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Low-thrust transfers between given orbits within the two-body problem are considered; the thrust
is assumed power limited. A simple method for obtaining the transfer trajectories based on the
linearization of the motion near reference orbits is suggested. Required calculation accuracy can
be reached by means of use of a proper number of the reference orbits. The method may be used
in the case of a large number of the orbits around the attracting center; no averaging is necessary
in this case. The suggested method also is applicable to the cases of partly given final orbit and if
there are constraints on the thrust direction. Themethod gives an optimal solution to the linearized
problem which is not optimal for the original nonlinear problem; the difference between the
optimal solutions to the original and linearized problems is estimated using a numerical example.
Also examples illustrating the method capacities are given.

1. Introduction

In this paper spiral transfers with power-limited low thrust between two given orbits are
considered. The transfer trajectory may include a large number of orbits around the attracting
center if the transfer is performed in a strong gravity field; this situation takes place, for
example, near Earth. This makes optimization of the transfer more difficult.

There are various mathematical methods for optimization of multirevolution orbital
transfers [1–7], most of them are based on averaging of motion. However, the methods have
some defects: they are complicated [3, 5] or have a limited application, that is, are applicable
only to the circular or neighboring orbits [1, 6, 7] or only to the planar or coaxial orbits [2, 4,
6, 7].

This paper suggests a simple mathematical method for calculation of the orbital
transfers within the two-body problem. (A paper describing a generalization of the method
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to any force field will be published in the Cosmic Research journal.) The method is based on a
linearization of motion near some reference orbits; in this respect the method is similar to the
Method of Transporting Trajectory (MTT) for solving the two-point boundary value problem
(TPBVP) suggested in [8] and developed in [9–12]. The method suggested here makes it
possible obtaining transfer trajectories of the following types:

(i) transfer between a given position in the initial orbit and an optimally determined
position in the final orbit (this case takes place, for example, if the spacecraft
launches from a given orbit at a given time and phasing of the final orbit is not
necessary);

(ii) transfer between the initial orbit and a given position in the final orbit with
obtaining an optimal position of the launch (this situation takes place, for instance,
in the transfer to a given point of geostationary orbit if the time of launch from the
initial orbit may be selected arbitrarily);

(iii) transfer between two given orbits with obtaining optimal launch and arrival
positions (this is a classical case of the orbital transfer).

The method suggested in this paper does not need any averaging of motion. Required
calculation accuracy is reached by means of use of a proper number of the reference orbits:
the bigger is the number, the shorter are intervals of linearization and the higher is accuracy.
The method does not put any limits on the number of orbits around the attracting center and
on the number of the reference orbits. The suggested method is applicable also to the case
of a partly given final orbit (e.g., only semimajor axis and eccentricity or only orbital energy
may be given) and to the case of constraints imposed on the thrust direction.

However, the method gives an optimal solution to the linearized problem and this
solution is not optimal for the initial nonlinear problem. Note that this nonoptimality is
not caused by the linearization errors, but is a principal sequence of the substitution of the
original problem for the linearized one. A comparison of the optimal solutions to the initial
and linearized problemsmade for a numerical example is given in the paper. Other numerical
examples illustrate the method capacities.

2. Statement of the Problem

The spacecraft motion is described by the following:

ẋ = f (x, t) + g, (2.1)

where x = {r,v} is the spacecraft state vector, f = f(x, t) = {v, fv}, fv = fv(x, t) is the
acceleration caused by the external forces,

g = {0, α}. (2.2)

In the considered case of the two-body problem,

fv = − μ
r3
r. (2.3)
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Figure 1: Transfer between given orbits.

Let us assume for simplicity that the electric power of the propulsion system is constant. This
case takes place, for example, if a nuclear power source is used or if the transfer is performed
near a planet with nearly circular orbit. Then the performance index for the power-limited
thrust is

J =
1
2

∫T
0
α2dt, (2.4)

where α = |α|. Minimal value of the functional (2.4) gives minimal propellant consumption
[13].

Let qi,qf be 5-dimensional vectors of orbital elements defining the initial and final
orbits. The problem is to find transfer trajectory between the initial and final orbits in given
time T in which minimal value of the performance index (2.4) is reached.

3. Transfer between Given State and Given Orbit

The boundary values for the problem formulated in Section 2 may be written as

x0 = yi0, xT = yfT , (3.1)

where yi,yf are state vectors of the initial and final orbits. The case will be considered in this
section when vector yi0 is given and vector yfT is not given.

3.1. Transfer between Neighboring Orbits

First let us assume that the initial and final orbits are close to each other. Then the equation
of motion (2.1) can be linearized near the initial orbit as follows (Figure 1):

ξ̇ = Fξ + g, (3.2)

where

ξ = ξ(t) = x(t) − yi(t), (3.3)



4 Mathematical Problems in Engineering

is state vector of the linearized motion and

F =
∂f
∂yi

. (3.4)

Vector f and matrix F in (3.2) and (3.4) are calculated in the initial orbit, this is why matrix F
is a function of time even if vector f does not depend on time explicitly. The Hamiltonian for
(3.2) and performance index (2.4) is [14]

H = −α
2

2
+ ptFξ + Ptvα + pt, (3.5)

where p = {pr ,pv} is a vector of the costate variables corresponding to (3.2), pv is Lawden’s
primer vector, pt is costate variable corresponding to the additional equation ṫ = 1 making
the system autonomous. Vector p satisfies the following costate variational equation:

ṗt = −
(
∂H

∂ξ

)t
= −ptF, (3.6)

variable pt satisfies the following equation:

ṗt = −∂H
∂t

= −pòḞξ. (3.7)

Let us consider sixth-order matrix Ψ = Ψ(t) which is a general solution to (3.6) with initial
value Ψ(0) = I. Matrix Ψ is costate transition matrix given by

Ψ = ∂yi0/∂yi. (3.8)

Dividing matrix Ψ into two 6 × 3-dimensional submatrices as follows:

Ψ = [ΨrΨv], (3.9)

the costate variables may be represented as

p = Ψtβ, pv = Ψt
vβ, (3.10)

where β is a constant 6-dimensional vector. The Hamiltonian (3.5) reaches its maximum if

α = pv = Ψt
vβ. (3.11)

Solution to (3.2) is given by the Cauchy formula

ξ = ξ(t) = ξ0 +
∫ t
0
Φ(t, τ)gdτ, (3.12)
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where

Φ(t1, t2) =
∂yi(t1)
∂yi(t2)

(3.13)

is the state transition matrix. Due to (3.1) and (3.3) ξ0 = 0 in (3.12). Using (2.2), (3.9), and
(3.11) and relations

Φ(t, τ) = Φ(t, 0)Φ(0, τ) = Φ(t, 0)Φ−1(τ, 0), Φ = Φ(t, 0) = Ψ−1, (3.14)

the solution (3.12) can be represented as

ξ = ΦSβ, (3.15)

where

S = S(t) =
∫ t
0
ΨvΨt

vdt (3.16)

is matrix of sixth order (also see [9]). As follows from (3.3), (3.11), and (3.15), in order to find
optimal thrust vector and the state vector of the transfer trajectory, it is sufficient to obtain
vector β. Nonspecified state vector yfT may be found using transversality condition which in
the considered case is

pT = p(T) =

(
∂qf
∂yfT

)t

σ, (3.17)

where σ is an arbitrary constant 5-dimensional vector. Due to the closeness of the initial and
final orbits, the approximate equality ∂qf/∂yf ≈ U is fulfilled, where

U = U(t) =
∂qi
∂yi(t)

, (3.18)

is a 5 × 6-dimensional matrix. Then the condition (3.17) takes the form

pT = Ut
Tσ. (3.19)

Equations (3.10) and (3.19) and the last relation of (3.14) give

β = (UTΦT )tσ. (3.20)

The closeness of the initial and final orbits makes it possible to use the following approximate
linear relation:

Δq = qf − qi = UTξT . (3.21)
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Equations (3.15), (3.20), and (3.21) give

Δq = Wσ, (3.22)

where

W = UTΦTST (UTΦT )t (3.23)

is 5-dimensional matrix. Using (3.8), (3.9), (3.13), (3.14), (3.16), and (3.18), we obtain

UTΦT =
∂qi
∂yiT

∂yiT
∂yi0

=
∂qi
∂yi0

= U0, (3.24)

UTΦTST (UTΦT )t =
∂qi
∂yi0

∫T
0

∂yi0
∂vi

(
∂yi0
∂vi

)t
dt

(
∂qi
∂yi0

)t
, (3.25)

where vi = vi(t) is velocity vector in the initial orbit. (3.23), (3.25) give

W = U0STUt
0 =
∫T
0
QQt dt, (3.26)

where

Q = Q(t) = −∂qi
∂vi

(3.27)

is a 5× 3-dimensional matrix; as is seen from (3.18) and (3.27), matrixQ is a part of matrix U.
Using (3.20), (3.22), and (3.24), vector β can be found as follows:

β = Ut
0W

−1Δq. (3.28)

Now due to (3.3), (3.11), (3.15), and (3.28), the optimal thrust vector and the spacecraft state
vector are

α = Ψt
vU

t
0W

−1Δq, (3.29)

x(t) = yi(t) +ΦSUt
0W

−1Δq. (3.30)

Equations (3.1) and (3.30) give the state vector of entry into the final orbit

yfT = yiT +ΦTSTUt
0Δq. (3.31)
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Figure 2: Transfer between arbitrary orbits.

Substituting (3.29) into (2.4) and taking into account definitions (3.16), (3.26), the minimal
value of the performance index can be found as follows:

J =
1
2
ΔqtW−1Δq. (3.32)

Equations (3.29), (3.30), and (3.32) give the solution to the problem.
Note that matrices U, W, Φ, Ψ are calculated in [9, 15, 16] in an explicit form which

makes the suggested method analytical.

3.2. Transfer between Arbitrary Orbits

Let us consider transfer between arbitrary orbits and divide the time interval T into n
subintervals defined by instants t0 = t1, . . . , tn−1, tn = T . Also we assume that n−1 intermediate
reference orbits between the initial and final orbits are specified somehow and q1, . . . ,qn−1 are
5-dimentional vectors of elements of the reference orbits (see Figure 2). These vectors may be
given, for instance, in the following way:

qj = qj +
j

n

(
qf − qi

)
,
(
j = 1, . . . , n − 1

)
. (3.33)

Let us define vectors

Δqj = qj − qj−1,
(
j = 1, . . . , n

)
, (3.34)

where q0 = qi,qn = qf (here subscript “0” is the number of the reference orbit). Equations
(3.21) and (3.34) give the following equality:

n∑
j=1

Δqj = Δq. (3.35)

Let us divide the transfer trajectory into n arcs corresponding to the time subintervals and
assume that the jth arc begins in the j–1st reference orbit and ends in the jth one. Assuming
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number n big enough to make the j–1st and jth reference orbits close to each other for all
j = 1, . . . , n, the results of the Section 3.1 may be applied to each pair of the reference orbits.
Now the problem is to find the reference orbits providing optimality of the transfer. Due to
(3.32) the performance index for the jth transfer arc is

Jj =
1
2
ΔqtjW

−1
j Δqj ,

(
j = 1, . . . , n

)
, (3.36)

where similarly to (3.26), (3.27) the following definitions are used:

Wj =
∫ tj
tj−1

QjQt
jdt, Qj =

∂qj−1
∂vj−1

(
j = 1, . . . , n

)
, (3.37)

where (41) vj is velocity vector of the jth reference orbit. Performance index of the whole
problem is

J =
n∑
j=1

Jj . (3.38)

In order to find the transfer trajectory that gives minimum value for J , it is sufficient to find
intermediate reference orbits providing a minimum for (3.38). Thus, function (3.38) should
be minimized with respect to vectors Δqj , j = 1, . . . , n taking into account (3.35). Let us
introduce the helping function

L = J − λt
⎛
⎝ n∑

j=1

Δqj −Δq

⎞
⎠, (3.39)

where λ is a Lagrangemultiplier. Necessary conditions of aminimum for the functional (3.38)
are

(
∂L

∂Δqj

)t

= W−1
j Δqj − λ = 0

(
j = 1, . . . , n

)
. (3.40)

Thus,

Δqj = Wjλ
(
j = 1, . . . , n

)
, (3.41)

and (3.35) and (3.41) give

λ = W−1Δq, (3.42)
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where

W =
n∑
j=1

Wj . (3.43)

Now new values of vectors Δqj can be found from (3.41) and (3.42) as follows:

Δqj = WjW−1Δq
(
j = 1, . . . , n

)
. (3.44)

New reference orbits are defined by the new values of the orbital elements given by

qj+1 = qj + Δqj
(
j = 0, . . . , n − 1

)
. (3.45)

Assuming optimal locations of the reference orbits found and applying (3.29) and (3.30) to
the jth arc of the transfer trajectory, we obtain optimal thrust vector and the trajectory state
vector in the time interval tj−1 ≤ t ≤ tj(j = 1, . . . , n) as follows:

α(t) = Ψt
jvU

t
jW

−1Δq, (3.46)

x(t) = yj−1(t) +ΦjSjUt
j0W

−1Δq, (3.47)

where

Sj = Sj(t) =
∫ t
tj−1

ΨjvΨt
jvdt, Uj =

∂qj−1
∂yj−1

, (3.48)

matrix W is given by (3.43), matrices Φ = Φj(t, 0),Ψjv = Ψjv(t) are calculated in the j − 1st
reference orbit.

Multiplying (3.40) by Δqj and taking into account (3.35), (3.36), and (3.38), we obtain

J =
1
2
λtΔq. (3.49)

Due to (3.42) and (3.49) minimal value of the performance index in the considered case is
given by (3.32) with matrix W defined by (3.43).

3.3. Calculation Procedure

Let y0j ,y
1
j be the state vectors of the jth reference orbit at the beginning and at the end of the

jth time subinterval (i.e., at times tj−1, tj resp.). Then, the solution to the problem considered
here may be obtained by means of the following iterative calculation procedure.
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(1) n−1 intermediate reference orbits are specified somehow, for example, using (3.33).
The launch position in the initial orbit is specified in the case considered here (i.e.,
state y00 = yi(0) is given) and the respective initial state vector of the transfer
trajectory is x0 = y00.

(2) Vector y0j is calculated for j = 1 using the following equation, that is, similar to
(3.30):

y0j = y1j−1 +Φ1
jS

1
jU

t
j0W

−1
j Δqj , (3.50)

where S1
j = Sj(tj), Uj0 = Uj(0)matrixΨjv = Ψv(tj) is calculated in the j − 1st reference

orbit.

(3) Step 2 is repeated for j = 2, . . . , n−1 and for j = n (3.50) gives state vector yfT in the
final orbit.

(4) New vectorsΔqj are calculated using (3.44) and new reference orbits with elements
given by (3.45) are found.

(5) Performance index is calculated using (3.32) and steps 2–4 are repeated until
decrement ΔJ of the performance index gets smaller than a given parameter ε > 0.
As soon as |ΔJ | < ε, the thrust vector α and the state vector x of the transfer
trajectory may be calculated at each time subinterval using (3.46) and (3.47).

The suggested method is approximate, although any desired accuracy can be reached by
means of selecting an appropriate amount n of subintervals. It can be shown that if n −→ ∞
then the solution converges to a limit which is an accurate solution to the linearized problem.

4. Other Types of the Transfer

4.1. Transfer between Given Orbit and Given State Vector

Now let us consider the case when the launch position can be selected in the initial orbit
arbitrarily and the position of the entry into the final orbit is given (i.e., vector yi0 is not given
and vector yfT is given in (3.1)). In this case the method described in Section 3 should be
applied in the backward direction with decreasing time, that is, vector y0n−1 of the start from
n − 1st reference orbit can be found for a given state vector yfT of the arrival to the final
orbit, and so forth, until vector yi0 is found. The equations necessary to solve the problem
considered here can be easily derived from the equations given in Section 3.

4.2. Transfer between Two Given Orbits

Let us assume that neither launch position in the initial orbit nor arrival position in the final
orbit are given and should be determined in an optimal way during solving the transfer
problem. This case may be solved using the suggested method in the following way.

A first guess for the launch position should be given somehow. This position defines
the vector yi0 and in the first iteration of the calculation procedure described in Section 3.3 the
final state vector yfT may be found. In the second iteration of the calculation procedure for
this state vector a new value of the vector yi0 may be found as described in Section 4.1, and
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so forth, that is, odd iterations of the calculation procedure use the case described in Section 3
and even iterations use the case described in Section 4.1.

5. Partly Given Final Orbit

The suggested method can be also used in the case of partly given elements of the final orbit,
that is, if vector qf has dimension m < 5. For instance, only energy of the final orbit (m = 1)
or semimajor axis and eccentricity (m = 2) may be given. In this case the method described
above is applied with m-dimensional vectors qi,qf ,qj(j = 1, . . . , n − 1), m × 6-dimensional
matrix Uj , and m-order matrices Wj , Sj . Nongiven orbital elements are determined using
transversality condition (3.17) and the respective conditions for vectors qj .

6. Constraint Imposed on the Thrust Direction

Here the case when a constraint is imposed on the thrust direction is considered. This
constraint may be caused by specific features of the spacecraft design or of its attitude control
system. Let us assume the constraint given by

Bα = 0, (6.1)

where B = B(x, t) is a matrix of dimension 1×3 (i.e., B is a row) or 2×3 (in this case the thrust
direction is given and the problem is to find optimal thrust value). In this case, as is shown
in [17, 18], the suggested optimization method is also applicable with matrices Wj , Sj and
vector αj from (41), (3.48), and (3.46) replaced by

Wj =
∫ tj
tj−1

QjPQt
jdt, Sj = Sj(t) =

∫ t
tj−1

ΨjvPΨt
jvdt, αj = PΨt

vU
t
jW

−1
j Δqj , (6.2)

where third-order matrix

P = I − Bt(BBt)−1B, (6.3)

is a projector onto the constraining set given by (6.1). Note that rank of matrix P is less
than 3. This is why matrices Wj given by (6.2) may be singular, while in the case of no
constraint on the thrust direction matrices Wj given by (41) are nonsingular in any interval
of integration [9]. As is shown in [18] nonsingularity of all matrices Wj given by (6.2) is a
sufficient condition of feasibility of the transfer with constraint (6.1).

7. On Optimality of the Method

One of the necessary conditions of optimality of the thrust vector is constancy of the
Hamiltonian in the whole time interval of the transfer [14]. It can be shown that the
Hamiltonian of the linearized problem given by (3.5) is constant in the solution given by the
suggested method, although the Hamiltonian of the original nonlinear problem calculated in
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Table 1: Comparison of the solutions to the original and linearized problems.

Transfer duration
in periods of
the initial orbit

Solution to the Solution to the
Difference, %original problem linearized problem

No. of
complete orbits J

No. of
complete orbits J

20 9 1, 012 × 10−3 8 1, 053 × 10−3 4,1
40 18 4, 997 × 10−4 16 5, 193 × 10−4 3,9
100 46 1, 991 × 10−4 42 2, 070 × 10−4 4.0
200 93 0, 995 × 10−4 84 1, 034 × 10−4 3.9

the solution of the linear problem is not constant. Thus, the method described in the paper
gives the solution which is not optimal in the original problem.

A comparison of the solutions to the problem of the orbital transfer in the original
formulation and linearized one was performed. Transfer between coplanar circular orbits of
radii ai = 1 and af = 4 with gravitational parameter of the primary body μ = 1was considered.
Solution to the original problem was provided by Petukhov. He used the mathematical
developed by his method for solving two-point boundary value problem [19]; optimal
solution to the orbital transfer problem was obtained by Petukhov by means of variation
of the arrival point in the final orbit. Results of the comparison are given in Table 1.

As is seen in Table 1, the difference between the values of the performance index for
the optimal solutions to the original and linearized problems is small and practically does not
depend on the transfer duration. Although in more complicated transfers the difference may
be bigger.

8. Illustrative Examples

This section demonstrates potentialities of the suggested method by means of examples of
transfers in the Earth’s sphere of influence. Orbits are given by the orbital elements

q = {rπ , rα, i,Ω, ω}, (8.1)

where rπ , rα are radii of perigee and apogee in thousands of kilometers (Mm), i is the
orbital inclination, Ω is the longitude of the ascending node, ω is the argument of the
perigee. Angular elements are given in degrees. Direction of the thrust vector is given in the
examples by angles between the projection of the thrust vector onto the instantaneous orbital
plane (angle ϕ) and between the thrust vector and orbital plane (angle Ψ). In all examples
given below the optimal positions of departure from the initial orbit and arrival to the final
orbit were obtained (i.e., the classical case of orbital transfer described in Section 4.2 was
considered). The changes ΔV of the velocity by means of the thrust also are given in the
examples. These changes were calculated using numerical integration of the magnitude of
the thrust vector given by (3.46) or (6.2). The number of the time subintervals was taken
n = 5000 in all examples.



Mathematical Problems in Engineering 13

x

−80

80
y

x

z

−80 80

−80

80

−80 80

Figure 3: Transfer between two elliptic orbits with high mutual inclination.

8.1. Transfer between Elliptical Orbits with High Mutual Inclination

Transfer between two orbits given by qi = {7, 30, 50, 80,−60}, qf = {40, 80, 80,−80, 70}
with T = 400 hour is considered here. The transfer trajectory is shown in Figure 3 in
projections onto the equator plane xy and the polar plane xz. Dashed lines show node lines
of the initial and final orbits. The jet acceleration value divided by g = 9.8066m/s2 is shown
in Figure 4; Figure 5 shows angles ϕ, Ψ. Performance index and total ΔV for the transfer are
J = 44.42m2s−3, ΔV = 10.05 km/s.
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Figure 5: Angles of the thrust direction transfer between two elliptic orbits with a high mutual inclination.

8.2. Transfer to an Orbit with Given Perigee and Apogee Radii

Transfer in time T = 400 hrs to a partly given orbit, namely, to an orbit with given only perigee
and apogee radii, is considered here. Optimal transfer is planar in this case. Only perigee and
apogee radii of the initial orbit are specified, because the other initial orbital elements are not
important and may be taken equal to zero. Elements of the initial and final orbits are taken as
follows: qi = {7, 20, 0, 0, 0}, qf = {40, 80, 0, 0, 0}. Transfer orbit is shown in Figure 6; as
is seen in this figure optimal is coaxial collocation of the final orbit with respect to the initial
orbit. Figure 7 shows respective propulsion acceleration value divided by g, and angle ϕ is
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Figure 7: Jet acceleration for transfer to orbit with given perigee and apogee distances.

shown in Figure 8 (Ψ = 0 in the planar transfer). Performance index and total ΔV are J = 3.01
m2s−3, ΔV = 2.82 km/s.

8.3. Transfer to an Orbit with Given Energy

A transfer to an orbit with a given energy, namely, to a hyperbolic orbit given only by C3

= 1 km2/s2, is considered here. Initial orbit with elements qi = {7, 20, 0, 0, 0} is taken, the
transfer duration is T = 1000 hrs. The transfer trajectory (which is obviously planar in this
case) and the jet acceleration are shown in Figures 7 and 8. The dot at the end of the spiral
trajectory in Figure 7 marks the entry into the hyperbolic orbit. Corresponding performance
index and total ΔV are J = 4.85m2 s−3, ΔV = 4.93 km/s. The thrust direction is tangential in
this case; this confirms nonoptimality of the solution to the linearized problem of the orbital
transfer, because in the original nonlinear problem the optimal thrust is not tangential (see,
e.g., [20]).



16 Mathematical Problems in Engineering

0 100 200 300 400

Time of flight (hour)

0

10

ϕ
(d

eg
)

−10

Figure 8: Angle ϕ for transfer to orbit with given perigee and apogee distances.

x

y

1500

500

−1500

−500

Figure 9: Transfer trajectory to the hyperbolic orbit with given energy.

8.4. Constrained Thrust Direction

A transfer between the orbits given by the elements qi = {7, 20, 0, 0, 0}, qf =
{50, 100, 60, 60, 60}, in a time T = 400 hours, is considered here. The transfer trajectory is
shown in Figure 9. The performance index and totalΔV are J = 10.83m2s−3,ΔV = 5.39 km/s.

Now let us consider the following constraint on the thrust direction: the thrust is
always orthogonal to the spacecraft position vector, that is, B = rt in (6.1). The projector (6.3)
in this case is P = I−rrt/r2. The transfer trajectory for the constrained thrust direction visually
does not differ from the one for the unconstrained direction shown in Figure 9. Performance
index and total ΔV in the case of the constrained thrust direction are J = 11.44m2s −3, ΔV =
5.52 km/s.

Acceleration value versus time for the unconstrained and the constrained thrust
direction is shown in Figure 10, the transfer trajectories are shown in Figure 11, the Jet
acceleration for the transfers are shown in Figure 12 and the angles of the thrust direction
for the transfers are shown in Figure 13.

9. Conclusion

The mathematical method for calculation of low-thrust orbital transfers presented in this
paper has two essential disadvantages, as follows.

(1) The method is applicable to the power-limited thrust, while the existing thrusters
are close to ones with constant or given exhaust velocity.

(2) The original nonlinear problem is replaced in the method by a linearized problem
solution to which it is not optimal for the original problem.
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Figure 11: Transfer trajectories without (a) and with (b) constraint on the thrust direction.
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Figure 12: Jet acceleration for transfer without (a) and with (b) constraint on the thrust direction.

These disadvantages are compensated by simplicity of the method and its analytical form at
each iteration, and also by the wide applicability of the method: it works well in the case of a
big difference between the initial and final orbits, for a very high number of orbits around the
attracting center; also it is applicable for different transfer types (such as point-to-orbit, orbit-
to-point, and orbit-to-orbit transfers), in the cases of partly given final orbit and of a constraint
imposed on the thrust direction. Despite the fact that the method is based on linearization of
motion, any necessary accuracy of calculations may be reached by means of augmentation of
the number n of the reference orbits.

The suggested method may be used at early phases of the mission design when a high
optimization accuracy is not needed and at the same time massive calculations are necessary
for selection of a best mission scheme.
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Figure 13: Angles of the thrust direction for transfer without (a) and with (b) constraint on the thrust
direction.

Nomenclature

r, v: Position and velocity vectors
t: Current time
t = 0, t = T : Initial and final instants of the transfer
I: Unit matrix
α: Jet acceleration vector (thrust vector)
α: |α|
μ: Gravitational parameter of the attracting center
ϕ: Angle between the projection of the thrust vector onto the orbital

plane and the velocity vector
ψ: Angle between the thrust vector and the orbital plane
Subscripts “0” and “T”: Values of the parameters at the time instants 0 and T (if another

meaning of the “0” subscript is not stipulated), superscript “t”
denotes transposition.

Acknowledgment

The authors are grateful to the Brazilian São Paulo Research Foundation (FAPESP) for fi-
nancial support of this study.



20 Mathematical Problems in Engineering

References

[1] F. W. Gobetz, “Optimal variable-thrust transfer of a power-limited rocket between neighboring
circular orbits,” AIAA Journal, vol. 2, no. 2, pp. 339–343, 1964.

[2] T. N. Edelbaum, “Optimum power-limited orbit transfer in strong gravity fields,” AIAA Journal, vol.
3, pp. 921–925, 1965.

[3] J. P. Marec and N. X. Vinh, “Optimal low-thrust, limited power transfers between arbitrary elliptical
orbits,” Acta Astronautica, vol. 4, no. 5-6, pp. 511–540, 1977.

[4] C. M. Haissig, K. D. Mease, and N. X. Vinh, “Minimum-fuel, power-limited transfers between
coplanar elliptical orbits,” Acta Astronautica, vol. 29, no. 1, pp. 1–15, 1993.

[5] B. N. Kiforenko, “Optimal low-thrust orbital transfers in a central gravity field,” International Applied
Mechanics, vol. 41, no. 11, pp. 1211–1238, 2005.

[6] S. Da Silva Fernandes and W. A. Golfetto, “Numerical computation of optimal low-thrust limited-
power trajectories—transfers between coplanar circular orbits,” Journal of the Brazilian Society of
Mechanical Sciences and Engineering, vol. 27, no. 2, pp. 178–185, 2005.

[7] S. Da Silva Fernandes and W. A. Golfetto, “Numerical and analytical study of optimal low-thrust
limited-power transfers between close circular coplanar orbits,”Mathematical Problems in Engineering,
vol. 2007, Article ID 59372, 23 pages, 2007.

[8] V. V. Beletsky and V. A. Egorov, “Interplanetary flights with constant output engines,”Cosmic Research,
vol. 2, no. 3, pp. 303–330, 1964.

[9] A. A. Sukhanov, “Optimization of flights with low thrust,” Cosmic Research, vol. 37, no. 2, p. 191, 1999.
[10] A. A. Sukhanov, “Optimization of low-thrust interplanetary transfers,” Cosmic Research, vol. 38, no. 6,

pp. 584–587, 2000.
[11] A. A. Sukhanov and A. F. B. D. A. Prado, “A modification of the method of transporting trajectory,”

Cosmic Research, vol. 42, no. 1, pp. 103–108, 2004.
[12] A. A. Sukhanov and A. F. B. D. A. Prado, “Optimization of low-thrust transfers in the three body

problem,” Cosmic Research, vol. 46, no. 5, pp. 413–424, 2008.
[13] J. H. Irving, “Low thrust flight; variable exhaust velocity in gravitational fields,” in Space Technology,

H. S. Seifert, Ed., chapter 10, John Wiley and Sons, New York, NY, USA, 1959.
[14] L. S. Pontryagin and R. V. Gamkrelidze, TheMathematical Theory of Optimal Processes, Gordon & Breach

Science Publishers, 1986.
[15] B. Bakhshiyan and A. A. Sukhanov, “First and second isochronous derivatives in the two-body

problem,” Cosmic Research, vol. 16, no. 4, p. 391, 1978.
[16] A. A. Sukhanov, “Isochronous derivatives in the two-body problem,” Cosmic Research, vol. 28, no. 2,

pp. 264–266, 1990.
[17] A. A. Sukhanov and A. F. B. De A Prado, “Optimization of transfers under constraints on the thrust

direction: I,” Cosmic Research, vol. 45, no. 5, pp. 417–423, 2007.
[18] A. A. Sukhanov and A. F. B. D. A. Prado, “Optimization of transfers under constraints on the thrust

direction: II,” Cosmic Research, vol. 46, no. 1, pp. 49–59, 2008.
[19] V. G. Petukhov, “Optimization of interplanetary trajectories for spacecraft with ideally regulated

engines using the continuation method,” Cosmic Research, vol. 46, no. 3, pp. 219–232, 2008.
[20] R. A. Jacobson and W. F. Powers, “Asymptotic solution to the problem of optimal low-thrust energy

increase,” AIAA Journal, vol. 10, no. 12, pp. 1679–1680, 1972.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


