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This paper presents a parallel real-time crowd simulation method based on a hierarchical
environmental model. A dynamical model of the complex environment should be constructed
to simulate the state transition and propagation of individual motions. By modeling of a virtual
environment where virtual crowds reside, we employ different parallel methods on a topological
layer, a path layer and a perceptual layer. We propose a parallel motion path matching method
based on the path layer and a parallel crowd simulation method based on the perceptual layer.
The large-scale real-time crowd simulation becomes possible with these methods. Numerical
experiments are carried out to demonstrate the methods and results.

1. Introduction

Real-time crowd simulation is one of the important research directions [1, 2] in computer
games, movies, and virtual reality. In the last decade, Shao et al. [3] proposed a
multilevel model for the virtual crowd simulation in the face of visual effects, perception,
routing, interactive and other issues directly and efficient support. Virtual environment
modeling consists of two parts, that is, geometric environment modeling and nongeometric
environment modeling [4]. Geometric environment model corresponds to the geometric layer
of the hierarchical environmental model, and nongeometric environment model corresponds
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to the topology layer, the path layer, and the perception layer. There have existed some
parallel methods [5], which can fast compute a scene path map based on the topology layer.
However, they lacked parallel methods to accelerate real-time crowd simulation based on the
path layer and the perception layer.

Given a motion path, matching human movements with it is a common problem in the
field of character animation. Usually artist manually tuned the motion data. However, when
lots of human movements need to be matched with lots of paths, only using manual method
will be impractical and cannot meet the real-time requirements. Based on our analysis, we
find that a parallel matching algorithm is suitable for motion path matching. Because motion
matching between paths is independent of each other, the path segments among every two
points within the calculation of the discrete sampling are independent. Based on the above
investigations, this paper employs a parallel motion path matching algorithm based on the
path layer.

Researchers often use the agent-based simulation model in crowd simulation. We
found that single agent status updates only need to consider it within a limited range state
of the world. Based on this observation, we designed a parallel crowd simulation method,
employing a parallel update strategy and dividing the scene into bins (each bin is a square
area; agents are distributed among all bins); we then determined the scope of each agent. For
the nonadjacent bins, agents can employ parallel update strategy, which is divided into four
batches of parallel updates. Experimental results show that this strategy can greatly increase
update efficiency.

In the real world, each person makes appropriate movement decisions according to
the state of the environment around him [6, 7]. For example, when a car approaches, people
will maintain their status or change their walking direction according to the car’s driving
direction, speed, and distance. The agent model proposed by Reynolds [8] can simulate these
situations. The current research employed a similar but relatively simple agent model. Our
agent is controlled by three forces: [9] avoiding the force of obstacles; avoiding collision with
other agent forces; following path force [10, 11]. The three forces are in order of decreasing
priority.

This paper presents parallel real-time crowd simulation algorithms based on a
hierarchy environmental model and fully taps the multilevel environmental model in the
parallelism, making the simulation of large-scale real-time crowds possible.

2. Related Work

Given a motion path, matching human movements with it is a common problem in the
field of character animation. In the game industry, a relatively simple and efficient way is
to loop the motion clip while the character moves along a motion path. This method makes
the movements of characters appear mechanical, monotonous, and unrealistic in terms of
imitating body movements. To achieve realistic effects, some scholars have proposed complex
motion synthesis methods [12–14]. The general approach first uses motion data, which are
captured to construct a graph-like data structure. In searching this data structure for the
right movement sequences to match input path, these sequences meet specific constraints
that stitch up human posture, finally forming the results. When matching motion data with
motion path, there exist some difficulties [15] as follows: (1) in the construction of the motion
graph, if the graph is large and complex, determining what motion can be synthesized from
the graph is difficult, and the range of new movements is unknown [16]; (2) the structure
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of the motion graph is complex, which takes a lot of time to search on the graph each
time; hence, this structure cannot improve system performance [17]; (3) for the presence
of path constraints, there are some low-level connection relationships in the motion graph,
so there will be some unnecessary local shaking when synthesizing motion [12]; (4) some
constraints need to be considered (e.g., obstacles); however, such methods are difficult to
estimate.

Lau and Kuffner [18] described a similar method for this paper. The method
organizes motion data into a finite state machine (FSM); each state represents a high-
level semantical movement, such as walking and running. If two states can be connected
together, there will be one connection in the state machine. Motion state machine is
used to find the character’s motion data when synthesizing motion, which can overcome
the difficulties mentioned above. For multiple paths, this paper divided long path into
short path segments. The length of these short path segments is almost equal to the
motion segments in a motion state machine. Thus, when performing matching work,
the efficiency of matching can be improved. This paper also used parallel computing
strategy to greatly reduce the time required for each planning step. In addition, when
using motion state machine to match, a benefit arises; that is, while the current matching
segment crosses paths with other motion path segments, a collision situation is possible;
if such a situation happens, there will be no displacement motion data (idle) for the
role to effectively avoid the collision. On the other hand, when more human movements
are required to match more paths, solely using such methods cannot meet the real-time
requirements.

The agent-based crowd simulation model is accorded the characteristics of crowd
movement in the real world and has a very flexible control strategy (e.g., controlling each
parameter of each agent). Therefore, agent-based crowd simulation model is widely used.
However, for large-scale real-time crowd simulation, each agent needs to update its own
status according to its surrounding environment, and each agent is a dynamic obstacle to
other agents. Computing cost increases rapidly as the number of agent increases [19] in the
face of time complexity O(n2). Thus, when n is large, the time required for each frame will
significantly increase, making the real-time status update of each agent impossible. Hence,
we need to find a new method to do large-scale crowd simulation.

3. Overview

The system consists of two parts: (1) hierarchy environment model and (2) multiple parallel
algorithms based on the hierarchy (see Figure 1).

The hierarchy environmental model [20], as shown in Figure 1 (right panel), consists
of two parts: geometric and non-geometric environment model. The non-geometric environ-
ment model includes the topology layer, path layer, and perception layer.

Based on the multi-level environment, the topology layer, path layer, and perception
layer employ different parallel algorithms to speed up real-time crowd simulation, respec-
tively, as shown in Figure 1 (left panel). We employed the existing Voronoi diagram algorithm
[4] based on topology layer to segment the scene quickly and get the path layer map. We also
used parallel motion path matching based on path layer to quickly match human motion for
path, as well as parallel real-time crowd simulation based on perception layer to fully tap the
crowd behavior in parallelism.
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Figure 1: System overview.

4. Parallel Motion Path Matching Based on Path Layer

This section explains parallel motion path matching based on path layer. The section contains
three parts: (1) motion state machine, (2) motion path parameterization, and (3) extraction of
motion segments.

4.1. Motion State Machine

The main differences between the motion state machine proposed by Kovar et al. [12] and
the motion state machine constructed in this paper are as follows: (1) trajectory arc length
of the node of motion segments used by each state is fixed and equal in this paper’s motion
state machine; (2) the length of most of the motion segments in this paper is longer than
that in Kovar et al. [12]. For example, there are 100 frame movements about walking used
in this paper, but the length of the movements in Da Silva et al. [21] is only 25 frames;
(3) the motion state machine in this paper employed group-based hierarchical status node,
which can ensure that “walk left” and “run left” are on the same level, and all directional
run and walk movements comprise a position move node on the up level. Three facts exist
in the motion synthesis process, which lead to the above differences: (1) this paper used
sectional matching; (2) the movement range of the motion path to be matched is large; (3) the
connection relationships among states are more complex.

The motion state machine (MSM) used in this paper is shown in Figure 2. The MSM
has a total of 12 base states, which have their own names and include 36 motion segments
(except start and end states). The motion segments’ arc length of “Crawl,” “Squat move,”
and “Stride over” is indeterminate, because these motion segments are mainly used to deal
with the path segments about obstacles. These are marked directly by users to explain which
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Figure 2: Finite motion state machine.

motion segments are used, so that the system does not need to match in the rear. The function
of the “Idle” state’s motion segments is to make the virtual characters wait, so that the system
can avoid the collision between virtual characters. The states, which include “run forward,”
“run left,” “run right,” “walk forward,” “walk left,” and “walk right,” describe the ways in
which virtual characters can match according to the specific path situation. Furthermore, the
motion path’s arc length of motion segments is equal, which makes the matching of motion
path segments easy.

There are some directed edges among states in MSM. These directed edges express
whether two motion segments can be connected. For example, there is a directed edge
between “run right” and “walk right,” which means that the motion segments of “run right”
can stitch with the motion segments of “walk right.” Similarly, the motion segments of
“walk left” can stitch with the motion segments of “run left.” The motion machine in this
paper adopts a group-based hierarchical status node. For example, “walk forward” and “run
forward” constitute F, “run left” and “walk left” constitute L, and “run right” and “walk
right” constitute R. Finally, L, F, and R constitute locomotion. The child states can inherit
the father states’ connection. For example, the connection between F and R explains that
“walk forward” and “run right” can connect with each other, and the connection between the
“crawl” state and l locomotion can lead to the connection between “crawl” and “run left.”

This paper also prepares some transitional motion segments. These motion data are
used to connect the transitional fragments among motion segments. There are eight frames.
The transitional fragments exist at the beginning and the end of motion segments.
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4.2. Motion Path Parameterization

In this paper, there is a path planner responsible for generating a parameterized original
movement path called “T” and decides the grid size of path planning pace. If the planning
space is planed in a lattice structure, which is composed of m ∗m square, the space between
2d point sequence is m, but in the specific application, the space of sample points cannot
keep the same with the sample degree of the original path. For example, in this research,
the human root node movement size between two frames is s in the MSM. However, the
motion clips in the MSM were prepared before motion synthesis and cannot be resampled.
The system initially needs to use some fitting methods to parameterize the original path
and then resamples the parametric path based on the desired sampling size. The resulting
path can be used to match the crowd animation better in the following phase. In detail,
our method constructs the cubic polynomial curve p(u) with C1 continuous based on
the original data point. If there is a curve formula called p(u), the system begins with a
starting point p0 and records those points p1, p2, . . . , pn, whose arc length spacing is s and
corresponding parameters u1, u2, . . . , un. The characteristics of cubic polynomial spline curve
with C1 continuous are simple and easy to control, and human motion path is generally not
so smooth that curve with C1 continuous is enough to make the motion path smooth through
fitting.

In addition, the algorithm needs the corresponding tangent vector of each sample
point. The system can calculate p(u) curve’s tangent vector in p0, p1, . . . , pn through
parameters u0, u1, . . . , un. Then, it can represent the motion path after normalizing with the
coordinates of parameters point and tangent vector, called T1:

T1 =
{
pi, �pi | i = 0, 1, . . . , n

}
. (4.1)

The arc length in our motion segments in the MSM is almost equal. The arc length
of motion state i is represented by li. If li is n times as long as s, motion path T1 used in
experiment general is n times longer than s. Hence, it can cut up the whole path into many
small segments whose length is n ∗ s. For example, suppose there are n + 1 points from pj to
pj+n. The algorithm can find motion segments called motionk in the MSM, which is similar
to the path curve shape. If there are some obstacles in the path, direct matching cannot be
performed. The path is marked by specific segments of motion data through interaction.
Then, it can stitch directly in the matching phrase.

There are some crossings of motion paths and obstacles in T1. Thus, matching directly
to T1 is not enough. An artificial mark on this cross-path, such as “crawl” state, is needed.
In the matching, when meeting this path, motion data are directly found under the “crawl”
state and are associated with motion path T2:

T2 =
{
pi, �pi,

(
motion

(
j, t

)
= motionk

)
r | i = 0, 1, . . . , n; 0 ≤ j < n; 0 < t ≤ n − j; r = 0, 1 . . . , u

}
.

(4.2)

The path segments composed of continuous t points from pj have been associated with
motion data called motionk; r means that this mark is the r-section in all u+ 1 marks. Figure 3
shows the normalized conversion process from curve T to curve T2.
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Figure 4: Schematic diagram of T2 segmentation.

4.3. Extraction of Motion Segments

T1 changes into T2 through parametric resampling and marking the specific segment. Setting
the path consists of n + 1 points, and total arc length is n ∗ s. The basic motion segment of
the root node’s path curves arc length is certain, set as d, such as “walk” and “run.” d is also
integer times as s, set as k. Thus, T2 needs to be cut into path segments, whose arc length is d.
The set of this path segments is D. Consider

D = {di | i = 0, 1, . . . , Dsize − 1}, (4.3)

where di means the ith motion path segment. Dsize means the total number of segments after
cutting:

di =
{
pi | i = b + 0, b + 1, . . . , b + k, b = di starting coordinates

}
. (4.4)

Figure 4 shows the T2 segmentation process.
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The next work that needs to be done is using the distance formula D to find proper
motion segment motionk for each di.

This paper designs a one-dimensional Grid (motionNum, 1) for single curve.
motionNum means the number of motion segments in the database, and one Grid has
motionNum blocks. Each block is responsible for calculating its representative motion
segments. For example, block0 is only responsible for calculating the matching degree
between the current line and the 0th motion segment. Each block is one-dimensional. For
example, in block (PointNum, 1), PointNum means the number of discrete points currently
calculating the curve segment matching. Each thread in the block means the distance between
a discrete point in the curve and the corresponding point in the motion segment. For example,
thread0 is responsible for calculating the distance of 0th discrete point. The formula is

distancei =
√

CurvePointi − MotionPointi. (4.5)

Each thread only needs to calculate its own data, and it does not need to interact with
other threads. After the final computation, thread0 accumulates matching value, calculating
by each thread, and acquires the total matching value between the curve and the motion
segment. The computation formula is

MatchDegree =
n∑

i=0

distancei. (4.6)

After calculating the matching value with all motion segments, the minimum
matching value is obtained through comparison. The final result is

Motion =
{
j | MatchDegreej = min

i∈(0,n)
(
MatchDegreei

)
}
. (4.7)

The matching effect of single curve is shown in Figure 6, and its internal thread
organization way is depicted in Figure 5. Before calculating the distance between a discrete
point in curve and the corresponding point in motion segment, every point in a motion
segment needs to do a rotating translation operation. This step is necessary because motion
segment only converts to a curve’s local coordinate. The matching value can be obtained
accurately. Now, the system selects thread0 to calculate rotation and offset. Meanwhile, the
other threads wait for the calculating result of thread. Then, they share the calculating result
of thread0.

We need to design a two-dimensional Grid (motionNum, CurveNum) to extend to
multiple curves, as shown in Figure 7. motionNum means the number of motion segments.
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Figure 6: Matching effect of single curve.
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Figure 7: Schematic diagram of Grid (m,n).

CurveNum means the number of curves. Others are similar to the single curve. The matching
effect of multiple curves is illustrated in Figure 8.

This method can achieve better expansibility. If there are more motion segments that
need to match, then the dimension of Grid only increases.

5. Parallel Real-Time Crowd Simulation Based on Perception Layer

This section explains how to parallel real-time crowd simulation based on perception layer.
This section contains three parts: (1) scene segmentation; (2) nearest neighbor query; (3)
parallel real-time crowd simulation.

5.1. Scene Segmentation

In agent-based crowd simulation, each agent has its own perceived range. In each update,
each agent must query the scope of its perception to obtain the range of obstacles or
information of other agents. Then, based on the information to calculate the forces acting
on the agents, their speed and direction can be adjusted, and the location can be updated.
Neighbor queries generally employ serial query that is executed when the current agent is
updated. Then, the next agent begins to update. In this algorithm, using parallel neighbor
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Figure 8: Matching effect of multiple curves.

Agent

1 20 3

4 5

6
7

8

9 10
11

12

13 14 15

16

17 18 19

20 21 22 23

24 25 26

Figure 9: Scene segmentation and agent distribution (circle represents the agent).

query, the main query is the bin, rather than each agent. Through these neighbor queries,
the bin can be obtained, in which agents need to consider all the potential neighbor agents.
Before the implementation of parallel neighbors’ query, the entire scene needs to be evenly
segmented to get all the information about the bin.

The segmentation needs to be completed in the initialization process. The size of the
entire scene is 1200 × 1200; setting the side length of each bin is 4 for the square, so that
the whole scene is to be divided into 300 × 300 bins. The square side length is 4, because the
sensing range of agent sets a circular area that is a query radius of 4. The formula is as follows:

queryRadius = predTime ∗ maxVelocity ∗ 2. (5.1)

The predTime is the forward predictive time, set as 1 s. maxVelocity is the agent’s
maximum move speed, set as 2 m/s. In the query process, only 8 bins need to be considered,
which are around the center bin.

As shown in Figure 9, the scene is evenly divided into a number of bins, the scene of
the agents located in each bin. There are multiple agents in a bin; however, a bin can also have
no agent.
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5.2. Nearest Neighbor Query

After scene segmentation and statistical distribution among the agents in each bin, the nearest
neighbor query is employed. In the scene segmentation step, each Agent’s observation range
is a circular area of radius 4, and the bin side is also 4. Thus, the algorithm only needs to check
the bin and approximately 8 bins. Figure 10 shows that the number of green bins is 49 and the
observation range is the dashed circle. Hence, the bin numbers that need to be checked are
37, 38, 39, 48, 49, 50, 59, 60, and 61. As the neighbor queries between the bins only read data
with no write operation, this paper chooses the parallel query; the query results are saved in
the corresponding data structures.

5.3. Parallel Real-Time Crowd Simulation

After completing the nearest neighbor querying, crowd velocity, and position updating, the
next Agent begins to update. At the step of parallel nearest neighbor query, the algorithm
has queried all the neighbors of the bin. However, as the Agents of the adjacent bin would
interact, this step of the update operation cannot be completely parallel. For example, for bin
48 and bin 49, if the two parallels update, there would be a read/write conflict. The reason
is that when the Agents of bin 48 are updating, the Agents of bin 49 should be considered;
hence, the reading data may be outdated Agent data of bin 49, and vice versa. Therefore, this
paper chooses partial parallel update strategy; steps are described below in detail.

Referring to the behavior rules of pedestrians in the real world and traditional Agent
model, the Agent model used in this paper is acted upon by three kinds of forces, namely, (1)
avoid the force of obstacles; (2) avoid collision with other Agent forces; (3) follow the path of
force. Figure 11 illustrates each kind of force.

Three kinds of forces decline in priority order. Avoiding the behavior of obstacles is the
highest priority; that is, when Agent k detects it will crash into obstacle d, it also may have
collided with Agent g, and then it would only consider avoiding obstacle d. Considering that
the obstacle is stationary, if the Agent does not adjust its speed, it will be hit and move. Even
if Agent k does not make an adjustment, Agent g itself can adjust the speed for Agent k.
Avoiding force is calculated as follows. Agent forward predictive distance with the observed
radius builds up a rectangular area; in the region of collision, we can find the nearest obstacle.
As shown in Figure 11 for obstacle d, avoiding force (Force k) for the current Agent is pull
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force and the obstacle repulsive force direction. Another situation is when Agent j moves to
prediction j’ position, and Agent i will reach position i at the same time. When the distance
between position j and position i is less than the distance between the center of the radius of
their observations, a collision will be assumed; thus, they will not be influenced by the force
of path-following, but by the Agent force between the impact of avoidance, the avoidance of
force as a lateral tension (Force j), to deviate the current running direction. In Figure 11, there
is a lane in the path (dotted line parallel with the path and the distance between the path);
the current updated Agent will forecast forward for some distance to predict the location of
P projected onto the path P’ point. If the distance between P’ and P is greater than the lane,
then the Agent’s travel direction deviates from the path; otherwise, there is no deviation. As
shown in Figure 11, Agent h would be acted upon by the force of path following (Force h), for
the projection point P’ of the direction of the Agent center of the connection to slowly move
closer to the path direction.

This paper makes parallel updates on the Agent rates four times. As shown in
Figure 10, the bin has a total of four colors. Each time parallel updates the bin that has the
same color. When all colors have been updated, a general update is completed. Agents within
the same bin have an impact on each other, but they cannot be updated in parallel; hence, the
serial update can only be used. In the implementation process, each block represents a bin,
following the Agent model above; meanwhile, according to the priority of various types of
forces, the research also carries out the appropriate adjustments.

6. Experimental Results

In general, the experiment platform uses a computer of 4 core (Q9950 CPU at 2.83 GHz
and 4 GB of RAM), equipped with a NVIDIA GTX 280 graphics card, which has 30
multiprocessors. Each multiprocessor has 8 cores; the total number of cores is 240.
The CPU-based algorithm achieves serial algorithms, and the GPU-based algorithm achieves
the proposed parallel algorithms in this paper.
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Table 1: Comparison between CPU and GPU execution time.

10 100 200 500 1000
CPU execution time (ms) 1214.9124 11999.31 25312.8457 56183.2070 112101.531
GPU execution time (ms) 70.2647 549.388 1049.8966 2572.0297 5188.6655

Figure 12 clearly shows that in the path matching based on path layer, with the increase
in the number of curves that are required for matching, the CPU’s execution time increases
significantly, whereas the GPU’s execution time barely increases.

Table 1 lists the matching time based on the path matching on the path layer with the
CPU matching algorithm and GPU matching algorithm under some curve lines. The data in
the table indicate that GPU parallel algorithm would increase by about 20 times than the CPU
algorithm in execution speed.

Figure 13 shows the frame rate comparison between GPU parallel algorithm and CPU
serial algorithm in real-time crowd simulation based on the perceived layer.

As can be seen from Figure 13 GPU-based parallel computing speed is significantly
higher than the CPU-based parallel computing speed in crowd simulation. With the increase
in the number of Agents, CPU-based FPS drops very quickly. When the number reaches
more than 5,000, real-time simulation results are not achieved. Although the GPU program
number is above 10000 of the Agent, FPS can reach 24 or more, fully meeting the real-time
requirement. When the number is 1000, the FPS of the GPU is 60.

In addition, as the curves indicate, the FPS of GPU-based algorithms is significantly
higher than that of the CPU-based algorithms, but it still has not reached 10 or more times.
The main reason is the speed of Agent updating; there are a lot of conditional executions,
such as statements reducing the parallel computing efficiency of the GPU-based algorithm.

7. Discussion

Through the proposed parallel algorithms in this paper, we achieve a completely parallel
real-time crowd simulation based on a hierarchy environmental model, making topology
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layer, path layer, and perception layer have corresponding parallel algorithms to speed up
the calculation.

This paper describes the detailed process with the path layer-based motion path
matching, through the structure of motion state machine, setting up the transfer relationship
among movement segments. Specifying the sequence of key points, this paper chooses cubic
spine curve fitting to get a continuous path and then samples the sequence of points needed.
We use the distance function to calculate the matching degree between the motion segment
and the path, then accumulate the value of discrete points, and get the total matching degree
of the corresponding segment. Moreover, this paper explains the use of parallel computing
algorithms to accelerate and verify the algorithm through data analysis.

This paper introduces parallel computing algorithm based on the perception layer to
achieve real-time simulation of large crowds. Using scene segmentation evenly, according to
his own location, each Agent is assigned to the appropriate bin where the original calculations
must be serialized into parallel computing. Each bin is a separate update unit.

Experimental results suggest that the proposed method in this paper is consistent with
the serial method in effect, but efficiency has been greatly improved. Given that the Agent
model used in this paper is relatively simple, the focus of future work is how to use more
complex models to achieve a more realistic real-time crowd simulation, reduce the occurrence
times of logic-based computing in the parallel algorithm framework, and further improve the
algorithm’s parallelism.
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