermediate solutions and their costs. Then, each processor restarts from the best
intermediate ones.

Compared to the ISA, communication overhead in this SSA approach would be
increased. However, each processor can utilize the information from other processors such
that the decrease in computations and idle times can be greater than the increase in
communication overhead. For instance, a certain processor which is trapped in an inferior
solution can recognize its state by comparing it with others and may accelerate the annealing
procedure. That is, processors may collectively converge to a better solution.
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4.3. Cooperative Search Approach

In order to improve the performance of the SSA approach, we propose the cooperative
search approach (CSA); it used asynchronous communication among processors accessing
the global state to eliminate the idle times. Each processor follows a separate search path,
accesses the global state which consists of the current best solution and its cost whenever it
finished a Markov subchain, and updates the state if necessary. Once a processor gets the
global state, it proceeds to the next Markov subchain with any delay.

Unlike SSA, CSA has the following characteristics:

(i) idle times can be reduced since asynchronous communications overlap a part of the
computation;

(ii) less communication overhead, an isolated access to the global state is needed by
each processor at the end of each Markov subchain;

(iii) the probability of being trapped in a local optimum can be smaller. This is because
not all the processors start from the same state in each Markov subchain.

5. Experimental Results

This section presents an experimental design and results derived from testing the parallel
ISA, SSA, and CSA algorithms described in the Section 4. In order to show the performance
of these approaches, three experiments were developed. The first experiment had as purpose
to fine-tune the probabilities of the neighborhood functions to be selected. The second
experiment had as purpose to compare the three approaches in terms of parallel execution
time. Among the three approaches, the CSA approach was the fastest. The third experiment
evaluated the quality of the solutions of the CSA approach over a new benchmark proposed
in this paper. The results were compared against the best-known solutions reported in the
literature to construct covering arrays [30].

The three parallel approaches were implemented using C language and the message
passing interface (MPI) library. The implementations were run on the Tirant supercom-
puter (The Tirant supercomputer: http://www.uv.es/siuv/cas/zcalculo/res/informa.wiki).
Tirant comprises 256 JS20 compute nodes (blades) and 5p515 servers. Every blade has two
IBM Power4 processors at 2.0GHz running Linux operating system with 4GB of memory
RAM and 36GB of local disk storage. All the servers provide a total of nearly 10 TB of
disk storage accessible from every blade through GPFS (global parallel file system). Tirant
has in total 512 processors, 1 TB of memory RAM, and 19TB of disk storage. The following
parameters were used for all simulated annealing implementations:

(1) Initial temperature Ti = 4.0,

(2) Final temperature Tf = 1.0E − 10,
(3) Cooling factor α = 0.99,

(4) Maximum neighboring solutions per temperature L = N × k × v2,

(5) Frozen factor φ = 11;

(6) The neighborhood functionN3(s, x) is applied using a probability P = 0.3.
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Figure 1: Performance of ESSA with the 11 combinations of probabilities.

5.1. Tuning of the Parameters of Parallel Simulated Annealing

It is well known that the performance of a simulated annealing algorithm is sensitive to
parameter tuning. In this sense, we follow a methodology for a fine-tuning of the two
neighborhood functions used in ESSA. The fine-tuning was based on the linear Diophantine
equation (5.1), where xi represents a neighborhood function, and its value set to 1, Pi is a
value in {0.0, 0.1, . . . , 1.0} that represents the probability of executing xi, and q is set to 1.0
which is the maximum probability of executing any xi:

P1x1 + P2x2 = q. (5.1)

A solution to the given linear Diophantine equation must satisfy (5.2). This equation
has 11 solutions, each solution is an experiment that tests the degree of participation of each
neighborhood function in ESSA to accomplish the construction of a covering array. Every
combination of the probabilities was applied by ESSA to construct the set of covering arrays
shows in Table I(a), and each experiment was run 31 times; with the data obtained for each
experiment, we calculate the median. A summary of the performance of ESSA with the
probabilities that solved the 100% of the runs is shown in Table I(b):

2∑

i=1

Pixi = 1.0 (5.2)

Finally, given the results shown in Figure 1, the best configuration of probabilities was
P1 = 0.3 and P2 = 0.7 because it found the covering arrays in smaller time (median value).
The values P1 = 0.3 and P2 = 0.7 were kept fixed in the second experiment.
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Table 1: (a) A set of 7 covering arrays configurations. (b) Performance of ESSA. Columns 3–9 show the
time taken to construct each of the covering arrays.

(a)

Id CA description
ca1 CA(19; 2, 30, 3)
ca2 CA(35; 3, 5, 3)
ca3 CA(58; 3, 10, 3)
ca4 CA(86; 4, 5, 3)
ca5 CA(204; 4, 10, 3)
ca6 CA(243; 5, 5, 3)
ca7 CA(1040; 5, 15, 3)

(b)

P1 P2
Covering arrays

ca1 ca2 ca3 ca4 ca5 ca6 ca7
0 1 4789.763 3.072 46.989 12.544 3700.038 167.901 0.102
0.1 0.9 1024.635 0.098 0.299 0.236 344.341 3.583 0.008
0.2 0.8 182.479 0.254 0.184 0.241 173.752 1.904 0.016
0.3 0.7 224.786 0.137 0.119 0.222 42.950 1.713 0.020
0.4 0.6 563.857 0.177 0.123 0.186 92.616 3.351 0.020
0.5 0.5 378.399 0.115 0.233 0.260 40.443 1.258 0.035
0.6 0.4 272.056 0.153 0.136 0.178 69.311 2.524 0.033
0.7 0.3 651.585 0.124 0.188 0.238 94.553 2.127 0.033
0.8 0.2 103.399 0.156 0.267 0.314 81.611 5.469 0.042
0.9 0.1 131.483 0.274 0.353 0.549 76.379 4.967 0.110
1 0 7623.546 15.905 18.285 23.927 1507.369 289.104 2.297

5.2. Comparison of the ISA, SSA, and CSA Approaches

To test the performance of the ISA, SSA, and CSA approaches, we propose the construction
of a covering array with N = 80, t = 3, k = 22, and v = 3. Each approach was executed 31
times (for providing statistical validity to experiment) using P = {4, 8, 16, 32}.

The performance of the algorithms has been compared based on median speedup as a
function of the number of processors; the results are shown in Figure 2.

The ISA approach; had difficulty in handling the large problem instances, it does
not scale well. The SSA approach provides reasonable results; however, because it is a
synchronous algorithm, the idle and communication times are inevitable. The CSA approach
is the one which offers the best results; it reduces the execution time of the SSA approach by
employing asynchronous information exchange.

In the next subsection, it is presented the third experiment of this work, and the
purpose is to measure the performance of the CSA algorithm against the best-known
solutions reported in the literature.

5.3. Comparison with State-of-the-Art Procedures

The purpose of this experiment is to carry out a performance comparison of the bounds
achieved by the CSA approach with respect to the best-known solutions reported in
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the literature [30], which were produced using the following state-of-the-art procedures:
orthogonal array construction, Roux type constructions, doubling constructions, algebraic
constructions, deterministic density algorithm (DDA), Tabu search, and IPOG-F.

For this experiment, we have fixed the maximum computational time expended by
our PSA for constructing a covering array to 72 hours and 50 processors. We create a new
benchmark composed of 182 covering arrays distributed as follows:

(i) 47 covering arrays with strength t = 3, degree 4 ≤ k < 50, and order v = 3,

(ii) 46 covering arrays with strength t = 4, degree 5 ≤ k < 50, and order v = 3,

(iii) 45 covering arrays with strength t = 5, degree 6 ≤ k < 50, and order v = 3,

(iv) 44 covering arrays with strength t = 6, degree 7 ≤ k < 50, and order v = 3,

The detailed results produced by this experiment are listed in Table 2. The first two
columns in each subtable indicate the strength t and the degree k of the selected instances.
Next two columns show, in terms of the size N of the covering arrays, the best-known
solution reported in the literature and the improved bounds produced by the CSA approach.
Last column depicts the difference between the best result produced by CSA approach and
the best-known solution (Δ = β − ϑ).

Figure 3 compares the results shown in Table 2 involving the CSA algorithm and the
best-known solutions. The analysis of the data presented led us to the following observation.
The solutions quality attained by the CSA approach is very competitive with respect to that
produced by the state-of-the-art procedures summarized in column 3 (ϑ). In fact, it is able to
improve on 134 previous best-known solutions.

6. Conclusions

The long execution time of simulated annealing due to its sequential nature hinders its
application to realistically sized problems, in this case, the CAC problem when t > 3,
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Table 2: It shows the improved bounds produced by CSA approach. Column ϑ represents the best-known
solution reported in the literature [30]. Column β represents the best solution in terms of N produced by
CSA approach. Last column (Δ) depicts the difference between the best result produced by CSA approach
and the best-known solution (Δ = β − ϑ). (a) Improved bounds on CAN(3, k, 3); (b) improved bounds on
CAN(4, k, 3); (c) improved bounds on CAN(5, k, 3); (d) improved bounds on CAN(6, k, 3).

(a)

t k ϑ β Δ
3 4 27 27 0
3 5 33 33 0
3 6 33 33 0
3 7 40 39 −1
3 8 42 42 0
3 9 45 45 0
3 10 45 45 0
3 11 45 45 0
3 12 45 45 0
3 13 50 49 −1
3 14 51 50 −1
3 15 57 57 0
3 16 60 59 −1
3 17 60 59 −1
3 18 60 59 −1
3 19 60 59 −1
3 20 60 59 −1
3 21 66 67 1
3 22 66 71 5
3 23 69 71 2
3 24 72 71 −1
3 25 75 72 −3
3 26 78 72 −6
3 27 81 79 −2
3 28 81 79 −2
3 29 87 84 −3
3 30 87 84 −3
3 31 90 88 −2
3 32 90 89 −1
3 33 90 89 −1
3 34 90 89 −1
3 35 90 89 −1
3 36 90 89 −1
3 37 90 89 −1
3 38 90 89 −1
3 39 90 89 −1
3 40 90 89 −1
3 41 98 94 −4
3 42 98 94 −4
3 43 100 99 −1
3 44 100 99 −1
3 45 103 99 −4
3 46 103 101 −2
3 47 106 101 −5
3 48 106 101 −5
3 49 108 101 −7
3 50 108 102 −6
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(b)

t k ϑ β Δ
4 5 81 81 0
4 6 111 111 0
4 7 123 123 0
4 8 141 135 −6
4 9 159 135 −24
4 10 159 164 5
4 11 183 183 0
4 12 201 201 0
4 13 219 219 0
4 14 237 249 12
4 15 237 277 40
4 16 237 277 40
4 17 300 287 −13
4 18 307 300 −7
4 19 313 313 0
4 20 315 321 6
4 21 315 338 23
4 22 315 347 32
4 23 315 359 44
4 24 377 375 −2
4 25 384 375 −9
4 26 393 387 −6
4 27 393 387 −6
4 28 393 392 −1
4 29 393 406 13
4 30 393 401 8
4 31 440 424 −16
4 32 445 431 −14
4 33 454 438 −16
4 34 462 447 −15
4 35 471 440 −31
4 36 471 456 −15
4 37 471 460 −11
4 38 471 465 −6
4 39 471 468 −3
4 40 499 472 −27
4 41 506 484 −22
4 42 509 488 −21
4 43 518 494 −24
4 44 522 497 −25
4 45 526 497 −29
4 46 530 506 −24
4 47 534 510 −24
4 48 542 516 −26
4 49 549 523 −26
4 50 549 525 −24
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(c)

t k ϑ β Δ
5 6 243 243 0
5 7 351 351 0
5 8 405 405 0
5 9 483 405 −78
5 10 483 405 −78
5 11 705 550 −155
5 12 723 600 −123
5 13 723 828 105
5 14 922 890 −32
5 15 963 944 −19
5 16 963 1025 62
5 17 1117 1117 0
5 18 1167 1165 −2
5 19 1197 1190 −7
5 20 1266 1257 −9
5 21 1317 1312 −5
5 22 1346 1319 −27
5 23 1405 1387 −18
5 24 1447 1420 −27
5 25 1486 1440 −46
5 26 1521 1493 −28
5 27 1538 1527 −11
5 28 1579 1555 −24
5 29 1615 1585 −30
5 30 1647 1616 −31
5 31 1681 1643 −38
5 32 1724 1671 −53
5 33 1783 1702 −81
5 34 1783 1724 −59
5 35 1851 1748 −103
5 36 1882 1778 −104
5 37 1909 1800 −109
5 38 1937 1829 −108
5 39 1960 1851 −109
5 40 1986 1866 −120
5 41 2023 1896 −127
5 42 2046 1923 −123
5 43 2069 1940 −129
5 44 2091 2089 −2
5 45 2112 2111 −1
5 46 2130 2129 −1
5 47 2150 2149 −1
5 48 2174 2168 −6
5 49 2191 2189 −2
5 50 2213 2211 −2
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(d)

t k ϑ β Δ
6 7 729 729 0
6 8 1152 1152 0
6 9 1431 1600 169
6 10 1449 1849 400
6 11 1449 2136 687
6 12 2181 2482 301
6 13 2734 2744 10
6 14 2907 3220 313
6 15 3234 3338 104
6 16 3443 3672 229
6 17 3658 3882 224
6 18 3846 4098 252
6 19 4054 4256 202
6 20 4486 4400 −86
6 21 4678 4600 −78
6 22 4853 4732 −121
6 23 4942 4941 −1
6 24 5193 5100 −93
6 25 5257 5238 −19
6 26 5709 5380 −329
6 27 5853 5810 −43
6 28 6003 5965 −38
6 29 6150 6110 −40
6 30 6281 6250 −31
6 31 6413 6393 −20
6 32 6535 6518 −17
6 33 6656 6642 −14
6 34 6772 6760 −12
6 35 6877 6871 −6
6 36 6989 6978 −11
6 37 7092 7086 −6
6 38 7194 7187 −7
6 39 7293 7284 −9
6 40 7391 7385 −6
6 41 7490 7478 −12
6 42 7574 7569 −5
6 43 7672 7661 −11
6 44 7757 7748 −9
6 45 7845 7836 −9
6 46 7938 7928 −10
6 47 8013 8005 −8
6 48 8092 8089 −3
6 49 8179 8176 −3
6 50 8256 8253 −3
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Figure 3: Graphical comparison of the quality solutions between CSA and the state of the art [30].

5 < k ≤ 100, and v = 3. Amore efficient way to reduce execution time andmake the simulated
annealing a more promising method is to parallelize sequential simulated annealing. It is a
challenging task. In fact, there are many approaches that may be considered in parallelizing
simulated annealing. However, an inappropriate strategy used will likely result in poor
performance.

In this paper, we have used three different approaches to do the parallelization of
the simulated annealing algorithm. From the experimental results, we found that the ISA
approach has the worst performance, and it does not scale well. The SSA approach offers
reasonable execution times; compared to the ISA, communication overhead in the SSA
approach would be increased when the size of the problem grows. However, each processor
can utilize the information from other processors such that the decrease in computations and
idle times can be greater than the increase in communication overhead. For instance, a certain
processor which is trapped in an inferior solution can recognize its state by comparing it
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with others and may accelerate the annealing procedure. That is, processors may collectively
converge to a better solution.

The CSA approach is the one which offers the best results; it significantly reduces the
execution time of the SSA approach by employing asynchronous information exchange. The
quality solutions attained by the CSA approach are very competitive with respect to that
produced by the state-of-the-art procedures; in fact, it is able to improve on 134 previous
best-known solutions and equals the solutions for other 29 instances.

These experimental results confirm the practical advantages of using CSA algorithm
in the software testing area. It is a robust algorithm yielding smaller test suites than other
representative state-of-the-art algorithms, which allows reducing software testing costs.

The new bounds are available in Cinvestav covering array repository (CAR), which
is available under request at http://www.tamps.cinvestav.mx/∼jtj/authentication.php. We
have verified all covering arrays described in this paper using the tool described in [31].
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