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Given the growing computational power of embedded controllers, the use ofmodel predictive con-
trol (MPC) strategies on this type of devices becomes more and more attractive. This paper inves-
tigates the use of online MPC, in which at each step, an optimization problem is solved, on both a
programmable automation controller (PAC) and a programmable logic controller (PLC). Three
different optimization routines to solve the quadratic program were investigated with respect
to their applicability on these devices. To this end, an air heating setup was built and selected as a
small-scale multi-input single-output system. It turns out that the code generator (CVXGEN) is not
suited for the PLC as the required programming language is not available and the programming
concept with preallocatedmemory consumes too muchmemory. The Hildreth and qpOASES algo-
rithms successfully controlled the setup running on the PLC hardware. Both algorithms perform
similarly, although it takes more time to calculate a solution for qpOASES. However, if the problem
size increases, it is expected that the high number of required iterations when the constraints are
hit will cause the Hildreth algorithm to exceed the necessary time to present a solution. For this
small heating problem under test, the Hildreth algorithm is selected as most useful on a PLC.

1. Introduction

Model predictive control (MPC) has become a widely applied control technique in process
industry for the control of large-scale installations, which are typically described by
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large-scale models with relatively slow dynamics [1, 2]. The key element in MPC is to repeat-
edly solve an optimization problem based on available measurements of the current state
of the process. The advantages of MPC over classic PID control are its ability (i) to steer the
process in an optimal waywhile taking proactively desired future behaviour into account, (ii)
to tackle multiple inputs and outputs simultaneously, and (iii) to incorporate constraints [3].
In most cases, the MPC controller is hosted by a computer and employed as a supervisory
controller, controlling the set-points of controllers closer to the process, for example, PIDs.

In the recent years, interest has grown to exploit MPC on embedded systems. Typical
applications are, for example, mechatronic systems, which give rise to small-scale models
with fast dynamics [4–6]. In these cases the MPC controller is not a supervisory controller
anymore but directly steers the actuators and as such also the process itself.

Compared to a standard PC, which nowadays has several cores with speeds in the
GHz range and several GBs of memory, embedded controllers are typically implemented on
devices withmuch less computation power andmemory. As indicated in Figure 1, a variety of
devices exist. Programmable logic controllers (PLCs) are often exploited in industry for control
tasks because of their robust operation, even in harsh conditions. They typically have a pro-
cessing power in the order of only MHz and memory in the range from a few kB to several
MBs. Programmable automation controllers (PACs) bridge the gap as they exhibit a processing
power and memory that can go up to that found in PCs, combined with the I/O possibilities
of a PLC. Hence, they can be employed to robustly fulfill also other tasks than control (e.g.,
data logging and maintaining network connections), as they can easily be integrated via
standard communication protocols.

To deal with the computational limitations of embedded hardware, two approaches
can be taken when implementing MPC on embedded hardware: explicit and online MPC.
Explicit MPC [7, 8] precomputes all sets of possible solutions to the underlying optimization
problem offline and stores them in a look-up tree. When running the controller online, mainly
the right working set has to be selected each time. As this approach avoids the online solution
of an optimization problem, high-speed algorithms are obtained for small-scale systems (e.g.,
single-input single-output (SISO) systems), with short prediction horizons. However, for
larger systems (e.g., multiple-input multiple-output (MIMO) systems) the number of work-
ing sets quickly grows and the time to search the look-up tree becomes prohibitive. In these
cases, online MPC, which exploits tailored algorithms for the online solution of the optimiza-
tion problem [9], becomes attractive.

A prerequisite in industry is the use of reliable, easy-to-maintain control hardware,
explaining the current dominance of PLCs today. Historically, PLC programming languages
have focused on the relay ladder logic (RLL). Although more PC-like programming lan-
guages exist in the international standard IEC 61131-3, PLC programmers still more often use
ladder languages [10]. As a result, MPC implementations on PLCs are scarce (see, e.g.,
[11, 12] for explicit MPC).

The aim of the current paper is to illustrate the practical feasibility of online MPC with
constraints on PLCs. To this end, a test strategy is followed which exploits different types of
control hardware with decreasing computation power. First, a PAC (CompactRIO, National
Instruments) is used, and afterwards a PLC (S7-319, Siemens) is employed. Different
approaches for solving the optimization problem are evaluated on a test setup. This online
optimization problem boils down to the solution of a quadratic program (QP). The perfor-
mance of three QP solvers will be comparedwhen implemented on a PAC and a PLC. The first
algorithm is the Hildreth QP algorithm [13], a classic but easy to implement algorithm with
a limited number of code lines. It will be compared to qpOASES, a state-of-the-art online
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Figure 1: Graphical comparison where to situate PLC, PAC, and PC to each other in view of speed and
memory.

active set algorithm [14] that is provided in C/C++. The third QP solver is CVXGEN, a C-
code generator for QP-representable convex optimization problems. The practical test setup
involves a heating device where fan speed and resistor power can be manipulated indepen-
dently to control the air temperature. As such, this device can be regarded as a multiple-input
single-output system. Although, small scale, it is an interesting application for testing, which
has also been used by, for example, [11]. The observations allow the formulation of practical
guidelines and warnings for possible pitfalls.

This paper is structured as follows Section 2 briefly repeats the MPC formulation and
the steps required to obtain a linear systemmodel. Section 3 describes the practical implemen-
tation of the controller and the QP solvers used. A description of the experimental setup can
be found in Section 4. Section 5 contains the results for the model identification as well as for
the control of the setup using the PAC and the PLC. Finally, the main conclusions are sum-
marized in Section 6.

2. Steps towards Online MPC Implementation

First of all, the model predictive control needs a process model. For the design of the control-
ler, several decisions need to be taken, for example the length of the different horizons, the
selection of input, state or output constraints. Once these decisions have been made, the con-
troller can be implemented and tested.

2.1. Modelling the Process

There are several ways to obtain a model for control. Based on the physical and chemical laws
underlying the process, a white-box model can be deduced. This modeling procedure is often
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time intensive and, hence, expensive for large and complex systems. As time is money in
industry, faster ways are often preferred. Alternatively, available process data can be used to
fit a black-box model based on generic mathematical relations. There are different black-box
modelling techniques, linear [15–17] as well as nonlinear [18, 19]. In this paper, an MPC con-
troller will be used that exploit a linear state space model constructed based on black-box
techniques.

2.2. Model Predictive Control Formulation

Linear model predictive control is well known in the literature [3, 20, 21], and the reader is
invited to read these works for a detailed description. The basic formulation is briefly given
below.

A linear, time-invariant discrete-time system is described by:

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k),
(2.1)

withA ∈ R
n×n, B ∈ R

n×m, and C ∈ R
p×n. Herem, n, and p are the number of inputs, states, and

outputs, respectively. The objective of the controller is to find the optimal input for this system
by means of minimizing a cost function:

J =
Hp∑

i=1

‖ŷ(k + i | k) − yref(k + i | k)‖2Wy
+

Hc−1∑

j=0

∥∥Δu(k + j | k)∥∥2
Wu

. (2.2)

yref is the output reference and ŷ is the predicted output. The formulation y(k + i | k) repre-
sents the vector y on sample time k + i at calculation time k. The change of the input is
Δu(k + j | k) = u(k + j | k) − u(k + j − 1 | k). Hp and Hc (with Hc ≤ Hp) are, respectively, the
prediction and control horizon of the controller. Wy ∈ R

p×p and Wu ∈ R
m×m are positive

definite weighting matrices.
One of the key elements of MPC is the possibility to handle constraints. For this paper

only input constraints are taken into account:

u
(
j
) ≤ uMax,

u
(
j
) ≥ uMin.

(2.3)

Output and state constraints are omitted in the current study but can easily be introduced.
The optimization problem can be formulated as the minimization of (2.2), subject to (2.1) and
(2.3). In order to solve this problem, the optimization problem is reformulated by elimination
of the states in the form of a QP:

min
θ

J =
1
2
θTHθ + gTθ, (2.4)

subject to : Pθ ≤ α, (2.5)
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with (2.4) the quadratic objective function, (2.5) the linear inequalities constraints, and θ the
decision variables. To reformulate the problem, following steps are taken. First, the state space
model (2.1) is rewritten in terms of Δu and a new state

x� =
[
Δx
y

]
, (2.6)

with Δx(k) = x(k) − x(k − 1) and y the current measured output [21]. The prediction over the
prediction horizon is written in matrix formulation and is formulated as

Ŷ = Fx� +QΔU, (2.7)

with Y and ΔU column matrices of predicted outputs and delta inputs, respectively. For
example, ΔU ∈ R

nHc×1 composed of Δu(k | k) to Δu(k + Hc − 1 | k). The matrices F and Q
can be found in many works on MPC [3, 21]. The matrixQ is postprocessed by including the
weight matrices as follows:

S = QTWybdQ +Wubd , (2.8)

withWybd andWubd block diagonal matrices ofWy andWu, respectively. As for the purpose of
this work, the aim is to minimize the online calculation work; matrices that can be computed
in advance are calculated offline. Matrix S is one of the precomputed matrices that does not
change during runtime. Vector g from (2.4) has to be calculated online. It contains two parts
depending on the current state and the reference of the in- and outputs. So, g has to be cal-
culated according to

g = G1x� −G2Yref, (2.9)

where G1 and G2 are gradient matrices. Yref is an R
pHc×1 matrix of the references yref(k | k) to

yref(k +Hp | k). The gradient matrices are constant and are computed offline:

G1 = STWT
ybd

F,

G2 = STWT
ybd

.
(2.10)

The constraints, that is, the minimum andmaximum admissible values forΔU, are calculated
online. ΔUMax is a column matrix of Hc times ΔuMax = uMax − u(k − 1). ΔUMin is a column
matrix of Hc times ΔuMin = uMin − u(k − 1). Finally, the QP problem to be solved is

min
ΔU

1
2
ΔUTSΔU + gΔU,

subject to : ΔUMin ≤ ΔU ≤ ΔUMax,
g = G1x� −G2Yref.

(2.11)

The Hildreth algorithm [13], qpOASES [14], and CVXGEN [22]will be used to solve this QP
problem.
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2.3. Implementation of the MPC Controller

When the model is known and all parameters in the cost function are fixed, the controller
can be simulated and implemented. The hardware determines the speed of calculation and
restricts the size of the problem. Certainly in an embedded environment, this is an important
factor. The following section deals with these problems when aiming for online MPC on a
PLC.

3. The Approach

When the process model has been identified, it is possible to simulate the process and tune
the controller to find valid and useful settings. Going towards online MPC on a PLC means
that we have to deal with a shrinking amount of memory and a decreasing CPU speed. To
this end, theMPC algorithm is analysed and parts that remain unchanged during runtime are
precomputed and lifted out of the online calculations. The limited amount of memory limits
the size of the problem.

3.1. The Hardware

For the practical implementation, two different controllers are used. First, a National
Instruments CompactRIO is used. This PAC controller consists of a NI cRio–9024 Real-Time
Controller (800MHz CPU, 512Mbmemory), a cRIO–9114 Reconfigurable Chassis, an NI 9265
Analogue Current Output module, and an NI 9217 RTD 24-Bit Analogue Input Module. This
Real-Time controller is programmed with LabVIEW and is able to run a software library
compiled from C/C++ code via a call library function. The library is compiled for the VxWorks
6.3 operating system with the gcc-compiler version 3.4.4. Second, a Siemens CPU319-
3DP/PN PLC is used. The base memory of this CPU is increased to the maximum allowed
8Mb. This CPU is the fastest S7-300 CPU. It takes 40 ns for one floating-point operation. An
additional SM334 analogue card is employed to connect to the solid-state relays and DC
drive. The Siemens CPU is programmed using the Step 7 Professional 2010 software. To code
the problem, the structured control language (S7-SCL) is used. This programming language
corresponds to STL in the standard IEC 61131-3.

3.2. Practical Implementation

To compute a new input for the process, the following sequence of actions, presented
in Algorithm 1 are implemented. In advance, constant matrices are precomputed and the
reference trajectory for the output is selected.

3.2.1. Programming the PAC

The CompactRIO is running VxWorks as its operating system. A compiler exists to convert
C/C++ code. All implemented QP solvers are originally written in C or C++ and are convert-
ed into a library. The preparative calculations, for instance, the scaling of the in- and outputs,
the estimation of the state, and the selection of the current reference, are programmed in
LabVIEW.



Mathematical Problems in Engineering 7

Offline: Calculate H’, G1 and G2
Online: Start PLC or PAC
Store all precomputed matrices in working memory, together with the reference for
inputs and output
while CPU is running do

if 1 second passed since last call then
Scale the temperatures
Calculate current state
Calculate g,U

′
min and U

′
max

case Hildreth algorithm
Calculate the unconstrained inputs of the process.
if unconstrained inputs violate constraints then

while maximum numbers of iterations is not reached and solution not
found do

Solve one iteration of the QP
end
if maximum numbers of iterations is reached then

Use unconstrained solution with inputs violating the constraint
limited to the constraint

end
end

endsw
case qpOASES

while maximum numbers of iterations is not reached and solution not
found do

Solve one iteration of the QP
end
if maximum numbers of iterations is reached then

Use last sub-optimal solution
end

endsw
case CVXGEN

while maximum numbers of iterations is not reached and solution not
found do

Solve one iteration of the QP
end

if maximum numbers of iterations is reached then
Use unconstrained solution with inputs violating the constraint limited
to the constraint

end
endsw
Apply the inputs to the system

end
end

Algorithm 1: Steps to compute the inputs of the experimental set-up.

3.2.2. Programming the PLC

There exists no compiler to transform the C/C++ source code to a running binary on a
Siemens PLC. Therefore, the C/C++ code has to be translated into S7-SCL (STL). Although
possible, this is a time consuming step. In this project, the qpOASES and hildreth solvers are
translated to S7-SCL. The qpOASES solver is translated without the hotstarting possibilities
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Figure 2: Schematic overview of the different organization blocks in the PLC.

and the general constraint handling code. Instead, only the part that handles bounds is trans-
lated. CVXGEN cannot generate STL code, and a manual translation of the generated code
is impossible, hence; it is not used.

To calculate the appropriate inputs of the system and solve the QP, following built-in
function blocks (FBs) and organization blocks (OBs) are programmed. Organization blocks
are built-in functions called by hardware interrupts. Function blocks are user defined fun-
ctions with corresponding data stored in a data block (DB) with the same number. Figure 2
depicts the order in which these blocks are called.

B 100: Cold Start

This block is called once when the controller is started. It calls function FB 1, which is used
to initialize the precomputed matrices larger than the 256 elements which are stored in DB
2 linked to FB 2. This procedure is followed to overcome the limitation that an array of
constants cannot be larger the 256 elements at compilation time. In the case a matrix needs
to contain more than 256 elements, more arrays are combined in this block at runtime into a
combined array. For these experiments, only matrix G2 is initialized in this function.

OB 1: Main Loop

This loop is started as soon as OB 100 is finished. When this function finishes, it restarts again.
This loop is used to program standard tasks of the PLC. In this experiment, it is not used. It
will run during the idle time of the CPU between two OB35 calls.

OB 35: Timed Loop

This organization block is called every second. It contains the necessary code to read the
current inputs. This information is scaled and employed to calculate the current state (FB 3).
Together with the reference for the in- and outputs, the state is used to update vector g (FB 2).
Now, the QP is solved and the scaled solution will be passed to the outputs of the PLC.

3.3. A Solution to the QP: Algorithms

3.3.1. The Hildreth Algorithm

The Hildreth algorithm has been chosen for its limited number of code lines which makes
it easy to implement. It has been written in C for the PAC and in S7-SCL for the PLC. This
algorithm calculates the solution in two steps [21]. First, the unconstrained solution is calcu-
lated, and if no constraints are violated, this solution is adopted. If a constraint is violated,
a constrained QP is solved. The solution of the QP is then passed to the inputs of the heating
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device. For more information about the solution routing, see [13, 21, 23]. If a solution to
the QP could not be found, the unconstrained solution is compared to the constraint. If a
constraint is violated, that entry of the unconstraint solution is limited to the constraint.

3.3.2. qpOASES

qpOASES is an open-source C++ implementation of the recently proposed online active set
strategy [14]. It builds on the idea that the optimal sets of active constraints do not differmuch
from one QP to the next. At each sampling instant, it starts from the optimal solution of the
previous QP and follows a homotopy path towards the solution of the current QP. Along this
path, constraints may become active or inactive as in any active set QP solver and the internal
matrix factorizations are adapted accordingly. While moving along the homotopy path, the
online active set strategy delivers sub-optimal solutions in a transparent way. Therefore, such
suboptimal feedback can be reasonably passed to the process in case the maximum number
of iterations is reached.

A simplified version of qpOASES has been translated to S7-SCL and was used for
controlling the heating device. Note that our simplified implementation does not allow for
hot starting the QP solution and is not fully optimized for speed. Moreover, it only handles
bounds on the control inputs but no general constraints. On the PAC the plain ANSI C imple-
mentation of qpOASES has been used. Although the full version of qpOASES is perfectly
suited for hot starting, this is not used as the employed implementations of neither the
Hildreth algorithm nor the CVXGEN have possibilities to use hotstart. Moreover, based on
the knowledge that a solution is found in one step if no constraints are active, the algorithm is
only used with cold starts. This makes it possible to start the search for a solution with offline
computedmatrices. On the other hand, qpOASESwill most probably benefit from hotstarting
if constraints are active as the number of required iterations decreases.

3.3.3. CVXGEN

According to the website (http://www.cvxgen.com/), CVXGEN [22] generates fast custom
code for small, QP-representable convex optimization problems, using an online interface
with no software installation.Withminimal effort, amathematical problem description can be
turned into a high speed solver. The generated code is C-code that should run on any device
supporting this programming language. It works best for small problems, where the final
KKT-matrix has up to 4000 nonzero matrix entries. CVXGEN does not work well for larger
problems. The mathematical representation of the QP problem is presented to the web
interface and the generated code is compiled for the VxWorks operating system of the
CompactRIO. Similar to the Hildreth algorithm, the unconstrained solution, limited to the
constraints when violated, is employed if a solution to the QP cannot be found.

4. Experimental Setup

The temperature control setup (Figure 3) consists of a resistor and a fan which can be manip-
ulated separately. The fan is driven by a 24V DC motor, and the resistor has a maximum
power of 1400W. The heating power delivered by the resistor can be adapted by solid-state
relays with analog control (Gefran GTT 25A 480VAC—analogue control voltage 0–10V).
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Figure 3: Schematic overview of the temperature control setup.

The fan is manipulated by a custom made DC drive based on a Texas Instruments DRV102T
chip and adapted for an analogue control voltage of 0–10V. Temperature sensors measure the
environmental temperature and the temperature of the heated air as indicated in Figure 3.
Both sensors are of the PT100 class B type.

5. Results

5.1. Model Identification

To control the experimental setup, a two-input (fan speed and resistor power) and single-
output (temperature) black-box model is constructed with the Matlab System Identification
Toolbox [24]. A linear, low-order, continuous-time transfer function of the form

G(s) =
Kp

1 + Tp1s
e−Tds. (5.1)

is fitted to the data and named P1D. Afterwards, this model is discretized and converted to
statespace of the form (2.1). This model is called P1DSS. The excitation signal of the identi-
fication experiment is a multisine with frequencies within the range 0.05–0.00125Hz. After
detrending and normalization, this dataset, is divided in an estimation and validation set
with each a length of 250 s. To determine the model quality, a fit measure is defined over the
validation data:

fit = 100%

⎛
⎜⎝1 −

∥∥∥Ŷ − Y
∥∥∥
2∥∥∥Y − Y

∥∥∥
2

⎞
⎟⎠, (5.2)

where Ŷ is the simulated output, Y the measured output, and Y the mean of the measured
output. A fit value of 100% means that the simulation is the same as the measured output.

The final identified P1D model is

Tn =
[ −0.98
1 + 5.17s

e−1.34s
0.83

1 + 7.17s
e−1.53s

][
uFan,n

uPower,n

]
, (5.3)
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Figure 4: Validation of the P1D model on multisine validation data.

where the index n indicates a normalised variable. uFan,n and uPower,n are, respectively, the
normalized and detrended actuator voltage for the motor drive and the solid state relays of
the resistor. After detrending, a zero output of the model corresponds to 42◦C. For the inputs,
the zero input corresponds to 5V. Conversion to state space of the P1D model with a discre-
tisation interval of 1 s, results in a discrete state space model of order 4. This model is con-
trollable, observable, and stable. The validation of the P1Dmodel is depicted in Figure 4. The
fit is 79% for both the P1D and P1DSS model.

5.2. Controller Design

The P1DSS model is selected as controller model. The control horizon Hc of the controller is
set to 7 and the prediction horizonHp is 22. These horizons have been chosen similar to those
in [25], to compare the different controllers and control algorithms for this temperature
control setup. These horizons turned out to be the maximum settings if an MPC controller is
built with CVXGEN for use on the PAC.

5.3. Controlling the Setup

On each controller device, three experiments, each time with a different QP algorithm, are
executed. The weight matrix Wu in the cost function is the identity matrix:

Wu = I2×2 =
[
1 0
0 1

]
. (5.4)

Wy is set to one. Each experiment consists of a reference trajectory for the temperature of
10 minutes. This reference is first at a constant temperature of 40◦C during 100 s. To ensure
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that the data logging program is ready and the estimator has reached a steady-state value
on both PAC and PLC, the inputs calculated by the controller are only applied from 30 s on.
During the first 30 s, the fan speed is set to 20% of its maximum speed and the resistor power
is 0. After 100 s, the setpoint jumps to 45◦C and 60◦C for 60 s each. This stair is followed by a
half period of a cosine that should bring the temperature at 20◦C. This is below the environ-
mental temperature of approximately 22◦C and therefore unreachable. This part of the
trajectory is added to make sure the controller hits the constraints for a number of seconds.
From 320 s on, the temperature reference is set to 30◦C for 60 s, followed by a ramp of 30 s with
a slope 0.1◦C/s. At the end of the ramp there is a jump towards 50◦C. This temperature is kept
constant for 60 seconds and followed by another set-point change to 30◦C for 60 seconds. To
end the experiment the temperature is fixed at 40◦C. It has to be noted that all algorithms
and implementations have tested beforehand in simulation. In this case identical results have
been obtained as the solution to the QP is unique. The simulations have been executed in
Matlab and LabVIEW. The latter are hardware-in-the-loop simulations. Thereto we have used
the code and libraries also used for the experiments on the real setup, but instead of the real
setup, a linear model is used.

5.3.1. MPC on a PAC

All three QP algorithms are tested on the CompactRIO PAC system. Figure 5 depicts the con-
trolled temperature along the reference and the corresponding inputs.

The Resulting Temperature Control

The controlled temperature follows the reference accurately when all transient effects have
faded. The incorporated integrator eliminates the steady-state error. The plots show oscillat-
ing behaviour at steps when the reference is above 45◦C. This is explained by the limited
validity of the linear model at these temperatures. This oscillation behavior is unwanted and
has to be corrected with different controller settings, for example, an increasing Wu. In order
to make a fair comparison with the PLC experiments these settings are not changed. All three
algorithms start the experiment with a large overshoot. It is caused by the large step from the
environmental temperature to 40◦C and the mismatch between the estimated state from the
linear model and the real system. For the next step around 80 seconds, an overshoot is hardly
seen. The mismatch between the model and the real heating setup is small at this point. The
next jump towards 60◦C is outside the validity region of the model and this is clearly seen as
an overshoot followed by oscillations. The cosine function is followed accurately, except at the
end, where the set-point is below the environmental temperature. This makes it impossible
to track the desired temperature. After 300 s, the set-point evolves slowly to 30◦C as both con-
straints are active. The next ramp is followed with a delay of one to two seconds. At the end
of the ramp, the 10◦C jump causes again a large overshoot as themismatch between themodel
and real system is large at 50◦C. The transition to 30◦C leads to a small nonoscillating under-
shoot.

Important to notice is that all three algorithms behave almost identically. The mean-
squared-error (MSE) values are calculated and differ by at most 3%. The small differences
in the output (Figure 5(a)) and inputs (Figure 5(b)) are caused by different environmental
conditions. An open window is responsible for a soft breeze in the room from time to time.
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Figure 5: The in- and outputs for the Hildreth, CVXGEN, and qpOASES algorithm on the PAC.

The QP Solvers

Figure 6 depicts the number of iterations needed to solve the QP. The maximum was set to
20 for qpOASES, 25 for CVXGEN, and 60 for Hildreth. The latter is so high as the number of
iterations grows linearly with the problem size [26]. None of these maxima were reached, so
the QP solvers always converged during this experiment. qpOASES needs only 5 iterations
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Figure 6: The number of iterations and corresponding calculation time to solve the QP problem on the PAC
system for the three algorithms.

at the start while only one constraint is active. When two constraints are active, at maximum
10 iterations are needed to calculate the solution. If no constraint is active, no iterations are
needed to solve the problem. The corresponding time is 0.48ms for 10 iterations, 0.37ms
for 5 iterations, and if no iteration is performed, the solution is presented after 0.29ms.
CVXGEN needs at minimum 6, but never more than 8 iterations during this experiment.
The corresponding time is 0.62 and 0.82ms. Hildreth needs at maximum 19 iterations during
this experiment, which takes 0.22ms.

The bottom plot of Figure 6 depicts the time needed to present a solution by the
different algorithms. For CVXGEN, the calculation time for zero constraints and one active
constraint is indistinguishable as the number of iterations is identical.Only with two active
constraints the number of needed iterations increases. The number of needed iterations and
the corresponding time fluctuate more frequently for the other two algorithms. It is not
possible to determine from these plots if one or two constraints, are active. For this setup,
the Hildreth algorithm needs less time to solve the QP than the other algorithms. CVXGEN
needs the most time to present a solution. It is expected that the need for more iterations to
solve the problem is a disadvantage for the Hildreth algorithm if the problem size increases.

All three algorithms are integrated in a C/C++ library called by the LabVIEW code.
The design choices of the QP developers have important consequences. Although CVXGEN
delivers ready-to-use code in a fast and straightforward way, it has to be mentioned that the
choice for memory before allocation results in large code if the problem size increases. A
test to solve a QP problem with a hessian of size 30 resulted in a code of size 430 kB and a
hessian of size 40 even resulted in 996 kB, while only 80 kB was needed with a hessian of size
14 in these experiments. In [25] it has been observed that the code of the problem cannot be
higher than 900 kB as the code simply will not run due to limitations of the PAC. This means
a hessian of size 40 is the limit with CVXGEN. In the case that one wants MPC to control
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a multiple input or multiple output system, this limit is most likely too low for practical
use on the CompactRIO. This code generator delivers C-code for the declared mathematical
description. A small altering of this description means a regeneration of the C-code. If a
different language is needed, this code generator cannot be used.

An increase of the size of the hessian hardly increases the code size of qpOASES. The
compiled library is about 112 kB large. The compiled code for Hildreth is only 7 kB. This size
of the latter two algorithms will only grow with increasing size of the hessian which is coded
in the library. These algorithms are programmed generally, so the same code can be used for
instance, for different hessian sizes. This code can be translated in a different language.

To employ these algorithms on a PLC, the limited speed and memory size have to be
taken into account. As CVXGEN needs the most time to solve the problem and consumes the
most memory, this algorithm is not preferred for this problem.

Conclusion. The three algorithms are incorporated in a library compiled from the C-code. The
provided code for qpOASES and CVXGEN could be implemented easily. With growing QP
problem size, the compiled CVXGEN code is increasing very fast, limiting the size of the QP
to 40 on this device. This is most likely not enough for a lot of MIMO systems. qpOASES
and Hildreth do not encounter this problem. From the control point of view, there is hardly
any difference for the three algorithms. From the implementation side of view, Hildreth is a
simple algorithm with a small footprint that is easily implemented. Also qpOASES is easily
implemented with the freely available C++ code, but the more complex code takes more time
to be evaluated. On the other hand, the number of iterations is less than that for the Hildreth
algorithm, which can be an advantage when the size of the QP problem increases.

5.3.2. MPC on a PLC

As no STL code can be generated with the CVXGEN code generator for the PLC, only the
Hildreth and qpOASES algorithms are tested on the PLC. Figure 7(a) depicts the measured
temperature and its reference for the Hildreth and qpOASES algorithms. The corresponding
inputs are displayed in Figure 7(b).

The Resulting Temperature Control

Both, the Hildreth and qpOASES algorithms follow the desired reference temperature accu-
rately. The large overshoot in the beginning is also caused by an inaccurate estimate of the
temperature, combined with a large step from the environmental temperature towards 40◦C.
The jump towards 50◦C is taken without overshoot. The set-point change to 60◦C causes an
overshoot but after about 20 s, the reference is accurately followed again. Also the cosine
function is closely followed. Around 300 s, at the end of the cosine, the reference temperature
is lower than the environmental temperature, which makes it impossible to reach this tem-
perature without cooling, causing both the heating and fan constraint to be hit (Figure 7(b)).
The next set-point of 30◦C is reached, but as still both constraints are active, the temperature
evolves slowly to the desired set-point. The ramp and step towards 50◦C is followed with
a small delay. The large decrease of the temperature from 50 to 30◦C is reached with a very
small undershoot. The final jump toward 40◦C is smooth and without overshoot.

Both algorithms behave similarly. The MSE for all PLC experiments differs 2% with
qpOASES having the highest value. As the stop criteria for both QP algorithms are identical,
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Figure 7: The in- and outputs for the Hildreth and qpOASES algorithm on the PLC.

the different environmental conditions are the main reason for this difference. In case a con-
straint is active, the delay caused by the calculation time needed to solve the QP problem
differs nearly 150ms between both algorithms (Figure 8). This also might have a small
influence.
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Figure 8:Number of iterations and corresponding calculation time needed to solve the QP problem on the
PLC for both algorithms.

The QP Solvers

The top plot in Figure 8 depicts the required number of iterations for the employed algo-
rithms. Each iteration is a backsolve operation, which corresponds to a check of one constraint
at one time instance during the control horizon, followed by an update of the active set.
The bottom plot of Figure 8 plots the corresponding calculation time. For Hildreth, the maxi-
mum number of iterations is 60 at 279 s after the start of the experiment. As this is the maxi-
mum allowed, no solution was found to the QP and an unconstrained, but limited to the con-
straints, solution is delivered. As stated earlier, the applied input was manually fixed during
the first 30 s of the experiment. The Hildreth algorithm needs approximately 1ms to calculate
one iteration.

If no constraint is hit for the qpOASES algorithm, no iteration of the QP is needed.
Due to the more complex code of the algorithm, it takes about 10ms to calculate the input. If
a constraint is hit, it takes between 15 and 16ms to process 1 iteration. At the start, at maxi-
mum 8 iterations, corresponding with 140ms of calculation time, are needed to come up with
a solution. The maximum number of iterations is set to 20. This number is never reached, so
an optimal solution is always provided to the system for these experiments. If only one con-
straint is hit, 7 iterations are sufficient. No constraints are violated.

Both algorithms solve the QP online. TheHildreth algorithm is faster in time compared
to qpOASES. On the other hand, the maximum number of iterations is less for qpOASES and
still an optimal solution is always found. It has to be noted that at time instance of 279 s, the
Hildreth algorithm needs 60 iterations which is the maximum allowed. Hence, no (optimal)
solution is available. In such a case, the algorithm delivers the unconstrained solution,
with all entries violating their constraints limited to there respectively, constraints. It is to
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be expected that this causes no harm, but it is not the optimal solution. This situation can
last for several time instances. qpOASES on the other hand always gives an optimal solution
without reaching the maximum number of iterations. This makes the latter more suited for
MPC.

Both algorithms are active set algorithms. This means it is possible to stop the
algorithms early. It has to be noted that a minimum number of iterations is needed. Although
the qpOASES algorithm should be able to reach the optimum in maximum 2 to 5 iterations
according to [14] if hot starting is applied, at least 7 if one constraint is active or 14 if two
constraints are active are needed for these experiments if no hot start is executed. With a cold
start, at least all constraints at every time instance of the control horizon need to be checked.
For one active constraint, this means 7 checks are to be performed for this experimental setup.
Two active constraints need 14 checks. qpOASES is in this case able to solve all optimization
problems in one check of the constraints, as it needs at maximum 14 iterations. At 279 s,
Hildreth needs to check more than 4 times all of the constraints and is still not at the optimal
solution. It is clear that qpOASES evolves faster to the optimum than Hildreth. For practical
use, qpOASES is therefore preferred.

Conclusion. Two online QP solvers have been successfully tested. They are used for a model-
based control of a heating device on a PLC. Despite the substantially higher calculation time
to present a solution, qpOASES performs not substantially better than Hildreth. For this
particular MPC study on a small setup, the additional calculation time needed for qpOASES
to solve the problem with less iterations is not needed, on the other hand leads the high
number of iterations from time to time to suboptimal solutions for Hildreth. For larger
systems it is to be expected that the reduced number of needed iterations for qpOASES can
lead to a shorter solution time of the QP, certainly if also hotstarting is used.

6. Conclusion

Three online QP algorithms have been investigated for their applicability to solve an online
model-based control problem on industrial hardware. All three algorithms perform similarly
on a small-scale test setup, but were obtained in a different way. The first algorithm is gen-
erated by a code generator (CVXGEN). This is an easy and fast way to get the needed code.
On the other hand, the use of a code generator sticks the user to the offered programming
language, and it is impossible to change concept decisions of the developer resulting in
unwanted effects such as largememory consumption. The second algorithm (qpOASES) uses
off-the-shelf code. This offers the user high-quality and easy-to-implement code. The third
algorithm is programmed based on the theoretical concept of the Hildreth algorithm. Starting
from scratch takes a lot of (debugging) time and is fault sensitive. All algorithms have been
implemented on a PAC. As a different programming language is needed, only the latter two
algorithms have been implemented on a PLC. As the accuracy of all three algorithms used
on the PAC is comparable, qpOASES is preferred for use on a PAC based on flexibility, for
instance, the size of the problem, and user friendliness of the algorithm. Although not tested,
qpOASES most probably will benefit from its hot starting ability. The limited amount of
memory and calculation speed of a PLC, make this device not suited for controlling MIMO
systems with more than two to five in- and outputs. This makes an algorithm with a small
footprint and fast calculations such as Hildreth, most suited for MPC implementations on a
PLC.
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