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We propose the receding horizon H∞ control (RHHC) for input-delayed systems. A new
cost function for a finite horizon dynamic game problem is first introduced, which includes
two terminal weighting terms parameterized by a positive definite matrix, called a terminal
weighing matrix. Secondly, the RHHC is obtained from the solution to the finite dynamic game
problem. Thirdly, we propose an LMI condition under which the saddle point value satisfies the
nonincreasing monotonicity. Finally, we show the asymptotic stability andH∞ boundedness of the
closed-loop system controlled by the proposed RHHC. The proposed RHHC has a guaranteedH∞
performance bound for nonzero external disturbances and the quadratic cost can be improved by
adjusting the prediction horizon length for nonzero initial condition and zero disturbance, which
is not the case for existing memoryless state-feedback controllers. It is shown through a numerical
example that the proposed RHHC is stabilizing and satisfies the infinite horizon H∞ performance
bound. Furthermore, the performance in terms of the quadratic cost is shown to be improved by
adjusting the prediction horizon length when there exists no external disturbance with nonzero
initial condition.

1. Introduction
In many industrial and natural dynamic processes, time-delays on states and/or control
inputs are often encountered in the transmission of information or material between different
parts of a system. Chemical processing systems, transportation systems, communication sys-
tems, and power systems are typical examples of time-delay systems. As one of time-delay
systems, an input-delayed system is common and preferred for easy modeling and tractable
analysis. Much research on input-delayed systems has been made for decades in order to
compensate for the deterioration of the performance due to the presence of input delay [1–5].

For ordinary systemswithout time delay, the receding horizon control (RHC) ormodel
predictive control (MPC) has attracted much attention from academia and industry because
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of its many advantages, including ease of computation, good tracking performance, and I/O
constraint handling, compared with the popular steady-state infinite horizon linear quadratic
(LQ) control [6–8]. The RHC for ordinary systems has been extended toH∞ problem in order
to combine the practical advantage of the RHC with the robustness of the H∞ control [9–
11]. This work investigated the nonincreasing monotonicity of the saddle point value cor-
responding to the optimal cost in LQ problems.

For time-delay systems, there are several results for the RHC [12–15]. A simple reced-
ing horizon control with a special cost function was proposed for state-delayed systems by
using a reduction method [12]. However, it does not guarantee closed-loop stability by
design, and therefore stability can be checked only after the controller has been designed.
The general cost-based RHC for state-delayed systems was introduced in [13]. This method
has both state and input weighting terms in the cost function. Furthermore, it has guaranteed
closed-loop stability by design. The RHC in [13] is more effective in terms of a cost function
since it has a more general form compared with memoryless state-feedback controllers.
This RHC is also extended to receding horizon H∞ control (RHHC) in [14]. Although the
stability and performance boundedness were shown in [14], the advantage of RHHC over
the memoryless state-feedback H∞ controller was not mentioned there. While the results
mentioned above deal with state-delay systems, the results given in [15] deal with the RHC
for input-delayed systems. It extends the idea in [13] to input-delayed systems. However, to
the best of our knowledge, there exists no result on the receding horizonH∞ control for input-
delayed systems. The purpose of this paper is to lay the cornerstone for the theory on RHHC
for input-delayed systems. The issues such as solution, stability, existence condition, and
performance boundedness will be addressed in the main results. Furthermore, the advantage
of RHHC for input-delayed systems over the memoryless state-feedback controller will be
illustrated by adjusting the prediction horizon length.

The rest of this paper is structured as follows. In Section 2, we obtain a solution to the
receding horizonH∞ control problem. In Section 3, we derive an LMI condition, under which
the nonincreasing monotonicity of a saddle point value holds. In Section 4, we show that
the proposed RHHC has asymptotic stability and satisfies H∞ performance boundedness. In
Section 5, a numerical example is given to illustrate that the proposed RHHC is stabilizing as
well as guarantees theH∞ performance bound. Finally, the conclusion is drawn in Section 6.

Throughout the paper, the notation P > 0 (P ≥ 0) implies that the matrix P is sym-
metric and positive definite (positive semi-definite). Similarly, P < 0 (P ≤ 0) implies that the
matrix P is symmetric and negative definite (negative semidefinite). “�” is used to denote the
elements under the main diagonal of a symmetric matrix. L2[0,∞) and L2[t0, tf] denote the
space of square integrable functions on [0,∞) and [t0, tf], respectively.

2. Receding Horizon H∞ Control for Input-Delayed System

Consider a linear time-invariant system with an input delay

ẋ(t) = Ax(t) + B0u(t) + B1u(t − h) + Bww(t),

z(t) =
[
Q1/2x(t)
R1/2u(t)

] (2.1)

with the initial conditions x(0) = x0 and u(τ) = φ(τ) on τ ∈ [−h, 0], where x ∈ Rn is the state,
u ∈ Rm is the control input, w ∈ Rl is the disturbance signal that belongs to L2[0,∞), z ∈ Rp
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is the controlled output, and h > 0 is the constant delay.A, B0, and B1 are constant matrices of
appropriate dimensions. φ(t) ∈ Rm is assumed to be a continuous function. In order to obtain
the RHHC, we will first consider the finite horizon cost function as follows:

J
(
x(t0), ut0 , t0, tf , u,w

)
=
∫ tf

t0

[
xT (τ)Qx(τ) + uT (τ)Ru(τ) − γ2wT (τ)w(τ)

]
dτ

+ xT(tf)Qfx
(
tf
)
+
∫ tf

tf−h
uT (τ)Rhu(τ)dτ,

(2.2)

where Q > 0, R > 0, Qf > 0, and Rh > 0. We can regard J as a function of either L2 signals or
feedback strategies. Let M = {μ : [t0, tf] × Rn × Cm[−h, 0] → Rm} and N = {ν : [t0, tf] × Rn ×
Cm[−h, 0] → Rl}, whereCm[−h, 0] is the space ofm-dimensional continuous vector functions
on [−h, 0]. Spaces M and N are strategy spaces, and we will write strategies as μ and ν to
distinguish them from signals u and w. If ut denotes u(t + θ), θ ∈ [−h, 0], then ut ∈ Cm[−h, 0]
by the definition of Cm[−h, 0].

Let us formulate a dynamic game problem

min
μ∈M

max
ν∈N

J
(
x(t0), ut0 , t0, tf , μ, ν

)
, (2.3)

which is a zero sum game, where u is the minimizing player andw is the maximizing player.
If the extremizing operators in (2.3) are interchangeable, then the minimizing u andmaximiz-
ing case w are called saddle point strategies. A saddle point solution u(τ) = μ∗(τ, x(τ), uτ),
w(τ) = ν∗(τ, x(τ), uτ) satisfies

J
(
x(t0), ut0 , t0, tf , μ

∗, w
) ≤ J

(
x(t0), ut0 , t0, tf , μ

∗, ν∗
)

≤ J
(
x(t0), ut0 , t0, tf , u, ν

∗), ∀u,w ∈ L2
[
t0, tf

]
.

(2.4)

The value J(x(t0), ut0 , t0, tf , μ
∗, ν∗) is called the saddle point value. For simple notation, the

saddle point value will be denoted by J∗(x(t0), ut0 , t0, tf) throughout this paper, that is,

J∗
(
x(t0), ut0 , t0, tf

)
� J

(
x(t0), ut0 , t0, tf , μ

∗, ν∗
)
. (2.5)

The purpose of this paper is to develop a method to design a control law, uR, based on the
receding horizon concept such that

(a) in case of zero disturbance, the closed-loop system is asymptotically stable and

(b) with zero initial condition, the closed-loop transfer function from w to z, that is,
Tzw, satisfies the H∞-norm bound, for given γ > 0,

‖Tzw‖∞ ≤ γ. (2.6)

Since the proposed control is based on the receding horizon strategy and the closed-loop
system satisfies the H∞-norm bound, such a control will be called the receding horizon H∞
control (RHHC).

Remark 2.1. It is noted that the terminal weighting function consists of two terms, parameter-
ized by two matrices Qf and Rh. We will call them terminal weighting matrices in this paper.
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The purpose of adding a second terminal weighting term, parameterized by Rh, is to take the
delay effect into account in a designing a stabilizing RHHC. More specifically, if Rh is chosen
properly, the saddle point value satisfies the “nonincreasing monotonicity property,” which
will be considered in Section 3.

Before moving on, we introduce a lemma, which establishes a sufficient condition for
a control u and a disturbance w to be saddle point strategies. In the lemma, V (τ, x(τ), uτ) :
[t0, tf]×Rn×Cm[−h, 0] → R denotes a continuous and differentiable functional. Furthermore,
we will use the notation

d

dτ
V (τ, x(τ), uτ)

∣∣∣∣ μ(τ,x(τ),uτ )
ν(τ,x(τ),uτ )

� lim
Δτ → 0

[
V (τ + Δτ, xμ,ν(τ + Δ), uτ+Δτ) − V (τ, x(τ), uτ)

Δτ

]
, (2.7)

where xμ,ν(τ + Δτ) is the solution of the system (2.1) resulting from the control u(t) =
μ(t, x(t), ut) and disturbance w(t) = ν(t, x(t), ut).

Lemma 2.2. Assume that there exists a continuous functional V (τ, x(τ), uτ) : [t0, tf] × Rn ×
Cm[−h, 0] → R, and a vector functional μ∗(τ, x(τ), uτ) : [t0, tf] × Rn × Cm[−h, 0] → Rm and
ν∗(τ, x(τ), uτ) : [t0, tf] × Rn × Cm[−h, 0] → Rl such that

(a) V
(
tf , x

(
tf
)
, utf

)
= xT(tf)Qfx

(
tf
)
+
∫ tf

tf−h
uT (τ)Rhu(τ)dτ,

(b)
d

dτ
V (τ, x(τ), uτ)

∣∣∣∣μ∗(τ,x(τ),uτ )
ν∗(τ,x(τ),uτ )

+ xT (τ)Qx(τ) + μ∗T (τ, x(τ), uτ)Rμ∗(τ, x(τ), uτ)

− γ2ν∗T (τ, x(τ), uτ)ν∗(τ, x(τ), uτ) = 0,

(c)
d

dτ
V (τ, x(τ), uτ)

∣∣∣∣μ∗(τ,x(τ),uτ )
ν(τ,x(τ),uτ )

+ xT (τ)Qx(τ) + μ∗T (τ, x(τ), uτ)Rμ∗(τ, x(τ), uτ)

− γ2νT (τ, x(τ), uτ)ν(τ, x(τ), uτ)

≤ d

dτ
V (τ, x(τ), uτ)

∣∣∣∣μ∗(τ,x(τ),uτ )
ν∗(τ,x(τ),uτ )

+ xT (τ)Qx(τ) + μ∗T (τ, x(τ), uτ)Rμ∗(τ, x(τ), uτ)

− γ2ν∗T (τ, x(τ), uτ)ν∗(τ, x(τ), uτ)

≤ d

dτ
V (τ, x(τ), uτ)

∣∣∣∣ μ(τ,x(τ),uτ )
ν∗(τ,x(τ),uτ )

+ xT (τ)Qx(τ) + μT (τ, x(τ), uτ)Rμ(τ, x(τ), uτ)

− γ2ν∗T (τ, x(τ), uτ)ν∗(τ, x(τ), uτ)

(2.8)
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for all τ ∈ [t0, tf], all x(τ) ∈ Rn, and all uτ ∈ Cm[−h, 0]. Then, V (s, x(s), us) = J(x(s), us, s, tf ,
μ∗, ν∗) and

J
(
x(s), us, s, tf , μ

∗, ν
) ≤ J

(
x(s), us, s, tf , μ

∗, ν∗
) ≤ J

(
x(s), us, s, tf , μ, ν

∗) (2.9)

for all s ∈ [t0, tf]. That is, u(τ) = μ∗(τ, x(τ), uτ) and w(τ) = ν∗(τ, x(τ), uτ) are saddle point solu-
tions and V (τ, x(τ), uτ) is a saddle point value.

Proof. Similar lemmas are found in [13–16]. Even though Lemma 2.2 is different from those
lemmas, one can get the idea for the proof without difficulty from the mentioned references.
Thus, we omit the proof of the lemma.

From the above lemma, we see that V (τ, x(τ), uτ) is a saddle point value, that is,
V (τ, x(τ), uτ) = J∗(x(τ), uτ , τ, tf ). Furthermore, it is noted that V (s, x(s), us) ≥ 0 for all s ∈ [t0,
tf]. This can be verified as follows.

From (2.9), it follows that we have

V (s, x(s), us) = J
(
x(s), us, s, tf , μ

∗, ν∗
) ≥ J

(
x(s), us, s, tf , μ

∗, 0
)
, (2.10)

where

J
(
x(s), us, s, tf , μ

∗, 0
)
=
∫ tf

s

[
xT (τ)Qx(τ) + μ∗T (τ, x(τ), uτ)Rμ∗(τ, x(τ), uτ)

]
dτ

+ xT(tf)Qfx
(
tf
)
+
∫ tf

tf−h
uT (τ)Rhu(τ)dτ.

(2.11)

SinceQf > 0 and Rh > 0, we lead to J(x(s), us, s, tf , μ
∗, 0) ≥ 0. Consequently, V (s, x(s), us) ≥ 0

for all s ∈ [t0, tf].
Before deriving RHHC, we first provide the solution to the finite horizon dynamic

game problem in (2.3). The derivation is based on Lemma 2.2. The procedure taken for
derivation of the solution is quite lengthy and tedious but similar to that used in [15].
Therefore, we do not provide the detailed derivation here. In order to apply the result of
Lemma 2.2, we assume the saddle point value has the form

V (τ, x(τ), uτ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xT (τ)P1(τ)x(τ) + 2xT (τ)
∫0

−h
P2(τ, s)u(τ + s)ds

+
∫0

−h

∫0

−h
uT (τ + s)P3(τ, r, s)u(τ + r)dr ds,

xT (τ)W1(τ)x(τ) + 2xT (τ)
∫ tf−τ−h

−h
W2(τ, s)u(τ + s)ds

+
∫ tf−τ−h

−h

∫ tf−τ−h

−h
uT (τ + s)W3(τ, r, s)u(τ + r)dr ds

+
∫0

tf−τ−h
uT (τ + s)Rhu(τ + s)dτ,

t0 ≤ τ < tf − h

tf − h ≤ τ ≤ tf ,

(2.12)
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where P1(τ) ∈ Rn×n, P2(τ, s) ∈ Rn×m, and P3(τ, r, s) ∈ Rm×m are determined later on. Using the
above saddle point value, the saddle point strategies for the dynamic game problem in (2.3)
are given by

μ∗(τ, x(τ), uτ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−R−1
[
Ω2(τ)x(τ) +

∫0

−h
Ω3(τ, s)u(τ + s)ds

]
, t0 ≤ τ < tf − h

−Ω1B
T
0

[
W1(τ)x(τ) +

∫ tf−τ−h

−h
W2(τ, s)u(τ + s)ds

]
, tf − h ≤ τ ≤ tf ,

ν∗(τ, x(τ), uτ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γ−2BT
w

[
P1(τ)x(τ) +

∫0

−h
P2(τ, s)u(τ + s)ds

]
, t0 ≤ τ < tf − h

γ−2BT
w

[
W1(τ)x(τ) +

∫ tf−τ−h

−h
W2(τ, s)u(τ + s)ds

]
, tf − h ≤ τ ≤ tf ,

(2.13)

where Ω1, Ω2(τ), and Ω3(τ, s) are defined as follows:

Ω1 � (R + Rh)−1,

Ω2(τ) � BT
0 P1(τ) + PT

2 (τ, 0),

Ω3(τ, s) � BT
0 P2(τ, s) + PT

3 (τ, 0, s).

(2.14)

P1(·), P2(·), and P3(·) satisfy the following Riccati-type coupled partial differential equations:

Ṗ1(τ) +ATP1(τ) + P1(τ)A +Q −ΩT
2 (τ)R

−1Ω2(τ) + γ−2P1(τ)BwB
T
wP1(τ) = 0,

(
∂

∂τ
− ∂

∂s

)
P2(τ, s) +ATP2(τ, s) −ΩT

2 (τ)R
−1Ω3(τ, s) + γ−2P1(τ)BwB

T
wP2(τ, s) = 0,

(
∂

∂τ
− ∂

∂r
− ∂

∂s

)
P3(τ, r, s) −ΩT

3 (τ, s)R
−1Ω3(τ, r) + γ−2PT

2 (τ, s)BwB
T
wP2(τ, r) = 0

(2.15)

with boundary conditions

P2(τ,−h) = P1(τ)B1,

P3(τ,−h, s) = PT
2 (τ, s)B1,

(2.16)
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where t0 ≤ τ < tf − h, −h ≤ r ≤ 0 and −h ≤ s ≤ 0. Similarly, W1(·), W2(·), and W3(·) satisfy the
following Riccati-type partial differential equations:

Ẇ1(τ) +ATW1(τ) +W1(τ)A +Q −W1(τ)
[
B0Ω1B

T
0 − γ−2BwB

T
w

]
W1(τ) = 0,

(
∂

∂τ
− ∂

∂s

)
W2(τ, s) +ATW2(τ, s) −W1(τ)

[
B0Ω1B

T
0 − γ−2BwB

T
w

]
W2(τ, s) = 0,

(
∂

∂τ
− ∂

∂r
− ∂

∂s

)
W3(τ, r, s) −WT

2 (τ, s)
[
B0Ω1B

T
0 − γ−2BwB

T
w

]
W2(τ, r) = 0

(2.17)

with boundary condition

W2(τ,−h) = W1(τ)B1,

W3(τ,−h, s) = WT
2 (τ, s)B1,

(2.18)

where tf − h ≤ τ ≤ tf , −h ≤ r ≤ 0 and −h ≤ s ≤ 0. In addition, P1(·), P2(·), P3(·) and W1(·),
W2(·),W3(·) satisfy the following boundary conditions:

W1
(
tf
)
= Qf,

P1
(
tf − h

)
= W1

(
tf − h

)
,

P2
(
tf − h, s

)
= W2

(
tf − h, s

)
,

P3
(
tf − h, r, s

)
= W3

(
tf − h, r, s

)
.

(2.19)

P1(·), P2(·), P 3(·) and W1(·), W2(·), W3(·) are solved backward in time from tf to t0. Because
the system is time-invariant, the shape of P1(·), P2(·), P3(·) and W1(·), W2(·), W3(·) is only
characterized by the difference between the initial time and the final time, that is, tf − t0. The
values of P1(·), P2(·), P3(·) andW1(·), W2(·), W3(·) at the initial time, t0, vary with tf − t0. For
fixed tf − t0, the values are all the same at the initial time. For example, P1(t0)with t0 = 1 and
tf = 5 is equal to P1(t0) with t0 = 2 and tf = 6. If we take receding horizon strategy, t0 and
tf corresponds to t and t + Tp, respectively, where t denotes the current time. It means that
the difference between the initial time and the terminal time is set to be Tp. Therefore, P1(t0)
reduces to a constant matrix regardless of the value of t0. Let us introduce new notations as
follows:

Ω2 � Ω2(t0), Ω3(s) � Ω3(t0, s), W1 � W1(t0), W2(s) � W2(t0, s). (2.20)

Finally, the RHHC is represented as a distributed feedback strategy as follows:

uR(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−R−1
[
Ω2x(t) +

∫0

−h
Ω3(s)u(t + s)ds

]
, Tp > h,

−Ω1B
T
0

[
W1x(t) +

∫Tp−h

−h
W2(s)u(t + s)ds

]
, 0 < Tp ≤ h.

(2.21)



8 Mathematical Problems in Engineering

It is noted that the feedback strategy is invariant with time. In order to solve Riccati-type
coupled partial differential equations (PDEs) given in (2.15) and (2.17), we can utilize a num-
erical algorithm in [16]. The time required to solve the PDEs is proportional to the prediction
horizon length, Tp. However, the realtime computational load for the RHHC remains the
same for any prediction horizon length larger than the delay length, h.

We have constructed the RHHC from the solution to a finite horizon dynamic game
problem. However, the only thing we can say about the control at present is that it is obtained
based on the receding horizon strategy. Nothing can be said about the asymptotic stability
and H∞-norm boundedness yet. We therefore will investigate those issues in the next two
sections.

3. Nonincreasing Monotonicity of a Saddle Point Value

Nonincreasing monotonicity of the saddle point value plays an important role in proving
the closed-loop stability and guaranteeingH∞-norm bound for delay-free systems and state-
delay systems. As will be shown later, this is also the case with input-delay systems. In what
follows, we will show how to choose terminal weighting matrices such that the saddle point
value satisfies the nonincreasing monotonicity.

Theorem 3.1. Given γ > 0, assume that there exist X > 0, S, Y1, and Y2 such that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(AX + B0Y1)T + (AX + B0Y1) (B1S + B0Y2) Bw XQ1/2 YT
1 R

1/2 YT
1

� −S 0 0 YT
2 R

1/2 YT
2

� � −γ2I 0 0 0

� � � −I 0 0

� � � � −I 0

� � � � � −S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0. (3.1)

If one chooses terminal weighting matrices Qf and Rh such that Qf = X−1 and Rh = S−1, the saddle
point value J∗(x(t0), ut0 , t0, σ) satisfies the following nonincreasing monotonicity property:

∂J∗(x(t0), ut0 , t0, σ)
∂σ

≤ 0, ∀σ > t0. (3.2)

Proof. The derivative of J∗ with respect to the terminal time can be written as

∂J∗(x(t0), ut0 , t0, σ)
∂σ

=
1
Δ

{∫σ+Δ

t0

[
xT (τ)Qx(τ) + μT (τ, x(τ), uτ)Rμ(τ, x(τ), uτ)

−γ2νT (τ, x(τ), uτ)ν(τ, x(τ), uτ)
]
dτ
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+ xT (σ + Δ)Qfx(σ + Δ) +
∫σ+Δ

σ+Δ−h
uT (τ)Rhu(τ)dτ

−
∫σ

t0

[
x̂T (τ)Qx̂(τ) + μ̂T (τ, x̂(τ), ûτ)Rμ̂(τ, x̂(τ), ûτ)

−γ2ν̂T (τ, x̂(τ), ûτ)ν̂(τ, x̂(τ), ûτ)
]
dτ

+x̂T (σ)Qfx̂(σ) −
∫σ

σ−h
ûT (τ)Rhû(τ)dτ

}
,

(3.3)

where the pair (μ, ν) is a saddle point solution for J(x(t0), ut0 , t0, σ+Δ, u,w) and the pair (μ̂, ν̂)
is a saddle point solution for J(x(t0), ut0 , t0, σ, u,w). x denotes the state trajectory resulting
from the strategies μ and ν, and x̂ denotes the state resulting from the strategies μ̂ and ν̂. Let
us replace the feedback strategies μ and ν̂ by μ̂ and ν up to σ, respectively, and use u(τ) =
K1x(τ) + K2u(τ − h) and w(τ) = ν(τ, x(τ), uτ) for τ ≥ σ. It is noted that, since we have
changed strategies, the resulting state trajectory is neither x nor x̂. Let us denote the resulting
state trajectory by x. Then we obtain

∂J∗(x(t0), ut0 , t0, σ)
∂σ

≤ lim
Δ→ 0

1
Δ

{∫σ+Δ

σ

[
xT (τ)Qx(τ) + [K1x(τ) +K2u(τ − h)]T

×R[K1x(τ) +K2u(τ − h)] − γ2wT(τ)w(τ)
]
dτ

+ xT (σ + Δ)Qfx(σ + Δ)

+
∫σ+Δ

σ+Δ−h
uT (τ)Rhu(τ)dτ − xT (σ)Qfx(σ) −

∫σ

σ−h
uT (τ)Rhu(τ)dτ

}

= xT (σ)Qx(σ) + [K1x(σ) +K2u(σ − h)]TR[K1x(σ) +K2u(σ − h)]

− γ2wT (τ)w(τ) +
d

dσ

{
xT (σ)Qfx(σ) +

∫σ

σ−h
uT (τ)Rhu(τ)dτ

}

= xT (σ)Qx(σ) + [K1x(σ) +K2u(σ − h)]TR[K1x(σ) +K2u(σ − h)]

− γ2wT (τ)w(τ) + 2ẋT (σ)Qfx(σ) + uT (σ)Rhu(σ) − uT (σ − h)Rhu(σ − h).

(3.4)

After substituting ẋ(σ) = (A + B0K1)x(σ) + (B1 + B1K2)u(σ − h) + Bww(σ) into the above, we
obtain

∂J∗(x(t0), ut0 , t0, σ)
∂σ

≤
⎡
⎣ x(σ)
u(σ − h)
w(σ)

⎤
⎦

T⎡
⎣Λ11 (B1 + B0K2) +KT

1 (R + Rh)K2 QfBw

� KT
2 (R + Rh)K2 − Rh 0

� � −γ2I

⎤
⎦

︸ ︷︷ ︸
Λ

⎡
⎣ x(σ)
u(σ − h)
w(σ)

⎤
⎦, (3.5)
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where Λ11 is given as

Λ11 = (A + B0K1)TQf +Qf(A + B0K1) +Q +KT
1 (R + Rh)K1. (3.6)

It is apparent that, if Λ ≤ 0, the nonincreasing monotonicity in (3.2) holds. Λ ≤ 0 can be
rewritten as follows:

Λ =

⎡
⎣(A + B0K1)TQf +Qf(A + B0K1) (B1 + B0K2) QfBw

� −Rh 0
� � −γ2I

⎤
⎦

+

⎡
⎣ Q1/2 0 0
R1/2K1 R1/2K2 0
K1 K2 0

⎤
⎦

T⎡
⎣I 0 0
0 I 0
0 0 R−1

h

⎤
⎦

−1⎡
⎣ Q1/2 0 0
R1/2K1 R1/2K2 0
K1 K2 0

⎤
⎦ ≤ 0.

(3.7)

Pre- and postmultiply the above matrix inequality by diag{Q−1
f
, R−1

h
, I} and set Y1 = K1X

and Y2 = K2S. From Schur complement, Λ ≤ 0 is then equivalently changed into (3.1). This
completes the proof.

The nonincreasingmonotonicity of the saddle point value implies that the saddle point
value does not increase even though we increase the horizon length. As will be shown in the
next section, this property plays an important role in RHHC’s achieving closed-loop stability
and H∞-norm boundedness.

Remark 3.2. It is mentioned that once we obtain feasible matrices X, S, Y1, and Y2 satisfying
the LMI (3.1), the controller u(t) = K1x(t) + K2u(t − h), where K1 = Y1X

−1 and K2 = Y2S
−1,

is also a stabilizing H∞ controller with guaranteed H∞ performance bound γ even though
we do not provide the proof here due to the space limitation. The features of the proposed
RHHC compared to the controller u(t) = K1x(t) + K2u(t − h) will be illustrated through a
numerical example.

4. Asymptotic Stability and H∞-Norm Boundedness

In this section, we show that the proposed receding horizon control achieves the closed-loop
asymptotic stability for zero disturbance and achieves the H∞-norm boundedness for zero
initial condition.

Theorem 4.1. Given Q > 0 and γ > 0, if J∗(x(t0), ut0 , t0, σ)/∂σ ≤ 0 for σ > t0, the system (2.1)
controlled by the RHHC in (2.21) is asymptotically stable for zero disturbance and satisfies infinite
horizon H∞-norm bound for zero initial condition.

Proof. Nonincreasing monotonicity of a saddle point value is a sufficient condition for
asymptotic stability and H∞-norm boundedness of the RHHC for state-delay systems. This
theorem states that it is also the case with the RHHC for input-delayed systems. The complete
proof of the theorem is lengthy but the idea used in [14] can be used for the proof of this
theorem without much difficulty. Thus we omit the proof.
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An LMI condition on the terminal weighting matrices under which the saddle point
satisfies nonincreasing monotonicity is given in Theorem 3.1. Therefore, we lead to the fol-
lowing corollary.

Corollary 4.2. Given Q > 0, R > 0, and γ > 0, if the LMI (3.1) is feasible and one can obtain two
terminal weighting matricesQf and Rh, the system (2.1) controlled by the proposed RHHC in (2.21)
is asymptotically stable for zero disturbance and satisfies the infinite horizon H∞ performance bound
for zero initial condition.

Remark 4.3. Memoryless H∞ state-feedback controllers also have closed-loop stability and
satisfy H∞ performance bound. In fact, the proposed RHHC does not have an advantage
over the existingH∞ state-feedback controllers in terms ofH∞ performance bound as will be
shown in the numerical example. However, the proposed RHHC has an advantage over them
in a way that the former improves the performance represented in terms of the quadratic cost
Jq:

Jq =
∫∞

0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt (4.1)

by adjusting the prediction horizon length, Tp, in the case of nonzero initial condition with
zero disturbance. Control systems are not always subject to disturbances. Thus it may be
meaningful to consider situations where disturbances are gone. Then the proposed RHHC
may be suitable because it has a guaranteedH∞ performance bound and improved quadratic
cost. This feature will be illustrated later through a numerical example.

5. Numerical Example

In this section, a numerical example is presented in order to illustrate the feature of the pro-
posed RHHC. Consider an input-delayed system (2.1) whose model parameters are given
by

A =
[−1 1
0.5 1.5

]
, B0 =

[
0.5
1.4

]
, B1 =

[
0.4
0.1

]
, Bw =

[
0.2
0.2

]
, h = 0.5. (5.1)

It is noted that the system is open-loop unstable because the eigenvalues ofA are −1.1861 and
1.686. State and input weighting matrices Q and R in (2.2) are chosen to be Q = I and R = 1.
For γ = 0.3, the terminal weighting matrices Qf and Rh are obtained from Theorem 3.1 as
follows:

Qf =
[
1.6094 2.4524
2.4524 7.6094

]
, Rh = 0.1904. (5.2)
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Figure 1: The shape of K(s) for Tp = 1.

We chose the prediction horizon length to be 1, that is, Tp = 1, and computed an RHHC in
(2.21) after solving partial differential equations given in this paper. The obtained RHHC has
the form

u(t) = −[0.8518 3.4256]x(t) +
∫0

−0.5
K(s)u(t + s)ds, (5.3)

where the shape ofK(s) is shown in Figure 1. Asmentioned in Remark 3.2, we can also obtain
a stabilizing H∞ controller from Theorem 3.1 as follows:

u(t) = −[3.2565 9.3240]x(t) − 0.0354u(t − h). (5.4)

In order to illustrate the system response to a disturbance input, we applied a dis-
turbance w(t) whose shape is given in Figure 2. The state trajectory x1 of the system by the
proposed RHHC in (5.3) is compared with that of the system due to the controller in (5.4)
in Figure 3. It is seen that the both controllers stabilize the input-delayed system affected
by he external disturbance. It looks like that the controller in (5.4) outperforms the proposed
RHHC. For quantitative comparison we computedH∞ performance. Firstly, for the proposed
RHHC, we obtained

√√√√
∫
zT (t)z(t)dt∫
wT (t)w(t)dt

= 0.2265 < γ = 0.3, (5.5)

which supports the fact that the controlled system satisfies the H∞ performance bound. For
the controller given in (5.4), the obtained H∞ performance was 0.1647, which is even better
than that of the proposed RHHC. This shows that the proposed RHHC does not have an
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Figure 2: The shape of disturbance,w(t).

advantage in terms of H∞ performance over existing methods. One may wonder what the
feature of the proposed RHHC is or when it is useful. As already mentioned, one prominent
advantage of the proposed RHHC is that we can improve the control performance of the
system, which is represented in terms of the quadratic cost, by adjusting the prediction hori-
zon length Tp for stabilization problem with no external disturbance. For this illustration, we
assumed that the initial state of the system is x(0) = [1 1]T . In case of zero disturbance, let
us define the quadratic cost as follows:

Jq =
∫10

0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt. (5.6)

Figure 4 shows state trajectories that are obtained by applying the proposed RHHC with
different prediction horizon lengths. It also shows the resultant quadratic costs. It is noted that
Tp = 0 leads to the controller (5.4). It clearly shows that the RHHC with longer Tp achieves
smaller quadratic cost. This example illustrates that the proposed RHHC has guaranteedH∞
performance bound for nonzero external disturbance and the quadratic performance can be
improved by adjusting the prediction horizon length in case of nonzero initial condition and
zero disturbance. This feature is never achievable through the conventional memoryless state
feedback controller.

6. Conclusions

In this paper, we proposed a receding horizon H∞ control (RHHC) for input-delayed
systems. Firstly, we proposed a new cost function for a dynamic game problem. The cost
function has two terminal weighting terms that are parameterized by two terminal weighting
matrices. Secondly, we derived a saddle point solution to a finite horizon dynamic game
problem. Thirdly, the receding horizonH∞ control was constructed from the obtained saddle
point solution. We showed that, under the nonincreasing monotonicity condition of a saddle
point value, the proposed receding horizon H∞ control is stabilizing and satisfies the H∞
performance bound. We proposed an LMI condition on the terminal weighting matrices,
under which the saddle point value satisfies the nonincreasing monotonicity. Unlike the
conventional memoryless state feedback controller, the proposed RHHC has a feature that the
quadratic performance of the controlled system for nonzero initial condition can be improved
by adjusting the prediction horizon length.



14 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8 9 10

0

0.05

0.1

0.15

0.2

Time (s)

Figure 3: State trajectories x1 due to the disturbance input : solid line—RHHC in (5.3), dash dot—controller
in (5.4).
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Figure 4: State trajectories x1 for different Tp and the corresponding quadratic costs.
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