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The LS method is one of the effective conjugate gradient methods in solving the unconstrained
optimization problems. The paper presents a modified LS method on the basis of the famous
LS method and proves the strong global convergence for the uniformly convex functions and
the global convergence for general functions under the strong Wolfe line search. The numerical
experiments show that the modified LS method is very effective in practice.

1. Introduction

The conjugate gradient method is one of the most commonmethods used in the optimization,
which is especially effective in solving the unconstrained optimization problem:

min
x∈Rn

f(x), (1.1)

where f : Rn → R is continuously differentiable nonlinear function.
The LS method introduced by Liu and Storey [1] is one of the conjugate gradient

methods, and its iteration formulas are as follows:

xk+1 = xk + αkdk, (1.2)

dk =

⎧
⎨

⎩

−gk, for k = 1;

−gk + βkdk−1, for k ≥ 2;
(1.3)

βk = −g
T
k

(
gk − gk−1

)

dT
k−1gk−1

, (1.4)

where gk is the gradient of f at xk; αk > 0 is a step length which is determined by some line
search; dk is the search direction.
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The convergence properties of the LS method have been studied extensively. For
example, Yu et al. [2] proposed a modified LS method called the LS1 method in this paper, in
which parameter βk satisfies the following formula:

βLS1k =

⎧
⎪⎪⎨

⎪⎪⎩

∥
∥gk
∥
∥2 − ∣∣gT

k gk−1
∣
∣

ς
∣
∣gT

k dk−1
∣
∣ − gT

k−1dk−1
if
∥
∥gk
∥
∥2 ≥ ∣∣gT

k
gk−1
∣
∣,

0 else.

(1.5)

They proved the global convergence property of the LS1 method under the Wolfe line search
and verified that the LS1 method was very effective in solving the large unconstrained
optimization problems. Liu et al. [3] further studied the LS method on the basis of [2] and
proposed the parameter βk:

βLS2k =

⎧
⎪⎨

⎪⎩

gT
k

(
gk − gk−1

)

ρ
∣
∣gT

k dk−1
∣
∣ − gT

k−1dk−1
if min

{
1, ρ − 1 − ξ

} · ∥∥gk
∥
∥2 >

∣
∣gT

k
gk−1
∣
∣,

0 else,
(1.6)

where ρ > 1 + ξ, and ξ is sufficiently small positive number. The corresponding method is
called the LS2 method in this paper. Jinkui Liu, among others, proved the global convergence
properties of the LS2 method under the Wolfe line search and showed that the achievements
of the LS2 method was comparable with the PRP+ method.

In this paper, a modified LS method is proposed on the basis of [2], which can
guarantee generate the sufficient descent direction in each step under the strong Wolfe
line search. Moreover, the new method has the strong global convergence properties for
uniformly convex functions and the global convergence properties for ordinary functions.

2. The Sufficient Descent Property of the New Method

MLS Method

Step 1. Data x1 ∈ Rn, ε ≥ 0. Set d1 = −g1, if ‖g1‖ ≤ ε, then stop.

Step 2. Compute αk by the strong Wolfe line search (δ ∈ (0, 1/2), σ ∈ (δ, 1)):

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk,

∣
∣
∣g(xk + αkdk)

Tdk

∣
∣
∣ ≤ −σgT

k dk.
(2.1)

Step 3. Let xk+1 = xk + αkdk, gk+1 = g(xk+1), if ‖gk+1‖ ≤ ε, then stop.

Step 4. Compute dk+1 by (1.3), and generate βk+1 by

βk+1 = max

⎧
⎨

⎩
0,

∥
∥gk+1

∥
∥2 − ∣∣gT

k+1gk
∣
∣

u
∣
∣gT

k+1dk

∣
∣ − gT

k
dk

− νgT
k+1sk+1

u
∣
∣gT

k+1dk

∣
∣ − gT

k
dk

⎫
⎬

⎭
, (2.2)

where sk+1 = xk+1 − xk, u ≥ 1, ν ≥ 0.
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Step 5. Set k = k + 1, go to Step 2.

Theorem 2.1. Let the sequences {gk} and {dk} be generated byMLS method, then

gT
k dk < −(1 − σ)

∥
∥gk
∥
∥2, ∀k ∈ N+. (2.3)

Proof. The conclusion can be proved by induction. Since −gT
1 d1/‖g1‖2 = 1, the conclusion

holds for k = 1. Now, we assume that the conclusion is true for k − 1, for k ≥ 2. We need to
prove that the conclusion holds for k.

Multiplying (1.3) by gT
k , we have

gT
k dk = −∥∥gk

∥
∥2 + βkg

T
k dk−1. (2.4)

From (2.2), if βk = 0, then gT
k dk = −‖gk‖2 ≤ −(1−σ)‖gk‖2; if βk = (‖gk‖2−|gT

k gk−1|)/(u|gT
k dk−1|−

gT
k−1dk−1) − νgT

k
sk/(u|gT

k
dk−1| − gT

k−1dk−1) > 0, the proof is divided into two parts.

(i) If gT
k
dk−1 ≤ 0, then we have gT

k
dk ≤ −‖gk‖2 ≤ −(1 − σ)‖gk‖2.

If gT
k
dk−1 > 0, then we get

gT
k dk = −∥∥gk

∥
∥2 +

⎛

⎝

∥
∥gk
∥
∥2 − ∣∣gT

k
gk−1
∣
∣

u
∣
∣gT

k
dk−1

∣
∣ − gT

k−1dk−1
− νgT

k
sk

u
∣
∣gT

k
dk−1

∣
∣ − gT

k−1dk−1

⎞

⎠ · gT
k dk−1

≤ −∥∥gk
∥
∥2 − ναk−1

(
gT
k dk−1

)2

u
∣
∣gT

k dk−1
∣
∣ − gT

k−1dk−1
−

∣
∣gT

k gk−1
∣
∣

u
∣
∣gT

k dk−1
∣
∣ − gT

k−1dk−1
· gT

k dk−1 +

∥
∥gk
∥
∥2

−gT
k−1dk−1

· gT
k dk−1

≤ −∥∥gk
∥
∥2 − ναk−1

(
gT
k dk−1

)2

u
∣
∣gT

k
dk−1

∣
∣ − gT

k−1dk−1
−

∣
∣gT

k gk−1
∣
∣

u
∣
∣gT

k
dk−1

∣
∣ − gT

k−1dk−1
· gT

k dk−1

+

∥
∥gk
∥
∥2

−gT
k−1dk−1

·
(
−σgT

k−1dk−1
)

= −(1 − σ)
∥
∥gk
∥
∥2 − ναk−1

(
gT
k
dk−1

)2

u
∣
∣gT

k
dk−1

∣
∣ − gT

k−1dk−1
−

∣
∣gT

k
gk−1
∣
∣

u
∣
∣gT

k
dk−1

∣
∣ − gT

k−1dk−1
· gT

k dk−1

< −(1 − σ)
∥
∥gk
∥
∥2.

(2.5)

From the above inequalities, we obtain that the conclusion holds for k.

3. The Global Convergence Properties

In order to prove the global convergence of the MLS method, we assume that the objective
function f satisfies the following assumption.
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Assumption H. (i) The level set L = {x ∈ Rn | f(x) ≤ f(x1)} is bounded, where x1 is the
starting point.

(ii) In a neighborhood V of L, f is continuously differentiable and its gradient g is
Lipschitz continuous, namely, there exists a constantM > 0 such that

∥
∥g(x) − g

(
y
)∥
∥ ≤ M

∥
∥x − y

∥
∥, ∀x, y ∈ V. (3.1)

From Assumption H, there exists a constant r̃ > 0, such that

∥
∥g(x)

∥
∥ ≤ r̃ ∀x ∈ V. (3.2)

Firstly, we prove that the MLS method has the strong global convergence property for
uniformly convex functions.

Lemma 3.1 (see [4]). Suppose Assumption H holds. Consider any iteration of the form (1.2)-(1.3),
where dk satisfies gT

k
dk < 0 for k ∈ N+ and αk satisfies the strong Wolfe line search. If

∑

k≥1

1

‖dk‖2
= +∞, (3.3)

then

lim
k→+∞

inf
∥
∥gk
∥
∥ = 0. (3.4)

Theorem 3.2. Suppose Assumption H holds. Let the sequences {gk} and {dk} be generated by MLS
method. If f(x) is a uniformly convex function, that is, there exists t > 0, for all x, y ∈ L, subject to

(
g(x) − g

(
y
))T(

x − y
) ≥ t

∥
∥x − y

∥
∥2, (3.5)

then

lim
k→+∞

∥
∥gk
∥
∥ = 0. (3.6)

Proof. From f(x) is uniformly convex function and u ≥ 1, we have

u
∣
∣
∣gT

k dk−1
∣
∣
∣ − gT

k−1dk−1 ≥
∣
∣
∣gT

k dk−1
∣
∣
∣ − gT

k−1dk−1 ≥ gT
k dk−1 − gT

k−1dk−1

= dT
k−1
(
gk − gk−1

) ≥ tαk−1‖dk−1‖2.
(3.7)

From Lipschitz condition and (1.2), we have
∣
∣
∣
∥
∥gk
∥
∥2 −

∣
∣
∣gT

k gk−1
∣
∣
∣

∣
∣
∣ ≤
∣
∣
∣
∥
∥gk
∥
∥2 − gT

k gk−1
∣
∣
∣

≤ ∥∥gk
∥
∥ · ∥∥gk − gk−1

∥
∥

≤ ∥∥gk
∥
∥ ·Mαk−1 · ‖dk−1‖.

(3.8)
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Then, from (1.3), (2.2), and (3.2), we have

‖dk‖ ≤ ∥∥gk
∥
∥ +

∣
∣
∣
∣
∣
∣

∥
∥gk
∥
∥2 − ∣∣gT

k
gk−1
∣
∣

u
∣
∣gT

k
dk−1

∣
∣ − gT

k−1dk−1
− νgT

k
sk

u
∣
∣gT

k
dk−1

∣
∣ − gT

k−1dk−1

∣
∣
∣
∣
∣
∣
· ‖dk−1‖

≤ ∥∥gk
∥
∥ +

∣
∣
∣
∥
∥gk
∥
∥2 − ∣∣gT

k
gk−1
∣
∣ − νgT

k
sk
∣
∣
∣

u
∣
∣gT

k dk−1
∣
∣ − gT

k−1dk−1
· ‖dk−1‖

≤ ∥∥gk
∥
∥ +

∣
∣
∣
∥
∥gk
∥
∥2 − gT

k
gk−1
∣
∣
∣ +
∣
∣νgT

k
sk
∣
∣

u
∣
∣gT

k dk−1
∣
∣ − gT

k−1dk−1
· ‖dk−1‖

≤ ∥∥gk
∥
∥ +

∥
∥gk
∥
∥ ·Mαk−1 · ‖dk−1‖ + ν

∥
∥gk
∥
∥ · αk−1 · ‖dk−1‖

tαk−1‖dk−1‖2
· ‖dk−1‖

≤ r̃

(

1 +
M + ν

t

)

.

(3.9)

From the above inequality, we obtain that the conclusion (3.3) holds. Then, from
Lemma 3.1, the conclusion (3.4) holds; and f(x) is uniformly convex function, so the
conclusion (3.6) holds.

Secondly, we prove that the MLS method has the global convergence for ordinary
functions.

Lemma 3.3 (see [5]). Suppose Assumption H holds. Let the sequence {xk} be generated by the
iteration of the form (1.2)-(1.3), where dk satisfies gT

k dk < 0 for k ∈ N+ and αk satisfies the strong
Wolfe line search. Then,

∑

k≥1

(
gT
k
dk

)2

‖dk‖2
< +∞. (3.10)

Lemma 3.4 (see [6]). Suppose Assumption H holds. Consider any iteration of the form (1.2)-(1.3),
where βk ≥ 0, and αk satisfies the strong Wolfe line search and (2.3) holds. If there exists a constant
r > 0, such that ∥

∥gk
∥
∥ ≥ r, ∀k ≥ 1, (3.11)

then ∑

k≥2
‖uk − uk−1‖2 < +∞, (3.12)

where uk = dk/‖dk‖.

Lemma 3.5. Consider any iteration of the form (1.2)-(1.3), where βk satisfies (2.2) and αk satisfies
the strong Wolfe line search. Suppose that

0 < r ≤ ∥∥gk
∥
∥ ≤ r̃, ∀k ≥ 1. (3.13)

Say that the MLS method has property (∗), that is,

(1) if there exists constant b > 1, such that |β∗
k
| ≤ b,

(2) if there exists constant λ > 0, such that ‖xk − xk−1‖ ≤ λ, one has |β∗
k
| ≤ 1/2b.
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Proof. Firstly, from the strong Wolfe line search, (2.3) and (3.13), we have

u
∣
∣
∣gT

k dk−1
∣
∣
∣ − gT

k−1dk−1 ≥
∣
∣
∣gT

k dk−1
∣
∣
∣ − gT

k−1dk−1

≥ gT
k dk−1 − gT

k−1dk−1

≥ (σ − 1)gT
k−1dk−1

≥ (1 − σ)2
∥
∥gk−1

∥
∥2

≥ (1 − σ)2r2.

(3.14)

From the Assumption H (i), there exists a positive constant a, such that ‖x‖ ≤ a, for all x ∈ L.
So, from (2.3) and Lipschitz condition, we have

∣
∣βk
∣
∣ ≤

∣
∣
∣
∥
∥gk
∥
∥2 − ∣∣gT

k gk−1
∣
∣
∣
∣
∣

u
∣
∣gT

k
dk−1

∣
∣ − gT

k−1dk−1
+

∣
∣νgT

k
sk
∣
∣

u
∣
∣gT

k
dk−1

∣
∣ − gT

k−1dk−1

≤

∣
∣
∣
∥
∥gk
∥
∥2 − gT

k
gk−1
∣
∣
∣

(1 − σ)2r2
+

∣
∣νgT

k
sk
∣
∣

(1 − σ)2r2

≤
∥
∥gk
∥
∥ · ∥∥gk − gk−1

∥
∥

(1 − σ)2r2
+
ν
∥
∥gk
∥
∥ · ‖sk‖

(1 − σ)2r2

≤ (M + ν)
∥
∥gk
∥
∥ · ‖sk‖

(1 − σ)2r2
≤ 2ar̃(M + ν)

(1 − σ)2r2
= b.

(3.15)

Define λ = (1−σ)2r2/2br̃(M+ν). Let ‖xk −xk−1‖ ≤ λ, then from the above inequality, we also
have

∣
∣βk
∣
∣ ≤ λr̃(M + ν)

(1 − σ)2r2
=

1
2b

. (3.16)

Lemma 3.6 (see [6]). Suppose Assumption H holds. Consider any iteration of the form (1.2)-(1.3),
where βk ≥ 0, and αk satisfies the strong Wolfe line search and (2.3) holds. If βk has the property (∗),
and if there exists a constant r > 0, subject to

∥
∥gk
∥
∥ ≥ r ∀k ∈ N+, (3.17)

then there exits λ > 0, for any Δ ∈ Z+ and k0 ∈ Z+, and for all k ≥ k0, such that

∣
∣
∣
λ

k,Δ

∣
∣
∣ >

Δ
2
, (3.18)

where 
λ
k,Δ � {i ∈ Z+ : k ≤ i ≤ k + Δ − 1, ‖xi − xi−1‖ ≥ λ}, |
λ

k,Δ| denotes the number of the 
λ
k,Δ.
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Lemma 3.7 (see [6]). Suppose Assumption H holds. Consider any iteration of the form (1.2)-(1.3),
where βk ≥ 0, and αk satisfies the strong Wolfe line search and (2.3) holds. If βk has the property (∗),
then

lim inf
k→+∞

∥
∥gk
∥
∥ = 0. (3.19)

From above Lemmas, we also have the following convergence results, that is, MLS
method has the global convergence for ordinary functions.

Theorem 3.8. Suppose Assumption H holds. Consider the method (1.2)-(1.3), where βk is computed
by (2.2), and αk satisfies the strong Wolfe line search and (2.3) holds, then

lim inf
k→+∞

∥
∥gk
∥
∥ = 0. (3.20)

4. Numerical Results

In this section, we test the MLS method for problems from [7], and we compare its
performance to that of the LS method, LS1 method, and LS2 method under the strong Wolfe
line search. The parameters δ = 0.01, σ = 0.1, ς = 1.25, ρ = 1.5, ξ = 0.001, u = 1.0, ν = 0.35. The
termination condition is ‖gk‖ ≤ 10−6 or It-max >9999. It-max denotes the Maximum number
of iterations.

The numerical results of our tests are reported in Table 1. The column “Problem”
represents the problem’s name in [7]. “Dim” denotes the dimension of the test problems.
The detailed numerical results are listed in the form NI/NF/NG, where NI, NF, NG denote
the number of iterations, function evaluations, and gradient evaluations, respectively. “NaN”
means the calculation failure.

In order to rank the average performance of all the above conjugate gradient methods,
one can compute the total number of function and gradient evaluation by the following
formula:

Ntotal = NF + l ∗NG, (4.1)

where l is some integer. According to the results on automatic differentiation [8, 9], the value
of l can be set to 5. That is to say, one gradient evaluation is equivalent to five function
evaluations if automatic differentiation is used.

By (4.1), we compare the MLS method with LS method, LS1 method, and LS2 method
as follows: for the ith problem, compute the total numbers of function evaluations and
gradient evaluations required by theMLSmethod, LS method, LS1 method, and LS2 method,
and denote them as Ntotal,i(MLS), Ntotal,i(LS), Ntotal,i(LS1), and Ntotal,i(LS2), respectively.
Then, we calculate the ratio:

γi(LS) =
Ntotal,i(LS)
Ntotal,i(MLS)

,

γi(LS1) =
Ntotal,i(LS1)
Ntotal,i(MLS)

,

γi(LS2) =
Ntotal,i(LS2)
Ntotal,i(MLS)

.

(4.2)
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Table 1: The numerical results of LS method, LS1 method, LS2 method, and MLS method.

Problem Dim LS LS1 LS2 MLS

ROSE 2 25/101/77 25/125/98 37/163/138 26/125/103
FROTH 2 10/53/36 15/85/68 12/78/60 12/78/62
BADSCP 2 96/399/338 22/183/168 27/231/214 22/170/156
BADSCB 2 14/70/52 13/106/96 11/88/79 19/148/136
BEALE 2 12/47/33 15/59/46 12/56/43 18/68/53
JENSAM 8 10/40/17 NaN/NaN/NaN 11/51/28 12/51/28
HELIX 3 80/217/185 39/125/106 28/84/71 37/128/111
BRAD 3 18/67/52 28/98/81 17/57/46 21/75/60
SING 4 841/2515/2237 93/357/312 41/168/143 95/345/303
WOOD 14 4 125/413/341 43/189/153 33/161/129 57/237/200
KOWOSB 4 75/216/189 85/300/267 45/150/132 66/249/217
BD 4 72/238/193 27/136/105 24/126/93 30/144/109
BIGGS 6 171/445/395 201/754/664 187/559/500 143/520/462
OSB2 11 252/609/548 585/1562/1394 272/681/619 638/1694/1508

VARDIM 5 6/57/38 6/57/38 6/57/38 6/57/38
10 7/81/52 7/81/52 7/81/52 7/81/52

WATSON 5 141/408/353 110/359/311 91/295/250 100/329/282
15 4486/12738/11326 2045/7346/6517 1465/5138/4540 1769/6365/5648

PEN2 50 536/1835/1580 182/851/741 163/809/694 177/876/765
100 72/220/185 79/252/208 76/217/186 103/300/251

PEN1 100 18/120/83 31/195/153 30/194/151 27/184/140
200 18/157/114 30/209/159 29/211/160 30/208/157

TRIG 100 57/125/115 60/143/135 53/109/102 60/143/133
200 68/163/155 61/138/125 61/136/128 50/107/99

ROSEX 500 25/101/77 26/127/99 37/163/138 27/131/109
1000 25/101/77 26/127/99 37/163/138 27/131/109

SINGX 500 215/712/618 120/483/428 63/281/248 97/351/306
1000 105/344/295 119/503/447 63/281/248 100/408/363

BV 500 1940/3247/3246 148/358/325 1722/3057/3056 135/339/313
1000 214/347/346 16/32/30 158/273/272 16/35/33

IE 500 7/15/8 6/13/7 6/13/7 6/13/7
1000 7/15/8 6/13/7 6/13/7 6/13/7

TRID 500 35/78/74 31/71/57 35/78/73 31/71/59
1000 34/76/72 35/79/75 34/76/72 35/79/75

If the i0th problem is not run by the method, we use a constant λ = max{γi(method) |
i ∈ S1} instead of γi0 (method), where S1 denotes the set of test problems which can be run
by the method.

The geometric mean of these ratios for VLS method over all the test problems are
defined by

γ(LS) =

(
∏

i∈S
γi(LS)

)1/|S|
,

γ(LS1) =

(
∏

i∈S
γi(LS1)

)1/|S|
,

γ(LS2) =

(
∏

i∈S
γi(LS2)

)1/|S|
,

(4.3)
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Table 2: Relative efficiency of the MLS method, LS method, LS1 method and LS2 method.

MLS LS LS1 LS2
1 1.3012 1.2549 1.0580

where S denotes the set of the test problems, and |S| denotes the number of elements in
S. One advantage of the above rule is that the comparison is relative and hence does not
be dominated by a few problems for which the method requires a great deal of function
evaluations and gradient functions.

From the above rule, it is clear that γ(MLS) = 1. The values of γ(LS), γ(LS1), and
γ(LS2) are computed and listed in Table 2.

From Table 2, it is clear that the MLS method is superior to the LS method and the LS1
method, and it is comparable with the LS2 method for the given test problems. So, the MLS
method has certain value of research.
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