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The halo orbits around the Earth-Moon L2 libration point provide a great candidate orbit for a lunar
communication satellite, where the satellite remains above the horizon on the far side of the Moon
being visible from the Earth at all times. Such orbits are generally unstable, and station-keeping
strategies are required to control the satellite to remain close to the reference orbit. A recently
developed Modified Chebyshev-Picard Iteration method is used to compute corrective maneuvers
at discrete time intervals for station-keeping of halo orbit satellite, and several key parameters
affecting the mission performance are analyzed through numerical simulations. Compared with
previously published results, the presented method provides a computationally efficient station-
keeping approach which has a simple control structure that does not require weight turning and,
most importantly, does not need state transition matrix or gradient information computation. The
performance of the presented approach is shown to be comparable with published methods.

1. Introduction

For the spatial circular restricted three-body problem (CR3BP), where the two large bodies
move in planar circular orbits about their center of mass and a third body of negligible
mass moves under only the 1/r2 gravitational influence of the large bodies, there exist five
stationary points in the rotating reference frame. These points, called the Lagrangian points or
libration points, have unique roles for many scientific missions because they lie in the plane of
the primary bodies’ motion and have fixed positions with respect to these two bodies, similar
to the geostationary orbits although a little more complicated. Among the five points, three
of them are collinear with the other two bodies, and the motion near these points is unstable;
the other two libration points with the primaries form equilateral triangles in the plane of
motion of the two large bodies and the motions near these two points are neutrally stable.
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There has been a lot of interest in finding and controlling the periodic orbits near the
collinear libration points. Farquhar originally proposed using the orbits near the L2 point of
the Earth-Moon system for communication with the far side of the Moon [1]. By appropriate
station-keeping and with a modest cost, the satellite is visible from the Earth all the time.
However, such orbits are not generally periodic. Later, Farquhar and Kamel found that if
the amplitude of the in-plane motion is large enough so that the nonlinear effects become
significant, purely periodic three dimensional orbits, or halo orbits, exist that are permanently
visible from the Earth [2]. The interest in the Earth-Moon halo orbits later shifted to the Earth-
Sun system following the end of the Apollo missions and the launch of International Sun-
Earth Explore-3 (ISEE3) which is the first libration-point satellite [3].

The techniques for station-keeping of halo orbits can be classified as (1) using
continuous control, or (2) generating impulses at discrete time intervals. Breakwell et al.
studied station-keeping for translunar communication station using a continuous feedback
control to minimize a cost function, which is a weighted combination of position deviation
from the nominal orbit and the control acceleration based on a linearization about the
reference orbit [4]. Xin et al. developed a suboptimal closed-form continuous feedback
controller by approximately solving a Hamiltonian-Jacobian-Bellman equation [5]. Kulkarni
et al. applied the H∞ approach for station-keeping of the halo orbit around the L1 of the
Earth-Sun system [6]. Cielaszyk and Wie modeled the nonlinearities of the halo orbit problem
as persistent disturbances and applied disturbance accommodation with a linear quadratic
regulator for the control [7]. Although using continuous control derived from optimal control
theory usually generates orbits closer to their reference orbits than using impulses, discrete
maneuvers have the advantages of less complexity and risk and higher precision orbit
estimation can be obtained during coasting arcs. Dunham and Roberts described the station-
keeping strategies for three Earth-Sun libration point missions, all of which used discrete
controls [8]. Two station-keeping techniques for the Earth-Moon libration point orbits were
studied by Gómez et al. [9]. One is what they called the target point strategy where a cost
function, which is a weighted summation of the position and velocity deviations from several
future points and the fuel cost, is minimized to find corrective maneuvers. Another approach
they studied is based on Floquet methods which combine invariant manifold theory and
Floquet modes to only eliminate the unstable component of the error. Howell and Pernicka
also studied using the target point strategy for the Earth-Sun system in a later paper [10]. The
optimal spacing time between impulsively applied controls has been studied by Renault and
Scheeres [11], and the optimal time to update control law with continuous control has been
recently studied by Gustafson and Scheeres [12].

A newly developed numerical computation approach, Modified Chebyshev-Picard
Iteration (MCPI) method, is used in this paper for station-keeping to maintain a halo
orbit in the Earth-Moon system. This orbit provides an excellent parking orbit for a lunar
communication satellite. Details about MCPI methods can be found in the papers by Bai
and Junkins [13, 14] and Bai’s dissertation [15]. Fusing Chebyshev polynomials with the
classical Picard iteration method, MCPI methods iteratively refine an orthogonal function
approximation of the entire state trajectory. MCPI methods can solve both initial value
problems (IVPs) and two-point boundary value problems (BVPs) by constraining the coeffi-
cients of the Chebyshev polynomials. A unique characteristic of MCPI is that the Chebyshev
coefficients are constrained linearly without approximation on each Picard iteration. As a
consequence, shooting techniques to impose boundary conditions are not required. Although
perhaps the most striking feature about MCPI methods is their naturally parallel structure
because computation of the integrand along each path iteration can be rigorously distributed
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over many parallel cores with negligible cross communication needed, MCPI methods are
computationally efficient even prior to parallelization according to the results reported by
Bai and Junkins, [13, 14] where MCPI methods have been compared with several classical
methods in solving IVPs and BVPs. In several examples, it has been demonstrated that both
greater efficiency and accuracy can be obtained, compared to the pseudospectral method, for
example. The MCPI method can be applied to either the impulsive or the continuous control
case; in this paper, we will provide only the case of impulsive control.

This paper is structured as follows. We first present the numerical approach to generate
the reference halo orbit. We use the third order analytical formulations derived by Richardson
[16] to provide a starting guess for the halo orbit, and then use a differential-correction
approach to numerically find the accurate initial conditions to generate the periodic halo
orbit. The reference orbit is integrated using MCPI method, and the Chebyshev coefficients
that precisely represent the nominal orbit are saved for future reference. We then use MCPI
methods to generate impulses at fixed discrete time intervals for corrective maneuvers.
Several important criteria such as fuel cost and deviations from the reference orbit are
analyzed through simulations and we compare our results with previous published results.
Conclusions and future directions are presented at the end.

2. The Reference Orbit

2.1. Equations of Motion

As is well known, a good nominal reference orbit reduces the fuel cost for unnecessary
maneuvers, so the dynamical model used to generate the reference orbit ideally should
include the gravitational perturbation forces from the Sun and other planets as well as
solar radiation and other forces. Farquhar and Kamel presented fairly detailed equations of
motion where the effects of the Sun’s gravitation force, solar pressure, and the Moon’s orbital
eccentricity were considered [2]. Gómez et al. [9] used JPL DE403 to include the gravitational
influences of the Sun, Moon, and all nine planets. To illustrate our novel approach, we
have chosen to only consider the CR3BP idealization of the Earth-Moon system. Because
the station-keeping technique we present later is a numerical approach to solve for corrective
maneuvers and is essentially an open loop control, using a more detailed dynamical model
will not change the structure of the algorithm but may moderately affect the performance of
the presented technique. For real mission operations, detailed dynamical models should be
used to generate the reference orbit as well as the corrective maneuvers.

Most of the development of the equations of motion can be found in the book by
Schaub and Junkins [17]. One difference here is that we use the L2 Lagrangian point as the
origin. Figure 1 shows how the rotating reference frame E : {êr , êθ, ê3} is defined. m1, m2,
and m represent the Earth, Moon, and spacecraft, respectively. Note the vectors denoting the
location of the Earth, the Moon, and the center of mass are defined such that r1 = r1êr , which
results in r1, r2, and rCM all being negative quantities since the vectors extend from the origin
along the negative êr axis. The two central bodies rotate in circles about their center of mass
at a constant angular velocity, defined by

ω2 =
G(m1 +m2)

r3
12

, (2.1)
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Figure 1: System Diagram.

where r12 is the distance between m1 and m2. Thus, the E frame in use rotates at a constant
velocity ω with respect to the inertial frame, as given by the following equation:

ω = ωê3. (2.2)

The inertial position vector of the spacecraft is defined as follows:

ri = (rx − rCM)êr + ryêθ + rzê3, (2.3)

where rx, ry, and rz are the components of the r vector. The inertial derivative of this equation
can be taken using the transport theorem [17] and (2.2) to produce the inertial velocity vector:

ṙi =
(

ṙxêr + ṙyêθ + ṙzê3
)

+ω × ((rx − rCM)êr + ryêθ + rzê3
)

=
(

ṙx − ryω
)

êr +
(

ṙy + (rx − rCM)ω
)

êθ + ṙzê3.
(2.4)

Finally, the above equation can be differentiated once more to produce the inertial accelera-
tion vector:

r̈i =
(

r̈x − 2ṙyω − (rx − rCM)ω2
)

êr +
(

r̈y + 2ṙxω − ryω
2
)

êθ + r̈zê3. (2.5)

The massless force due to gravity from the two massive bodies is defined in E frame compo-
nents as

Fx = −G
(

m1

ξ3
1

(rx − r1) +
m2

ξ3
2

(rx − r2)

)

,

Fy = −G
(

m1

ξ3
1

+
m2

ξ3
2

)

ry,

Fz = −G
(

m1

ξ3
1

+
m2

ξ3
2

)

rz,

(2.6)
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with ξi defined as follows:

ξi =
√

(rx − ri)2 + r2
y + r2

z. (2.7)

When combined with (2.5), the equations of motion can be written as

r̈x − 2ṙyω − (rx − rCM)ω2 +G

(

m1

ξ3
1

(rx − r1) +
m2

ξ3
2

(rx − r2)

)

= 0,

r̈y + 2ṙxω − ryω
2 +G

(

m1

ξ3
1

+
m2

ξ3
2

)

ry = 0,

r̈z +G

(

m1

ξ3
1

+
m2

ξ3
2

)

rz = 0.

(2.8)

The equations of motion are nondimensionalized by first using a new time variable, τ , de-
fined as

τ = ωt, (2.9)

and then using the distance between the Earth and L2 point (|r2|), which leads to the new
distance variables as

x =
rx
|r2| , y =

ry

|r2| , z =
rz
|r2| , x1 =

r1

|r2| , x2 =
r2

|r2| ,

xCM =
rCM

|r2| , ρi =
ξi
|r2| , x12 =

r12

|r2| ,
(2.10)

and lastly, the masses are eliminated in favor of a nondimensionalized mass ratio μ, defined
as

μ =
m2

m1 +m2
. (2.11)

Now, rearrange (2.8) and divide by the distance r2 and also by the factor ω2, yielding:

◦◦
x= 2

◦
y + (x − xCM) − G

ω2

(

m1

ξ3
1

(x − x1) +
m2

ξ3
2

(x − x2)

)

,

◦◦
y= −2

◦
x + y − G

ω2

(

m1

ξ3
1

+
m2

ξ3
2

)

y,

◦◦
z= − G

ω2

(

m1

ξ3
1

+
m2

ξ3
2

)

z.

(2.12)
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Replacing m2 by μ(m1 +m2) and m1 by (1 − μ)(m1 +m2) using (2.11), and introducing ρi, the
equations of motion become

◦◦
x= 2

◦
y + x − xCM − G(m1 +m2)

ω2r3
2

(

1 − μ

ρ3
1

(x − x1) +
μ

ρ3
2

(x − x2)

)

,

◦◦
y= −2

◦
x + y − G(m1 +m2)

ω2r3
2

(

1 − μ

ρ3
1

+
μ

ρ3
2

)

y,

◦◦
z= −G(m1 +m2)

ω2r3
2

(

1 − μ

ρ3
1

+
μ

ρ3
2

)

z.

(2.13)

Combining (2.13) with (2.1) yields the final, nondimensionalized equations of motion:

◦◦
x= 2

◦
y + x − xCM − x3

12

(

1 − μ

ρ3
1

(x − x1) +
μ

ρ3
2

(x − x2)

)

,

◦◦
y= −2

◦
x + y − x3

12

(

1 − μ

ρ3
1

+
μ

ρ3
2

)

y,

◦◦
z= −x3

12

(

1 − μ

ρ3
1

+
μ

ρ3
2

)

z.

(2.14)

Using (2.15), the nondimensionalized distance x, which is the distance from the center of
mass to the L2 point, is calculated:

x − 1 − μ
(

μ + x
)2

− μ
(

x − 1 + μ
)2

= 0. (2.15)

The other values, r1, r2, and rCM, are found using the center of mass equation:

m1(r1 − rCM) +m2(r2 − rCM) = (m1 +m2)r12. (2.16)

Table 1 provides the values of the three parameters used in this model.

2.2. Finding Initial Conditions

A third-order closed-form solution for the equations of motion is given in Richardson’s paper
[16]. We use Ay = 45000 km which is defined as the amplitude of the linearized motion along
the y direction in Richardson’s paper [16]. This is the same magnitude used in the paper by
Breakwell et al. [4], at which position a satellite is visible from the Earth all the time. The
approximate initial conditions obtained from the third order formula quickly diverge when
propagated using the full equations of motion due to the inherent instability of the system.
A differential corrections method [18] was used to find the initial conditions that lead to
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Table 1: Parameters used.

Parameter Value
Earth mass 5.976 × 1024 kg
Moon mass 7.3477 × 1022 kg
r12 0.3844 × 106 km

Table 2: Approximate initial conditions.

Variable Nondimensional value
x(t0) −0.390895010335809
z(t0) 0.353556629315019
vy(t0) 1.554577497503360
Tp 3.336429964438981

a bounded periodic orbit. In order to find a halo orbit one important property of halo orbits
was exploited: halo orbits display symmetry about the x-z plane. This means that at the point
where the orbit crosses that plane (y = 0), the x and z components of velocity are both zero.
As such, choosing a point on the x- z plane as the initial conditions reduces the variable
set from three position components (x, y, z), three velocity components (vx, vy, vz), and the
orbit period (T) to two position components (x, z), one velocity component (vy), and the
orbit period (T). Additionally, after a single orbit, or after half an orbit, y, vx, and vy will all
be zero again. Table 2 gives the initial conditions we found, where the physical time of the
period is Tp ≈ 14.5 days. Note that the solution accuracy in the numerical correction process
to find these initial conditions has been set as 10−15.

2.3. Using MCPI Method to Save the Reference Orbit

A nice feature about MCPI methods is that the achieved solutions are represented to high
precision in the form of orthogonal Chebyshev polynomials, thus if the coefficients of the
states are saved, the state values at arbitrary time can be obtained straightforward (by
numerically computing the orthogonal polynomials and then a simple inner product matrix
multiplication). We integrate the reference orbit using MCPI method for one orbit and save
the coefficients of the position and velocity for future station-keeping reference. An important
parameter to choose here is the order of the polynomials to use. Generally, higher order
approximation leads to higher accuracy solutions but requires larger storage space to save
all the coefficients. We use closure error (after one period) of the reference orbit, defined in
(2.17), as the accuracy criterion to find the optimal order to use:

Ep = S
(

Tp
) − S(T0), (2.17)

where S(Tp) is the state values (position or velocity) after one complete orbit and S(T0)
is the state values (position or velocity) at the initial time. Figure 2(a) shows how the
nondimensional closure errors change with the order, and Figure 2(b) shows the dimensional
results. Both figures demonstrate the spectral accuracy that the MCPI method achieved,
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Figure 2: Closure error versus polynomial order.

where the closure errors of both position and velocity decrease exponentially as the order
increases. Thirteen significant digits can be achieved with N ≥ 60, but this is higher
precision than required for Earth-Moon halo orbits. In the simulations we present in the
next section, we use polynomials of order 30, which still leads to a position accuracy about
0.1 km and velocity accuracy about 1 mm/s as proved by Figure 2(b). As we will discuss
in the next section, this obtained accuracy is one magnitude smaller than the range of typical
measurement noise. Of course this order can be tuned according to the accuracy requirement,
and we simply illustrate the methodology. The reference orbit in three dimension is as well
as the projection in the three orthogonal reference planes is shown in Figure 3.

3. Simulation Studies

We use MCPI method for station-keeping of the halo orbit generated in the last section.
The matrix-vector form of MCPI methods for solving this special type of two-point BVPs,
where the positions at the two boundaries are constrained, is shown in Figure 4. The matrices
shown in the formulas, Cx and CB

α , are constant (once the order of approximation polynomials
are specified), and Θxif is an (N + 1) × 1 vector depending on the order and the two-point
boundary conditions. Detailed derivations of the approach can be found in the paper by Bai
and Junkins [14]. Procedures to use the formula and definitions of the matrices and vectors
are briefly discussed in the appendix of the present paper for completeness.

For the current problem, at the time when a maneuver is possible, the current position
X(ti) = (xi, yi, zi) and velocity V(ti) = (vx, vy, vz) are measured. The reference position at the
target time X(tf) = (xf , yf , zf) is computed from the coefficients of the reference orbit through
a matrix multiplication and the time can be arbitrary. Then MCPI method is used to solve this
two-point BVP using the formula in Figure 4, and the desired velocity Vr(ti) = (vxr , vyr , vzr )
at the maneuver time is obtained. The corrective maneuver is computed from

ΔV (ti) =
(

Δvx(ti),Δvy(ti),Δvz(ti)
)

= Vr(ti) −V(ti). (3.1)
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Figure 3: Reference Orbit.

As a numerical approach to solve BVPs, MCPI method can be easily adjusted if the dynamical
model used for the real mission is more complicated than the model used in the preliminary
design. MCPI method does not require neither gradient information nor the computation of
state transition matrices, and a prior knowledge can be wisely used to provide a good initial
guess to start the interaction, all of which make the method computational very attractive.

The position and velocity of the satellite when it is inserted to the halo orbit will be
away from the ideal initial conditions of the reference orbit. The measurement of the position
and velocity from Earth will not be perfect. And the implementation of the impulses will
also have “execution errors”. We include these three kinds of errors in the simulation. All the
errors are assumed to be Gaussian distribution with a mean of zero. The standard deviations
of these errors are chosen to be consistent with those used by Gómez et al. [9] and are listed
as follows

(i) tracking errors: σx = σy = σz = 1 km; σvx = σvy = σvz = 1 cm/s,

(ii) insertion errors: σx = σy = σz = 1 km; σvx = σvy = σvz = 1 cm/s,

(iii) maneuver errors: σΔvx = 0.05; σΔvy = 0.05; σΔvz = 0.02.
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Figure 4: Vector-matrix form of MCPI method for solving second order bvps.

Table 3: Baseline case results.

Variable Averaged Results
Max ΔV 27.894 cm/s
Min ΔV 1.178 cm/s
Total ΔV 1606.5 cm/s
Mean deviation distance from the reference 3.98 km
Max deviation distance from the reference 17.59 km
Maneuver numbers 182
Iterations of MCPI 3.05

We look at station-keeping of the halo orbit for 26 revolutions, which corresponds to 377 days,
a little more than one year. 100 Monte Carlo simulations are run and the results in Table 3 are
the averaged numbers from the 100 trials. Here we have used 1/ 7Tp as the spacing between
two impulsive maneuvers which corresponds to a physical time about 2 days. Later, we will
study how this parameter affects the results. Significantly, it might be surprising to notice
that MCPI methods only took about three iterations to converge to such accurate solutions.
This is because we have used the coefficients of the reference orbit to find the corresponding
state values and then use these values to start the MCPI iteration. Thus MCPI method starts
from an ideal trajectory then takes only three Picard iterations to converge to the neighboring
solutions that restore the halo orbit to within the tolerance adopted.

Considering most of the thrusters used to generate impulses will have some limit on
the minimum Δv it can provide; we added one parameter Δvmin = 2 cm/s as a threshold
for the control: if the solved impulses are less than the threshold, no correction maneuver
will be made. Table 4 shows the results for this setting. As expected, the deviations from the
reference become larger and the maximum Δv become larger. The good thing is that both
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Table 4: Δvmin = 2 cm/s.

Variable Averaged results
Max ΔV 29.692 cm/s
Min ΔV 0 cm/s
Total ΔV 1523.5 cm/s: about 1476.5 cm/s per year
Mean deviation distance from the reference 4.45 km
Max deviation distance from the reference 17.38 km
Maneuver numbers 168
Iterations of MCPI 3.07

the overall Δv and maneuver numbers are reduced, which in part is because that the small
maneuvers that might be in the same magnitude of the measurement noise are avoided.
We also increased this threshold to Δvmin = 3 cm/s. Unfortunately and not surprisingly,
the deviations from the reference become larger and more Δv is required. We notice when
we set Δvmin = 2 cm/s, we have a similar parameter setting as those studied by Gómez
et al. [9], for the case where they set the tracking and minimum maneuver intervals as two
days. Compared with their results, our total impulses (1476.5 cm/s) are larger than theirs
(1111.8 cm/s), and we have more impulsive maneuvers (168) than theirs (80); however, our
maximum tracking deviations (17.38 km) are much smaller than their results (60.9 km) and
our maximum impulse (29.692 cm/s) is also much less than theirs (73.554 cm/s). The reason
we have more fuel required than theirs can result from several reasons. First, our reference
halo orbit is different from their orbit. Second, they have used two targeting points and have
minimized a cost function which is a weighted summation of both position deviations and
fuel cost. As they commented in the paper, the weights have been tuned, which very likely
emphasized a large penalty on the fuel cost. Instead, we have not optimized anything in our
approach. This situation is similar as the one reported by Renault and Scheeres [11], where
the LQR control is more fuel efficient than targeting the stable manifold of the equilibrium
point. Additionally, as shown in Figure 4, using the MCPI method only involves evaluating
the differential equations on the discrete nodes and doing vector-matrix multiplication and
summation. Of special interest for the current case, only three iterations are required for
the method to converge. However, the approach by Gómez et al. [9] requires weight tuning
beforehand and also a complicated state transition matrix derivation and then computation
during the mission when a more realistic dynamical model is used. Thus, we believe our
method is computationally very attractive, due to the absence of required tuning, and
extremely simple and easy to implement. Figure 5(a) shows the history of the magnitude
of the impulses from one Monte Carlo simulation. Due to measurement noise and simulated
control errors, the computed solution of the two-point BVP will of course contain errors that
propagate into an error at the frequent maneuver time. These errors along 26 revolutions
(377 days) are shown in Figure 5(a). Note the numbers shown in Tables from 3 to 5 are
the averaged numbers from 100 Monte Carlo simulations. For the 168 maneuvers along
the same orbit of Figures 5(a) and 5(b), Figure 5(c) shows the number of Picard iterations
required to achieve convergence. We conclude, 92.2% of the cases converge in three iterations
and 100% converged in four or fewer iterations, a remarkable algorithm! Another important
parameter is the time interval to solve for and then execute the maneuver. Usually there exists
a minimum maneuver time because of the necessity for orbit determination process and the
mission operation capability. On the other hand, if the maneuver intervals become too large,
the deviations from the reference can become too large to be easily corrected. We have studied
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Figure 5: Results from One Monte Carlo Simulation.

the performance while changing the interval times from a half day to a little more than three
and a half days. The results below show how the position and velocity deviations, number
of maneuvers, total ΔV , and maximum ΔV change with respect to the interval time, see
Figures 6(a) to 6(d). As expected, Figures 6(a) and 6(b) show that the deviations increase
and the number of maneuvers decrease as time interval between corrections becomes larger.
It is interesting to see that there exists a broad window (of one and half to three days) for
time intervals between corrections, that gives near-minimum fuel cost, as evident in Figure
6(c). This is similar as a situation reported by Renault and Scheeres [11], where the optimal
spacing for both LQR approach and targeting equisetum method exists for the problems they
studied. From Figure 6(d), the fact that the maximum impulse is minimum for 1 to 1.5 days
implies that separation is significant.
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Table 5: Δvmin = 3 cm/s.

Variable Averaged results
Max ΔV 33.86 cm/s
Min ΔV 0 cm/s
Total ΔV 1574.1 cm/s
Mean deviation distance from the reference 5.27 km
Max deviation distance from the reference 21.29 km
Maneuver numbers 155
Iterations of MCPI 3.12

4. Approaches to Reduce the Fuel Cost

In this section, we study how to reduce the fuel cost using the presented method
while maintaining its advantages such as no requirement for any gradient information,
computational efficiency, and the final results in an orthogonal polynomial form.

The above-method results in exact satisfaction of terminal boundary conditions on
each subinterval if there are no control errors and measurement errors. As a result, the posi-
tion errors are much smaller than those in the literature [9], whereas the control required is
about 24% higher. To gain some qualitative insight to the tradeoff between allowing increased
terminal errors and the associated cost, the current method can be used in a heuristic fashion.
We reasoned that applying less than 100% of the control impulse computed would result in
increased terminal errors and smaller control, and in fact, we found that using 80% of the
computed impulse in the current problem results in a control cost only 4% higher than those
in reference [9], while our terminal errors in fact still remain significantly smaller than those
in the references. We emphasize that the relationships between the amount of the control to
apply and the performance (such as the total fuel cost, the maximum position deviation,
and the mean position deviation) are not linear. In Figure 7, we show how the total fuel
cost, the maximum deviation, and the mean deviation change with respect to the introduced
coefficient. The simulation uses the same conditions we studied for the results reported in
Table 4. Notice all these three performance variables have been averaged from the 100 Monte
Carlo simulations. Especially, we found, by applying 80% of the fuel required for solving the
exact two-point boundary value problem, the total fuel cost is 1160 cm/s, the mean position
deviation from the reference orbit is 4.84 km, and the maximum position deviation is 22.2 km.
Thus with a fuel cost only 4% larger than the reported results (1111.8 cm/s) [9], our position
deviations from the reference orbit are much smaller than the reported results, for which the
mean and maximum position deviations are 61 km and 74 km, respectively.

Another approach to reduce the fuel cost is to adopt a hybrid propulsion system
which uses low thrust during the flight and impulses at some specified points. The hybrid
propulsion concept has been studied by Bai et al. for an Earth to Apophis mission design
[19]. Since the presented methods can also solve optimal control problems for continuous
system [14], utilizing this hybrid propulsion system is straightforward. We could also reduce
the fuel cost by varying the time interval used for the station-keeping instead of using the
current constant time interval. However, this will increase the computation requirements,
since all the matrices used in the current approach are constant and are precomputed, which
have to be recomputed if the time interval changes. We will also explore to efficiently utilize
the dynamic information of some specified orbits to reduce the fuel cost in the future study.
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Figure 6: Effects of the spacing of maneuvers (averaged from 100 Monte Carlo simulation).

5. Conclusions

Modified Chebyshev-Picard Iteration method is used for station-keeping of a halo orbit
around the L2 libration point of the Earth-Moon system. Compared with other station-
keeping techniques which also generate impulses at discrete times, the presented method
is much simpler, since it does not need to compute state transition matrix or gradient
information, which can be complicated for the full dynamical model and might be impossible
to implement for the on-board system. Previous studies [13, 14] have shown that the MCPI
algorithm works well for highly perturbed orbits; it is anticipated that little change will be
required in the present algorithm upon including solar and other non-CR3BP effects. There is
also no tuning process (e.g., for the weight matrices) which is required for other approaches.
Although the fuel cost from this approach, for the examples presented herein, might be a
little higher than other optimal control results, the simple structure of the method as well as
its salient computation efficiency makes this technique very attractive. The method can be
used for station-keeping other orbits with the only change being the use of the appropriate



Mathematical Problems in Engineering 15

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
1150
1200
1250
1300
1350
1400
1450
1500
1550
1600
1650

Coefficient of control

∆
V

(c
m

/
s)

Averaged total∆V versus coefficient of control

(a) Averaged total impulses

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Coefficient of control

15

20

25

30

35

40

45

50

55

60

D
ev

ia
ti

on
 (k

m
)

Averaged max deviation versus coefficient of control

(b) Averaged maximum deviation

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Coefficient of control

D
ev

ia
ti

on
 (k

m
)

4

4.5

5

5.5

6

6.5

7

7.5

8
Averaged mean deviation versus coefficient of control

(c) Averaged mean deviation

Figure 7: Performance versus coefficient of control.

equations of motion. We believe this method can take the same role as the classical Battin’s
form of the Lambert algorithm for solving orbit transfer problems, with the differences that
this method is a numerical approach and can be used for rather general nonlinear systems,
including perturbations. We are investigating extending the current approach which solves
two-point boundary value problems to solve optimal control problems which include several
target points as well as hybrid propulsion mode with both impulsive and continuous thrust.

Appendix

MCPI Method for Solving Second Order BVPS

Assume the second order dynamic system is described as

d2x(t)
dt2

= f(t, x(t)), t ∈ [t0, tf
]

, (A.1)
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and the boundary conditions are x(t = t0) = x0 and x(t = tf) = xf . The first step of MCPI
methods is to transform the generic independent variable t to a new variable τ , which is
defined on the valid range, the closed interval [−1, 1], of Chebyshev polynomials

t = ω1 +ω2τ, ω1 =
tf + t0

2
, ω2 =

tf − t0

2
. (A.2)

Introducing this time transformation of (A.2) into (A.1), it is rewritten as

d2x(τ)
dτ2

= ω2
2f(ω1 +ω2τ, x(τ)) ≡ g(τ, x(τ)). (A.3)

The position update equation is

	Xk+1 = ω2
2CxC

B
α
	f + CxΘxif , (A.4)

where 	X = [x(τ0), x(τ1), x(τ2), . . . , x(τN)]T is the vector representing the position trajectory
evaluated at all the (N + 1) Chebyshev-Gauss-Lobatto (CGL) nodes, which are computed
through

τj = cos
(

jπ

N

)

, j = 0, 1, 2, . . . ,N. (A.5)

The components of Cx ≡ TW and CB
α = SBTV are defined as below, and 	f =

[f(τ0), f(τ1), f(τ2), . . . , f(τN)]T . Θxif is defined by the boundary condition as Θxif = [x0 +
xf , (xf − x0)/2, 0, 0, . . . , 0]T ∈ RN+1. Notice although the second order formula in (A.4)
only solves for the position, the velocity solution can be computed conveniently by taking
the derivative of the position, which has been obtained in a form of Chebyshev polynomi-
als:

T =

⎡

⎢

⎢

⎢

⎢

⎣

T0(τ0) T1(τ0) · · · TN(τ0)

T0(τ1) T1(τ1) · · · TN(τ1)
...

...
...

...
T0(τN) T1(τN) · · · TN(τN)

⎤

⎥

⎥

⎥

⎥

⎦

, (A.6)

and the two diagonal matrices W and V are defined as

W = diag
([

1
2
, 1, 1, . . . , 1, 1

])

,

V = diag
([

1
N

,
2
N

,
2
N

, . . . ,
2
N

,
1
N

])

.

(A.7)
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The definition of SB as shown below is more complicated than others

SB(k + 1, k − 1) = 1/4/k(k − 1), k = 2, 3,−2, . . . ,N − 2,

SB(k + 1, k + 1) = −1/2/
(

k2 − 1
)

, k = 2, 3,−2, . . . ,N − 2,

SB(k + 1, k + 3) = 1/4/k/(k + 1), k = 2, 3,−2, . . . ,N − 2,

SB(N,N) = −1/2/
(

(N − 1)2 − 1
)

,

SB(N,N − 2) = 1/4/(N − 1)/(N − 2),

SB(N + 1,N + 1) = −1/2/
(

N2 − 1
)

,

SB(N + 1,N − 1) = 1/4/N/(N − 1),

SB(1, k + 1) = −3
(

1 + (−1)k
)

/
(

k2 − 4
)

/
(

k2 − 1
)

, k = 4, 5, . . . ,N − 2,

SB(2, k + 1) = −3/2
(

1 − (−1)k
)

/
(

k2 − 4
)

/
(

k2 − 1
)

, k = 4, 5, . . . ,N − 2,

SB(1, 1) = −1
4
,

SB(1, 2) = 0,

SB(1, 3) =
7
24

,

SB(1, 4) = 0,

SB(2, 1) = 0,

SB(2, 2) = − 1
24

,

SB(2, 3) = −0,

SB(2, 4) =
1
20

,

SB(1, k + 1) =
(

1 + (−1)k
)

/4(k − 5)/
(

k2 − 1
)

/(k − 2), k = N − 1,

SB(2, k + 1) =
(

1 − (−1)k
)

/8(k − 5)/
(

k2 − 1
)

/(k − 2), k = N − 1,

SB(1, k + 1) =
(

1 + (−1)k
)

/4(k − 5)/
(

k2 − 1
)

/(k − 2), k = N,

SB(2, k + 1) =
(

1 − (−1)k
)

/8(k − 5)/
(

k2 − 1
)

/(k − 2), k = N,

(A.8)

where S(i, j) represents the element in the ith row and jth column.
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