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This paper presents the design and the analysis of an indirect adaptive control strategy for a lactic
acid production, which is carried out in continuous stirred tank bioreactors. Firstly, an indirect
adaptive control structure based on the nonlinear process model is derived by combining a linear-
izing control law with a new parameter estimator. This estimator is used for on-line estimation of
the bioprocess unknown kinetics, avoiding the introduction of a state observer. Secondly, a tuning
procedure of estimator design parameters is achieved by stability analysis of the control scheme.
The effectiveness and performance of estimation and control algorithms are illustrated by numer-
ical simulations applied in the case of a lactic fermentation bioprocess for which kinetic dyna-
mics are strongly nonlinear, time varying, and completely unknown, and not all the state variables
are measurable.

1. Introduction

The control of biotechnological processes has been and remains an important problem attrac-
ting wide attention, the main engineering motivation being the improvement of the opera-
tional stability and production efficiency of such living processes.

It is well known that traditional control design involves a complicated mathematical
analysis and has many difficulties especially in controlling highly nonlinear and time varying
plants. A powerful tool for nonlinear controller design is the feedback linearization technique
[1–3], but the use of it requires the complete knowledge of the process. In practice, there are
many processes characterized by highly nonlinear dynamics; as a consequence, an accurate
model for these processes is difficult to develop. Therefore, in recent years, it has been noticed
a great progress in adaptive and robust adaptive control of nonlinear systems, due to their
ability to compensate for parametric uncertainties. An important assumption in previous
works on nonlinear adaptive control was the linear dependence on the unknown parameters
[2, 4, 5].
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In the modern industry, the development of advanced control strategies for biopro-
cesses is hampered by two major difficulties [6–9]. The first one is related to kinetics of these
processes, which are strongly nonlinear and furthermore the kinetic and process parameters
are often partially or completely unknown. Another difficulty lies in the absence, for many
processes, of cheap and reliable instrumentation suited for real-time monitoring of the pro-
cess variables. In order to overcome these difficulties, several strategies were developed, such
as exactly linearizing control [6, 7, 10], adaptive approach proposed by Bastin and Dochain
and applied in several works [6, 7, 10–12], optimal control, especially for fed-batch biopro-
cesses [6, 13], neural control [14], sliding mode control [15], robust and robust adaptive con-
trol [12, 16], and model predictive control [17]. Some problems which occur in implementa-
tion of numerical control of bioreactors are presented and analyzed in [18].

The difficulties encountered in the measurement of state variables impose the use of
so-called “software sensors”—combinations between hardware sensors and software esti-
mators [6, 7]. Note that these software sensors are used not only for the estimation of con-
centrations of some components but also for the estimation of kinetic parameters or even
kinetic reactions. The interest for the development of software sensors for bioreactors is pro-
ved by the big number of publications and applications in this area [6–8, 19].

This paper, which is an extended version of Petre et al. [20], presents the design and the
analysis of a nonlinear adaptive control strategy, capable to deal with the model uncertainties
in an adaptive way, for a lactic fermentation bioprocess that is carried out in two continuous
stirred tank bioreactors sequentially connected. In order to avoid the derivation of additional
state observers, a new indirect adaptive control algorithm is presented. More exactly, the
consumption rates of two limiting substrates are considered completely unknown and sum-
marized in two unknown and time varying parameters, which are estimated by means of an
appropriately observer-based estimator. This algorithm could be considered as an extension
of the theory proposed by Bastin and Dochain [6] and improved by Ignatova et al. [11], since
the substrate consumption rates are considered as completely unknown functions describing
the whole kinetics.

The present work is focused in two directions. First, an adaptive control structure
based on the nonlinear model of the process is designed as a combination of a linearizing con-
trol law and of a parameter estimator, used for the on-line estimation of bioprocess unknown
kinetics. Second, by using the stability and convergence analysis of the proposed control
scheme, a tuning procedure of the kinetic estimator design parameters is achieved.

The effectiveness and performance of both estimation and control algorithms are illus-
trated by simulations applied in the case of a lactic fermentation bioprocess for which kinetic
dynamics are strongly nonlinear, time varying and completely unknown, and not all the state
variables are measurable.

We note that the bioprocess model and the control goal are the same as in the Ben
Youssef et al. [21], where an adaptive-multivariable predictive control law was proposed and
analyzed. However, in the present work, an indirect multivariable adaptive linearizing
controller is developed and analyzed. The control structure is derived by combining a linear-
izing control law with a new parameter estimator used for on-line estimation of the biopro-
cess unknown kinetics.

In the work by Ignatova et al. [11], by using the observer-based estimator proposed by
Petre [22], an indirect adaptive scheme was derived and analyzed for a gluconic acid pro-
duction bioprocess. In the present work, the multivariable control strategy presented in
Petre [22], and further developed by Ignatova et al. [11], is improved and full stability
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and convergence proof are provided. Finally, a tuning procedure of kinetic estimator design
parameters for a lactic acid production bioprocess was obtained.

The paper is organized as follows. Section 2 is devoted to a brief description and
mathematical modeling of a lactic acid fermentation bioprocess. Some nonlinear and adaptive
control strategies are proposed in Section 3. From the stability analysis of the adaptive control
scheme, a tuning procedure of kinetic estimator design parameters is achieved. Simulations
results presented in Section 4 illustrate the performance of the proposed control algorithms
and, finally, Section 5 concludes the paper.

2. Process Modeling and Control Problem

Lactic acid has traditionally been used in the food industry as an acidulating and/or preserv-
ing agent, and in the biochemical industry for cosmetic and textile applications [21, 23, 24].
Recently, lactic acid fermentation has received much more attention because of the increasing
demand for new biomaterials such as biodegradable and biocompatible polylactic products.
Two major factors limit its biosynthesis, affecting growth, and productivity: the nutrient
limiting conditions and the inhibitory effect caused by lactic acid accumulation in the culture
broth [21]. It was shown that, in addition to the inhibition effect of lactic acid, the richness
of the fermentation medium may have a strong influence on growth dynamics and that
the nutritional limitations during culture may interfere with inhibition by acid lactic [21].
A reliable model that explicitly integrates nutritional factor effects on both growth and
lactic acid production in a batch fermentation process implementing Lb. casei was developed
by Ben Youssef et al. [21] and it is described by the following basic differential equa-
tions:

Ẋ = μX − kdX, Ṗ = νpX, Ṡ = −qsX, (2.1)

where X, S, and P are, respectively, the concentrations of cells, substrate (glucose) and lactic
acid. μ, νp, and qs correspond, respectively, to specific growth rate of the cells, specific rate
of lactic acid production, and to specific rate of glucose consumption. kd is the rate of cell
death.

Since in lactic acid fermentation process the main cost of raw material comes from the
substrate and nutrient requirements, in [21] some possible continuous-flow control strategies
that satisfy the economic aspects of lactic acid production were investigated. The advantage
of implementing continuous-flow process is that the main product, which is also an inhibitor,
is continuously withdrawn from the system. Much more, according to microbial engineering
theory, for a product-inhibited reaction like lactic acid or alcoholic fermentation [21, 25], a
multistage system composed of many interconnected continuous stirred tank reactors, where
in the different reactors some physiological states of microbial culture (substrate, metabolites)
can be kept constant to some optimal values, may be a good idea.

Therefore, the model (2.1) can be extended to a continuous-flow process that is carried
out in two continuous stirred tank reactors sequentially connected, as in the schematic view
presented in Figure 1.

For this two-stage continuous flow bioreactor, the mathematical model is given by the
following set of differential equations, each stage being of same constant volume V.
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Figure 1: A cascade of two reactors for the lactic acid production.

First Stage:

Ẋ1 =
(
μ1 − kd

)
X1 −D1X1, (2.2)

Ṗ1 = νp1X1 −D1P1, (2.3)

Ṡ1 = −qs1X1 +D11S
in
1 −D1S1, (2.4)

α̇1 = D12α
in
1 −D1α1, (2.5)

where D1 = D11 +D12.

Second Stage:

Ẋ2 =
(
μ2 − kd

)
X2 +D1X1 − (D1 +D2)X2, (2.6)

Ṗ2 = νp2X2 +D1P1 − (D1 +D2)P2, (2.7)

Ṡ2 = −qs2X2 +D1S1 +D2S
in
2 − (D1 +D2)S2, (2.8)

α̇2 = D1α1 − (D1 +D2)α2, (2.9)

where Xi, Si, Pi, and αi, (i = 1, 2) are, respectively, the concentrations of biomass (cells), sub-
strate, lactic acid, and enrichment factor in each bioreactor. μi, νpi, and qsi (i = 1, 2) corres-
pond, respectively, to specific growth rate of the cells, specific rate of lactic acid production,
and specific rate of glucose consumption in each bioreactor. D11 is the first-stage dilution rate
of a feeding solution at an influent glucose concentration Sin

1 . D12 is the first-stage dilution
rate of a feeding solution at an influent enrichment factor αin

1 . D2 is the influent dilution rate
added at the second stage and Sin

2 is the corresponding feeding glucose concentration. It can
be seen that in the second stage no growth factor feeding tank is included since this was
already feeding in the first reactor.

In the model (2.2)–(2.9), the mechanism of cell growth, the specific lactic acid produc-
tion rate and the specific consumption rate in each bioreactor are given by [21]:

μi = μmax i

⎛

⎝ K
gc
Pi

K
gc
Pi
+ Pi

⎞

⎠
(

Si

K
gc
S + Si

)(

1 − Pi

P
gc
C

)

,

νpi = ημi + β

⎛

⎝ Si

K
rc
Si
+ Si

⎞

⎠, qsi =
νpi

YPS
, i = 1, 2,

(2.10)
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with μmax i the maximum specific growth rate, K
gc
Pi

the lactic acid inhibition constant, K
gc
S the

affinity constant of the growing cells for glucose, Pgc
C the critical lactic acid concentrations,

K
rc
Si

is the affinity constant of the resting cells for glucose, and YPS is the constant substrate-to-
product conversion yield. The superscript gc denotes the parameters related to growing cells
and rc to that of the resting cells, and η and β are positive constants.

The kinetic parameters of this model may be readjusted depending on the medium
enrichment factor αi as follows [21]:

μmax i =
μmax(αi − α0)
Kαμ + (αi − α0)

, K
gc
Pi

=
K

gc
P max(αi − α0)

KαP + (αi − α0)
, K

rc
Si
=

Krc
Smax(αi − α0)

KαS + (αi − α0)
, (2.11)

where α0 is the minimal nutritional factor necessary for growth, Kαμ, KαP and KαS are satu-
ration constants. μmax, Kgc

P max and Krc
Smax correspond to the limit value of each kinetic param-

eter. Note that the hyperbolic-type expressions in (2.11) quantify the nutritional limitations
and are based on the growth model proposed by Bibal [26].

For this two-stage reactor configuration, the operating point of the continuous lactic
acid fermentation process could be adjusted by acting on at least two control inputs, that is,
the glucose feeding flow rates both in the first and in the second reactor. These considerations
show the multivariable nature of the control problem.

3. Control Strategies

3.1. Control Objective

As it was formulated in the previous section, the control objective consists in adjusting the
plant’s load in order to convert the glucose into lactic acid via fermentation, which is directly
correlated to the economic aspects of lactic acid production. More exactly, considering that
the process model (2.2)–(2.9) is incompletely known, its parameters are time varying and not
all the states are available for measurements, the control goal is to maintain the process at
some operating points, which correspond to a maximal lactic production rate and a minimal
residual glucose concentration. After a detailed process steady-state analysis, in [21] it has
been demonstrated that these desiderata can be satisfied if the operating point of lactic
acid fermentation is kept around the points S∗

1 = 3 g/L and S∗
2 = 5 g/L. This choice is the

best option in order to simultaneously satisfy the both objectives: maximal lactic production
rate and minimal residual glucose concentration [21]. As control variables we select the
glucose feeding flow rates both in the first and in the second reactor denoted by F1 and F2,
respectively, where F1 = (D1 −D12)Sin

1 and F2 = D2S
in
2 . In this way we obtain a multivariable

control problem with two inputs: F1 and F2 and two outputs: S1 and S2.
In the following, in Section 3.2 we will present the design of an exactly linearizing

feedback controller. This controller will be used as a benchmark in order to compare its
behavior with the behavior of the indirect multivariable adaptive controller developed in
Section 3.3. Also, in this subsection, the parameter estimator used in the indirect multivariable
adaptive controller will be designed. In Section 3.4 the tuning procedure of estimator design
parameters via stability and convergence analysis of the control scheme will be derived.
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3.2. Exactly Linearizing Feedback Controller

Firstly, we consider the ideal case where maximum prior knowledge concerning the process
(kinetics, yield coefficients, and state variables) is available, and the relative degree of diffe-
rential equations in process model is equal to 1. Assume that for the two interconnected reac-
tors we wish to have the following first order linear stable closed loop (process + controller)
behavior:

[
Ṡ∗

1 − Ṡ1

Ṡ∗
2 − Ṡ2

]

+

[
λ1 0

0 λ2

][
S∗

1 − S1

S∗
2 − S2

]

= 0, λ1, λ2 > 0, (3.1)

where S∗
1 and S∗

2 are the desired values of S1 and S2.
Since (2.4) and (2.8) in the process model have the relative degree equal to 1, these can

be considered as an input-output model and can be rewritten in the following form:

[
Ṡ1

Ṡ2

]

=

[−qs1X1

−qs2X2

]

−
[
D1 0

−D1 D1 +D2

][
S1

S2

]

+

[
F1

F2

]

. (3.2)

Then from (3.1) and (3.2) one obtains the following exactly multivariable decoupling linearizing
feedback control law:

[
F1

F2

]

=

[
Ṡ∗

1

Ṡ∗
2

]

+

[
λ1 0

0 λ2

][
S∗

1 − S1

S∗
2 − S2

]

+

[
qs1X1

qs2X2

]

+

[
D1 0

−D1 D1 +D2

][
S1

S2

]

. (3.3)

The control law (3.3) applied to the process (3.2) will result in:

[
Ṡ1

Ṡ2

]

=

[
λ1 0

0 λ2

][
S∗

1 − S1

S∗
2 − S2

]

+

[
Ṡ∗

1

Ṡ∗
2

]

, (3.4)

and leads to the following linear error models:

ė1 = −λ1e1, ė2 = −λ2e2, (3.5)

where e1 = S∗
1 − S1 and e2 = S∗

2 − S2 represent the tracking errors. It is clear that for λ1, λ2 > 0,
the error models (3.5) have an exponential stable point at e1 = 0 and e2 = 0.

3.3. An Indirect Multivariable Adaptive Controller

In the previous subsection, it was assumed that the functional forms of the nonlinearities as
well as the process parameters are known. Since such prior knowledge is not realistic, in this
subsection we consider that the kinetics functions are completely unknown. So, the substrate
consumption rates −qs1X1 and −qs2X2 in (3.2) can be expressed as follows:

−qs1X1 = ρ1, −qs2X2 = ρ2, (3.6)
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where ρ1 and ρ2 are two unknown time-varying parameters. In this case, the control law (3.3)
becomes:

[
F1

F2

]

=

[
Ṡ∗

1

Ṡ∗
2

]

+

[
λ1 0

0 λ2

][
S∗

1 − S1

S∗
2 − S2

]

−
[
ρ1

ρ2

]

+

[
D1 0

−D1 D1 +D2

][
S1

S2

]

, (3.7)

where the unknown parameters ρ1 and ρ2 will be substituted by their on-line estimates ρ̂1 and
ρ̂2 calculated by using an observer-based parameter estimator (OBE) [22] applied only for the
dynamics of S1 and S2 from (2.4) and (2.8) rewritten as follows:

Ṡ1 = ρ1 + F1 −D1S1,

Ṡ2 = ρ2 +D1S1 + F2 − (D1 +D2)S2.
(3.8)

Under these notations, the algorithm for on-line computation of ρ̂1 and ρ̂2 is particu-
larized as follows:

˙̂S1 = ρ̂1 + F1 −D1S1 +ω1

(
S − Ŝ1

)
, (3.9)

˙̂S2 = ρ̂2 +D1S1 + F2 − (D1 +D2)S2 +ω2

(
S2 − Ŝ2

)
, (3.10)

˙̂ρ1 = γ1

(
S − Ŝ1

)
, (3.11)

˙̂ρ2 = γ2

(
S2 − Ŝ2

)
, (3.12)

where γ1, γ2 > 0 are the gains of the updating laws (3.11) and (3.12), and ω1, ω2 > 0 are design
parameters to control the stability and the tracking properties of the estimator.

Remark 3.1. The parameter error convergence for the estimator (3.9)–(3.12) is assured if some
signals in system satisfy the well-known persistency of excitation condition [4, 5]: A piece-
wise continuous signal vector φ : �+ → �n is referred to as persistent excitation with
a level of excitation κ0 > 0 if there exist constants κ1, T0 > 0 such that κ1I ≥ (1/T0)∫ t+T0

t φ(τ)φT (τ)dτ ≥ κ0I, for all t ≥ 0. Although the matrix φ(τ) φT (τ) is singular for each τ ,
this condition requires that φ(t) varies in such a way with time that the integral of the matrix
φ(τ)φT (τ) is uniformly positive definite over any time interval [t, t + T0]. In our particular
case it is necessary that, for example, D1, D2 or some kinetic parameters to be persistently
exciting (which is generically fulfilled).

Finally, an indirect multivariable adaptive linearizing controller is obtained by combination
of (3.9)–(3.12) and (3.7) rewritten as follows:

[
F1

F2

]

=

[
Ṡ∗

1

Ṡ∗
2

]

+

[
λ1 0

0 λ2

][
S∗

1 − S1

S∗
2 − S2

]

−
[
ρ̂1

ρ̂2

]

+

[
D1 0

−D1 D1 +D2

][
S1

S2

]

. (3.13)

A block diagram of the designed indirect multivariable adaptive control system is
shown in Figure 2.
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Figure 2: The structure of the indirect adaptive control system.

Remark 3.2. Since the on-line measurement of the lactic acid concentrations is not possible, in
order to provide on-line evaluation of the current lactic acid production, an asymptotic state
observer is derived as follows.

Let us define the auxiliary variables z1 and z2 as:

z1 = P1 + YPSS1, z2 = P2 + YPSS2, (3.14)

which use only the measurements of the outputs S1 and S2 that are available on-line. The
dynamics of zi, i = 1, 2, deduced from model (2.2)–(2.9), are expressed by the following
linear stable equations:

˙̂z1 = −D1ẑ1 + YPSF1, ˙̂z2 = D1ẑ1 − (D1 +D2)ẑ2 + YPSF2, (3.15)

that are independent of the process kinetics. Then, from (3.14) and (3.15), the on-line esti-
mation of P1 and P2 are given by the following relations:

P̂1 = ẑ1 − YPSS1, P̂2 = ẑ2 − YPSS2. (3.16)

3.4. Tuning Procedure of Estimator Design Parameters via Stability and
Convergence Analysis

Let us denote by y = [S1 S2]
T the vector containing the concentrations of controlled feeding

substrates and by u = [F1 F2]
T the vector of the input control variables, that is, the vector of

the mass feeds of substrates S1 and S2, respectively. Then (3.8) can be written as

ẏ = ρ −Dy + u, (3.17)

where ρ = [ρ1 ρ2]
T is the unknown time-varying parameter vector and D is the dilution rate

matrix, whose structure is as follows:

D =

[
D1 0

−D1 D1 +D2

]

. (3.18)
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The OBE (3.9)–(3.12) can be represented in a matrix form as follows:

˙̂y = ρ̂ −Dy + u + Ω
(
y − ŷ

)
,

˙̂ρ = Γ
(
y − ŷ

)
,

(3.19)

where ρ̂ is the estimation of unknown parameter ρ, and Ω,Γ ∈ �2×2 are positive definite dia-
gonal matrices whose entries ω1, ω2 > 0 and γ1, γ2 > 0, respectively, represent the estimator
design parameters.

Under the previous notations, the exactly multivariable decoupling linearizing feed-
back control law (3.3), respectively, (3.7) can be written as:

u = ẏ∗ + Λ
(
y∗ − y

) − ρ +Dy, (3.20)

where y∗ = [S∗
1 S∗

2]
T , and the indirect adaptive linearizing control law (3.13) can be written

as:

u = ẏ∗ + Λ
(
y∗ − y

) − ρ̂ +Dy, (3.21)

where Λ =
[
λ1 0
0 λ2

]
> 0.

Case 1. By defining the errors ỹ = y − ŷ and ρ̃ = ρ − ρ̂, in the case when the unknown para-
meter ρ is constant, the following error system can be derived from (3.17) and (3.19):

˙̃y = −Ωỹ + ρ̃, ˙̃ρ = −Γỹ. (3.22)

It can be seen that the error system in (3.22) is a linear time-invariant system that can be
rewritten as:

[ ˙̃y

˙̃ρ

]

=

[−Ω I2

−Γ 0

][
ỹ

ρ̃

]

, (3.23)

where I2 is the identity matrix of order two. The stability of the equilibrium (ỹ = 0, ρ̃ = 0) of
(3.22) can be proved by using the well-known Hurwitz criterion. So, by using the coefficients
of the characteristic polynomial associated to (3.23), given by

P(λ) = λ4 + (ω1 +ω2)λ3 +
(
ω1ω2 + γ1 + γ2

)
λ2 +

(
γ2ω1 + γ1ω2

)
λ + γ1γ2

= a4λ
4 + a3λ

3 + a2λ
2 + a1λ + a0,

(3.24)

after straightforward calculation we obtain that all Hurwitz determinants are positive for
any ω1, ω2 > 0 and γ1, γ2 > 0. Indeed, by using the coefficients of the above characteristic
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polynomial we can construct the following Hurwitz determinant:

Δ4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a3 a1 0 0

a4 a2 a0 0

0 a3 a1 0

0 a4 a2 a0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ω1 +ω2 γ2ω1 + γ1ω2 0 0

1 ω1ω2 + γ1 + γ2 γ1γ2 0

0 ω1 +ω2 γ2ω1 + γ1ω2 0

0 1 ω1ω2 + γ1 + γ2 γ1γ2

⎤

⎥
⎥
⎥
⎥
⎥
⎦
. (3.25)

Now we construct and calculate all Hurwitz determinants as follows:

Δ1 = [a3] = ω1 +ω2 > 0,

Δ2 =

[
a3 a1

a4 a2

]

=

[
ω1 +ω2 γ2ω1 + γ1ω2

1 ω1ω2 + γ1 + γ2

]

= ω1ω2(ω1 +ω2) + γ2ω1 + γ1ω2 > 0,

Δ3 =

⎡

⎢⎢
⎣

a3 a1 0

a4 a2 a0

0 a3 a1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

ω1 +ω2 γ2ω1 + γ1ω2 0

1 ω1ω2 + γ1 + γ2 γ1γ2

0 ω1 +ω3 γ2ω1 + γ1ω2

⎤

⎥⎥
⎦

= ω1ω2

(
(ω1 +ω2)

(
γ2ω1 + γ1ω2

)
+
(
γ1 − γ2

)2
)
> 0,

Δ4 = γ1γ2 ·Δ3 > 0.

(3.26)

According to Hurwitz criterion [27, 28], the system (3.23) is stable since all Hurwitz
determinants are positive if ω1, ω2 > 0 and γ1, γ2 > 0. Then, the matrix associated to (3.23)
is a Hurwitz matrix and the equilibrium (ỹ = 0, ρ̃ = 0) of (3.22) is uniformly asymptotically
stable.

Case 2. In the case when the unknown parameter ρ is time-varying, the stability analysis of
the proposed indirect multivariable adaptive linearizing controller is carried out under the
following realistic assumptions.

(A1) The substrate concentrations S1 and S2, the components of the dilution rate matrix
D, and the substrate feed rates are on-line measured.

(A2) The substrate consumption rates ρ1 and ρ2 are fully unknown.

(A3) The reference signal vector y∗ and its time derivative are piecewise continuous
bounded functions of time, and the measured substrate feed rates are continuous
bounded functions of time.

(A4) The measurements of substrate vector, denoted ym(t), are corrupted by an additive
noise vector w(t) = [w1 w2]

T : ym(t) = y(t) +w(t), for all t.

(A5) The components of time varying parameter vector ρ(t) are bounded as: 0 > ρi(t) ≥
ρ∗i , ρ∗i < 0, i = 1, 2, for all t.

(A6) The time derivatives of the components of ρ(t) are bounded as: |ρ̇i(t)| ≤ m1i, m1i > 0,
i = 1, 2, for all t.
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(A7) The measurement noise vector is bounded as: |w(t)| ≤ m2i, m2i > 0, i = 1, 2, for all t.

(A8) The components of dilution rates matrix D are known and bounded: 0 ≤ Di(t) ≤
Dmax

i , i = 1, 2, 0 ≤ D12(t) ≤ Dmax
12 , for all t.

Under these assumptions, the parameter estimator (3.19) and the adaptive control law
(3.21) are rewritten as follows:

˙̂y = ρ̂ −Dym + u + Ω
(
ym − ŷ

)
, (3.27)

˙̂ρ = Γ
(
ym − ŷ

)
, (3.28)

u = ẏ∗ + Λ
(
y∗ − ym

) − ρ̂ +Dym. (3.29)

From (3.17), (3.27), and (3.28) under the condition (A4), the following error system
can be derived as follows:

˙̃y = ẏ − ˙̂y = ρ −Dy + u − ρ̂ +Dym − u −Ω
(
ym − ŷ

)

= ρ̃ +D
(−y + y +w

) −Ω
(
y +w − ŷ

)
= −Ωỹ + ρ̃ + (D −Ω)w,

˙̃ρ = ρ̇ − ˙̂ρ = ρ̇ − Γ
(
y +w − ŷ

)
= −Γỹ − Γw + ρ̇,

(3.30)

which can be rewritten in the following form:

˙̃y1 = −ω1ỹ1 + ρ̃1 + (D1 −ω1)w1, ˙̃ρ1 = −γ1ỹ1 − γ1w1 + ρ̇1,

˙̃y2 = −ω2ỹ2 + ρ̃2 + (D1 +D2 −ω2)w2 −D1w1, ˙̃ρ2 = −γ2ỹ2 − γ2w2 + ρ̇2.
(3.31)

Defining the state vector x as x = [xT
1 xT

2 ]
T with x1 = [ỹ1 ρ̃1]

T and x2 = [ỹ2 ρ̃2]
T , then

(3.31) can be rewritten as:

ẋ = Ax + b, (3.32)

where A = diag{Ai}, i = 1, 2 and:

Ai =

[−ωi 1

−γi 0

]

, b =

[
b1

b2

]

, b1 =

[
(D1 −ω1)w1

−γ1w1 + ρ̇1

]

, b2 =

[
(D1 +D2 −ω2) w2 −D1w1

−γ2w2 + ρ̇2

]

.

(3.33)

The two eigenvalues of Ai denoted by vi1 and vi2 are related to ωi and γi as follows:
vi1 + vi2 = −ωi < 0, vi1vi2 = γi > 0, i = 1, 2. It can be seen that v1i, v2i < 0. The next assumption
is considered for the estimator design parameters.

(A9) The design parameters ωi and γi are chosen such that Ai has real distinct eigenval-

ues [6, 11], for example, vi2 < vi1 < 0, where vi1,2 = (−ωi±
√
ω2

i − 4γi)/2, that implies
0 < γi < ω2

i /4.
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The system (3.32) describes the dynamics of the estimation errors of the observer-based esti-
mator including the observations of the measured substrates and the estimations of their
unknown consumption rates ρi.

We can consider that the estimator (3.27)-(3.28) is a set of quasi-independent second
order linear systems because one controlled substrate concentration is associated to one un-
known parameter of the vector ρ only. Since the dynamics of estimation errors (3.32) is des-
cribed also by a linear differential equation with a block diagonal matrix with two 2×2 stable
blocks, then, we can have the following stability result, which is an extension of the result
presented in [6, 11]:

Theorem 3.3. Under assumptions (A1)–(A9), the estimation errors ỹi and ρ̃i are asymptotically
bounded for all t as follows:

(i)

lim
t→∞

sup
∣∣ỹi(t)

∣∣ ≤ 2δBi1√
ω2

i − 4γi
+
Bi2

γi
, i = 1, 2, (3.34)

(ii)

lim
t→∞

sup
∣∣ρ̃i(t)

∣∣ ≤ Bi1 +ωi
Bi2

γi
, i = 1, 2 (3.35)

and then the tracking error y∗ − y is bounded as follows:
(iii)

lim
t→∞
∣∣y∗

i − yi

∣∣ ≤ Mii

λi
, i = 1, 2, (3.36)

where B11 = m21(Dmax
1 +ω1), B21 = (Dmax

1 +Dmax
2 +ω2)m22+Dmax

1 m21, Bi2 = m2iγi+m1i,
δ = (v1i/v2i )

(v1i/(v1i−v2i))−(v1i/v2i)
(v2i/(v1i−v2i)), andMii > 0, i = 1, 2 are constant bounds

which will be defined.

Proof. From assumptions (A6)–(A8), it follows that the input vector b = [bT1 , b
T
2 ]

T of the sys-
tem (3.32) is bounded. Therefore, (3.32) behaves as a linear time-invariant differential system
with a bounded input, whose time response is:

xi(t) = Φi(t)xi(0) +
∫ t

0
Φi(t − τ)bi(τ)dτ, i = 1, 2, (3.37)

where Φi(t) is the state transition matrix associated to Ai defined as:

Φi(t) = eAit =

⎡

⎣
ϕi

11(t) ϕi
12(t)

ϕi
21(t) ϕi

22(t)

⎤

⎦, (3.38)

with ϕi
11(t) = (1/(νi1 − νi2))(νi1eνi1t − νi2e

νi2t), ϕi
12(t) = (1/(νi1 − νi2))(eνi1t − eνi2t), ϕi

21(t) =
−γiϕi

12(t), ϕ
i
22(t) = ωiϕ

i
12(t) + ϕi

11(t). Since Ai is a stable matrix, then the state xi is bounded
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(see [5, Lemma 3.3.5] and [6, Theorem A2.6]). A bound of each component of xi(t) in (3.37)
is given by:

|xi1(t)| ≤
∣
∣
∣ϕi

11(t)xi1(0) + ϕi
12(t)xi2(0)

∣
∣
∣ +
∫ t

0

∣
∣
∣ϕi

11(t − τ)
∣
∣
∣|bi1(t)|dτ +

∫ t

0

∣
∣
∣ϕi

12(t − τ)
∣
∣
∣|bi2(t)|dτ,

|xi2(t)| ≤
∣
∣
∣ϕi

21(t)xi1(0) + ϕi
22(t)xi2(0)

∣
∣
∣ +
∫ t

0

∣
∣
∣ϕi

21(t − τ)
∣
∣
∣|bi1(t)|dτ +

∫ t

0

∣
∣
∣ϕi

22(t − τ)
∣
∣
∣|bi2(t)|dτ.

(3.39)

Then, taking the limit of the above expressions for t → ∞ and using Technical Lemma A2.2
from [6], we obtain the following inequalities:

lim
t → ∞

sup|xi1(t)| ≤ 2Bi1δ√
ω2

i − 4γi
+
Bi2

γi
, lim

t → ∞
sup|xi2(t)| ≤ Bi1 +

ωi

γi
Bi2, (3.40)

where Bi1 > 0 and Bi2 > 0 are the bounds of bi1 and bi2, that is, |bi1| ≤ Bi1 and |bi2| ≤ Bi2,
i = 1, 2, with Bi1 and Bi2 defined in Theorem 3.3. Thus, the boundedness of ỹi and ρ̃i given in
(i) and (ii), respectively, is proven.

To prove (iii) we proceed as follows. We can see that the adaptive control law (3.29)
with parameter estimator (3.27) and (3.28) applied to system (3.17) leads to the following
dynamics of the closed-loop system:

(
ẏ − ẏ∗) + Λ

(
y − y∗) + Λw = ˙̃y + Ω

(
ỹ +w

)
. (3.41)

Since Ω is a diagonal stable matrix, then from (3.41) it can be seen that the tracking error y∗− y
is the output of a linear stable filter driven by the observer error ỹ. From the first equation in
(3.30) we can write: ˙̃y +Ω(ỹ +w) = ρ̃ +Dw. Now, by using (3.35), and assumptions (A7) and
(A8), the following inequalities can be written:

˙̃y1 +ω1
(
ỹ1 +w1

)
= ρ̃1 +D1w1 ≤ ∣∣ρ̃1

∣∣ + |D1w1| ≤ B11 +m21D
max
1 +ω1

B12

γ1
= M1,

˙̃y2 +ω2
(
ỹ2 +w2

)
= ρ̃2 −D1w1 + (D1 +D2)w2 ≤ ∣∣ρ̃2

∣∣ + |D1w1| + |(D1 +D2)w2|

≤ B21 +ω2
B22

γ2
+m22

(
Dmax

1 +Dmax
2

)
+m21D

max
1 = M2.

(3.42)

From (3.41) and (3.42) one finds that:

(
ẏi − ẏ∗

i

)
+ λi
(
yi − y∗

i

) ≤ |−λiwi| +Mi = λim2i +Mi = Mii. (3.43)

From (3.43), after some straightforward calculation it can be obtained that lim
t→∞

|y∗
i −

yi| ≤ Mii/λi and the proof is complete.
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Table 1: Parameter values.

Parameter Value Parameter Value

K
gc
S 0.5 g/L μmax 0 0.45 h−1

Krc
Smax 12 g/L η 3.5

Krc
Smax 12 g/L β 0.9 h−1

K
gc
P max 15 g/L α0 0.02 g/L

Kαμ 0.2 g/L P
gc
C 95 g/L

KαP 1.1 g/L YPS 0.98 g/g

KαS 4 g/L kd 0.02 h−1

Table 2: Initial conditions.

Variable Initial value Variable Initial value

X10 0.02 g/L Sin
10 50 g/L

S10 0.5 g/L Sin
20 200 g/L

P10 0.01 g/L αin
10 6 g/L

α10 3.5 g/L D10 0.058 h−1

X20 0.02 g/L D20 0.01 h−1

S20 3.5 g/L D120 0.025 h−1

P20 0.01 g/L ρ̂10 0.1 h−1

α20 2.5 g/L ρ̂20 0.015 h−1

4. Simulation Results and Comments

The performance of the designed multivariable adaptive controller (3.9)–(3.13), by compari-
son to the exactly linearizing controller (3.3) (which yields the best response and can be used
as benchmark), has been tested by performing extensive simulation experiments.

For a proper comparison, the simulations were carried out by using the process model
(2.2)–(2.11) under identical and realistic conditions. The simulations were designed so that
several set point changes on the controlled variables S1 and S2 occurred, nearby the opera-
tional point S∗

1 = 3 g/L, S∗
2 = 5 g/L.

The kinetic parameter values used in simulations are presented in Table 1 [21], and the
initial values of variables considered in simulations in Table 2.

The system’s behavior was analyzed assuming that the dilution rates of the two feed-
ing substrates and the influent enrichment factor act as perturbations of the form:

D1(t) = D10 ·
(

1 − 0.15 sin
(
πt

25

))
,

D2(t) = D20 ·
(

1 + 0.15 cos
(
πt

50

))
,

αin
1 (t) = αin

10 ·
(

1 + 0.25 sin
(
πt

20

))
.

(4.1)
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Figure 3: Time evolution of outputs—adaptive control (2) by comparison to exactly linearizing control (1).

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

1 

2 

2 

1 

Time (h)

C
on

tr
ol

 in
pu

ts
F

1,
F

2
(g

/
L

 h
)

F1

F2

Figure 4: Profiles of control inputs—adaptive control (2) by comparison to exactly linearizing control (1).

Also, one of the kinetic parameters—the maximum specific growth rate—is considered
time varying:

μmax(t) = μmax 0 ·
(

1 − 0.1 sin
(
πt

40

))
. (4.2)

The values of the estimator design parameters, chosen so that to satisfy the tuning con-
ditions of assumption (A9), are: λ1 = λ2 = 0.45, ω1 = 1.75, ω2 = 0.75, γ1 = 0.25, γ2 = 0.1.

The behavior of the indirect adaptive controlled system by comparison to the behavior
of closed loop system with exactly linearizing controller is shown in Figure 3, the time evo-
lution of the two controlled variables S1 and S2, respectively, and in Figure 4, the control
inputs F1 and F2, respectively.

In order to test the behavior of the indirect adaptive controlled system in more realistic
circumstances, we considered that the measurements of both controlled variables (S1 and
S2) are corrupted with an additive white noise with zero average (5% from their nominal
values). The simulation results in this case, conducted in the same conditions as in previous
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Figure 5: Evolution of outputs—adaptive control (noisy data) (2) by comparison to linearizing control (1).
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Figure 6: Control inputs—adaptive control (noisy data) (2) by comparison to linearizing control (1).

simulation, are presented in Figures 5 and 6, respectively. The simulation shows that the
behavior of controlled variables and of control inputs is comparable with the results obtained
in the free noise simulation.

The time evolution of the estimates of the unknown functions (3.6) provided by the
observer-based estimator is presented in Figures 7 and 8, in both simulation cases.

From Figures 7 and 8, it can be noticed that the time evolution of estimates for noisy
measurements of S1 and S2 is similar with the time profiles in free noise case.

The production of lactic acid can be evaluated by using the data provided by the asym-
ptotic observer (3.15) and (3.16). The time evolution of the lactic acid concentration estimates
in the two reactors is depicted in Figure 9.

From graphics in Figures 3–6 it can be seen that the behavior of overall system with in-
direct adaptive controller, even if this controller uses much less a priori information, is good,
being very close to the behavior of closed loop system in the ideal case when the process
model is completely known. Note also the regulation properties and ability of the controller
to maintain the controlled outputs S1 and S2 very close to their desired values, despite the
very high variations for D1, D2, αin

1 , and μmax, time variation of process parameters and the
influence of noisy measurements.
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Figure 7: Profile of estimates of unknown function ρ1: (1) without and (2) with noisy measurements.
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Figure 8: Profile of estimates of unknown function ρ2: (1) without and (2) with noisy measurements.
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Figure 9: Profile of estimates of lactic acid concentration: (1) without and (2) with noisy measurements.
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Figure 10: Evolution of outputs—PI control (noisy data) (2) by comparison to PI (free noise) (1).
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Figure 11: Control inputs—PI control (noisy data) by comparison to PI (free noise).

In order to compare our proposed strategy with some classical control technique, sev-
eral simulations were performed. As exemplification, Figures 10 and 11 present the outputs
and control inputs for the case when a classical PI (proportional-integrative) control is used,
with the best tuning of control parameters. As can be noticed, the behavior of the classical
control is strongly influenced by the noisy measurements and by the variation of kinetic and
process parameters.

5. Conclusion

This paper is concerned with the design of an indirect multivariable adaptive control for a
lactic acid fermentation process that is carried out in a cascade of two stirred tank fermen-
tation reactors.

The controller was achieved by assumption that the consumption rates of two limiting
substrates are completely unknown and are summarized in two fully unknown time varying
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parameters which are estimated by means of appropriately observer-based estimators. A sim-
ple tuning method of kinetic estimator design parameters was achieved by stability and con-
vergence analysis of the control scheme.

The simulation results showed that the performances of the proposed multivariable
adaptive controller are very good. The derived control method can be applied also for a large
class of square nonlinear bioprocesses.
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