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Because of the interlinking of process equipments in process industry, event informationmay prop-
agate through the plant and affect a lot of downstream process variables. Specifying the causal-
ity and estimating the time delays among process variables are critically important for data-driven
fault prognosis. They are not only helpful to find the root cause when a plant-wide disturbance
occurs, but to reveal the evolution of an abnormal event propagating through the plant. This paper
concerns with the information flow directionality and time-delay estimation problems in process
industry and presents an information synchronization technique to assist fault prognosis. Time-
delayed mutual information (TDMI) is used for both causality analysis and time-delay estimation.
To represent causality structure of high-dimensional process variables, a time-delayed signed
digraph (TD-SDG) model is developed. Then, a general fault prognosis strategy is developed
based on the TD-SDG model and principle component analysis (PCA). The proposed method is
applied to an air separation unit and has achieved satisfying results in predicting the frequently
occurred “nitrogen-block” fault.

1. Introduction

The desire and need for accurate diagnostic and real predictive prognostic capabilities
are apparent in process industry. Detecting potential problems quickly and diagnosing
them accurately before they become serious can significantly increase process safety, reduce
production costs, and guarantee product quality. From the aspects of methodology and tech-
nology, it involves fault detection, fault diagnosis, and fault prognosis (the three major tasks
of prognostics and health management (PHM) systems). Fault prognosis is the most difficult
one, since it requires the ability to acquire knowledge about events before they actually
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occur [1]. There has been much more progress made in fault detection and diagnosis than in
prognosis [2–5]. Despite the difficulties, some impressive achievements have been made in
fault prognosis, which has been approached via a variety of techniques, including model-
based methods such as time-series prediction, Kalman filtering, and physics or empirical-
based methods; probabilistic/statistical methods such as Bayesian estimation, the Weibull
model; data-driven prediction techniques such as neural network. References [1, 4, 5] had
given comprehensive surveys on those fault prognosis methods.

For process industry, quantitatively data-driven methods are more attractive, because
accurate analytical models are usually unavailable due to process complexity, while abundant
process measurements can provide a wealth of information upon process safety and product
quality. For almost all data-based process modeling, monitoring, fault detection, diagnosis,
or prognosis methods, process measurements collected by the distributed control systems
(DCS) adopted in many industrial plants are synchronized by sampling time. But in many
industrial processes, such as oil refining, petrochemicals, water and sewage treatment, food
processing, and pharmaceutical, raw materials are processed sequentially by a series of
interlinked units along the production line. Flowing material generates flowing information.
Synchronizing process measurements by sampling time implies that information delay may
exist among correlated process variables located in different operation units.

For convenience, a process with two units A and B is considered, where xA and xB are
two correlated variables measured at each unit, and the production material flows from A to
B, as shown in Figure 1.

Suppose that an abnormal event is occurring in unit A at time k and it is not serious to
cause any alarming in unit A, the event will appear in unit B at time k + τ , where τ is the
time-delay determined by process characteristics. Process measurement xA(k) may be
affected by the event immediately, but xB(k) is still in normal state until at time k + τ . The
early-stage event information may be obscured by the downstream measurements if we treat
process measurements in the routine form {xA(k), xB(k)} instead of the time-series form
{xA(k), xB(k + τ)}. Synchronizing process measurements by event information instead of
sampling time can highlight the early-stage process abnormalities, which is of importance for
realizing earlier fault detection and diagnosis for industrial processes.

Information synchronization has received extensive attentions in many scientific fields
such as physics, medicine and biology, computer science, or even economy and ergonomics
[6, 7]. Causality (i.e., the cause-effect relationship or dynamical dependence) can be detected
by synchronizing the temporal evolutions of two coupled systems [8]. It is apparent that,
it will be easier to carry out fault prognosis in an industrial process when the dynamical
interdependences among process variables are retrieved.

In order to realize information synchronization and further benefit fault prognosis, two
basic issues, identification of causality and estimation of time-delay among variables when
information flow goes through the subsystems, must be firstly solved. Specifying the causal-
ity and estimating the time-delays among process variables are critically important for data-
driven fault prognosis in process industry. They are not only helpful to find the root cause
when a plant-wide disturbance occurs in a complex industrial process, but to reveal the evolu-
tion of an abnormal event propagating through the plant.

There is an extensive literature on causalitymodeling, applying, and combiningmathe-
matical logic, graph theory, Markov models, Bayesian probability, and so forth [10]. Recently,
information-theoretic approaches arouse more attention, where causality can be quantified
and measured computationally. The linear framework for measuring and testing causality
was developed by Granger who proposed the definition of Granger causality (GC) and two
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Figure 1: Illustration of information flow in process industry.

well-known test statistics, the Granger-Sargent test and the Granger-Wald test [11, 12]. The
nonlinear extensions of the Granger causality based on the information-theoretic formulation
were also reported [13], such as transfer entropy [14] and conditional mutual information
[15]. It has been proven that, with proper conditioning, transfer entropy is equivalent to
conditional mutual information. In the field of neurophysiology, in order to designate the
direction of information flow, time-delayed mutual information (TDMI) has been introduced
to measure causal interactions in event related functional Magnetic Resonance Imaging
(fMRI), electroencephalograph (EEG), and Magnetoencephalograph (MEG) experiments
[16, 17]. TDMI has a very similar theoretic background with transfer entropy or conditional
mutual information, but the relationship among the three methods is not yet completely
proven.

In causal analysis of two variables in industrial process, time-delay estimation natu-
rally arises. Because of the interlinking of process equipments, event information may prop-
agate through the plant and affect a lot of downstream process variables. If information flow
direction can be determined, then a time-delayed correlation can be taken as evidence of
causality due to physical causation. There are several methods published in literatures that
could be used to determine the time-delay. A practical method was proposed that used cross-
correlation function to estimate the time-delay between process measurements and derived
causal maps for identifying the propagation path of plant-wide disturbances [18]. Cross-cor-
relation technique has the benefits of simple concept and fast computation. However, it
requires the correlations between measurements to be linear. Automutual information (AMI)
was also adopted to deal with time-delay in a single time series [19], which can be extended
to multivariate time series. Compared to cross-correlation technique, entropy-based methods
such as AMI or TDMI are more general as they can deal with nonlinear correlations.

This paper concerns with the information flow directionality and time-delay estima-
tion problems in process industry and presents an information synchronization technique to
assist fault prognosis. TDMI will be used in this paper as it can be easily modified for both
causality detection and time-delay estimation. To represent causality structure of high-dimen-
sional process variables, a time-delayed signed digraph (TD-SDG) is then developed as a
process model. Then, a general fault prognosis strategy is developed, which consists of two
phases: offline modeling (phase I) and online fault prognosis (phase II). In phase I, process
measurements collected from historical database are rearranged into time series form. A
widely used statistical projection method, principle component analysis (PCA), is used for
datamodeling. Data-based predictionmodels should also be developed offline for all nonroot
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nodes in the TD-SDG process model, because in phase II, the first thing is to predict the future
process measurements to arrange process data in time-series form for online information
synchronization.

The proposed fault prognosis strategy is applied to an air separation unit (ASU). The
ASU suffers from frequent nitrogen-blockage fault in the argon production subsystem. The
application results show that, it can achieve early and accurate detection of the nitrogen-
blockage fault and meet the application needs.

2. An Information Synchronization Technology

2.1. Information’s Directionality and Time-Delay Estimation

Entropy (or information entropy) is the most popular measure for quantifying information
in random variable. To quantify the dependency for bi- or multivariate random variables,
mutual information is widely used. Let us consider two time series X and Y . Each time series
can be thought of as a random variable with underlying probability density function (PDF),
p(x) or p(y). The mutual information (MI) between X and Y is defined as

MI(X,Y ) =
∑

x∈X

∑

y∈Y
p
(
x, y

)
log

(
p
(
x, y

)

p(x)p
(
y
)
)
, (2.1)

where p(x, y) is the joint PDF between X and Y .
The mutual information function is strictly nonnegative and has a maximum value

when the two variables are completely identical. Note that MI(X,Y ) is symmetric under the
exchange of X and Y , and therefore it quantifies the amount of dependency but cannot
measure its directionality or causality. However, it is easy to obtain asymmetric MI, called
time-delayed mutual information (TDMI), by adding a time-delay (τ) in one of the variables
using the following equations:
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(2.2)

TDMI was firstly suggested by Fraser and Swinney [20] as a tool to determine a rea-
sonable delay between two series. If the time-delayed mutual information exhibits a marked
minimum at a certain value of τ∗, then this is a good candidate for a reasonable time-delay. In
the field of neurophysiology [21], TDMIwas extended to indicate the direction of information
flow. Since TDMIXY and TDMIYX are not symmetric, the difference between them, NIXY =
TDMIXY − TDMIYX , can show the net flux of information, which may be interpreted as the
information flow between them. If NIXY is positive, then the information flows from X to Y
and vice versa [21].

This idea is very similar with transfer entropy, but it is more attractive because of the
following reason. Although transfer entropy is effective in determining the directionality and
it has been applied to specify the directionality of fault propagation path in some industrial
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processes according to the literatures [22, 23], it is difficult to determine the time-delay
compared with the TDMI-based method according to our experiments. Back to the motiva-
tion of synchronizing process measurements in terms of event information, time-delay is of
the same importance as information directionality. Therefore, a TDMI-based causality
analysis and time-delay estimation method is proposed as below.

According to [20], the TDMImethod estimates the time-delay τ∗ when the TDMI func-
tion shows the first local optimum. By (2.2), the time-delays τ∗XY and τ∗YX can be defined as

τ∗XY = Max
τ →N

{TDMIXY (τ)},

τ∗YX = Max
τ →N

{TDMIYX(τ)},
(2.3)

where N is the length of the estimation window. To specify information directionality, an
index is introduced as

DXY = TDMIXY

(
τ∗XY

) − TDMIYX
(
τ∗YX

)
. (2.4)

If DXY is positive, then the information flows from X to Y with the time-delay τ∗XY ; if DXY is
negative, then the information flows from Y to X with the time-delay τ∗YX .

Compared to the method in [21], the above method can estimate information
directionality and time-delay simultaneously.

2.2. Offline Information Synchronization and Online Information Prediction

Once the information flow directions and time-delays among process variables are quantita-
tively determined by the above TDMI method, it is easy to synchronize process measure-
ments by rearranging process data in a time series form, as illustrated in Figure 2.

The offline information synchronization is simple and effective in analyzing the causal
relationships among process variables, which can benefit the procedures of posthoc fault
diagnosis. For earlier fault detection, we have to predict the future measurements. Take the
process in Figures 1 and 2 as an example again, for online application, process measurement
xB(k + τ) is not available at time k. It is necessary to develop a model to estimate xB(k + τ)
for prognostic purpose. There are plenty of data-based prediction methods, such as time
series models [24, 25], Kalman filter [26], and artificial neural networks [27]. All these data-
driven prediction models can be easily embedded into the proposed method. Take the neural
network model for example, there are many configurations and types of neural networks
for data prediction. In general, multilayer perceptron (MLP) and radial bias function (RBF)
networks have much faster network training which could be useful for adaptive prediction
systems.When the system shows significant time-varying relationship between its inputs and
outputs, dynamic or recurrent neural networks are required to model the time evolution of
dynamic system. In order to interpret the panorama of the proposed fault prognosis strategy,
in Section 4, a classical multilayer neural networkmodel with back propagation (BP) learning
algorithm is used for predicting future process measurements:

x̃B(k + τ) = fNN(xB(k), xA(k),∇xB(k)). (2.5)
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Figure 2: Rearrangement of process data for the illustrative process in Figure 1.
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Figure 3: Illustration of the developed SDG model.

That is, xB(k + τ) is estimated based on the available measurements {xA(k), xB(k)} and the
trend term ∇xB(k) at time k.

2.3. Time-Delayed SDG Process Model

In Section 2.1, a pair-wise causality detection and time-delay estimation method is given for
two random process variables. To deal with the high dimensionality of an industrial process,
it is better to develop a signed digraph (SDG)model to represent the causality structure.

In a standard SDG model, nodes correspond to process variables; arcs represent the
immediate influence between the nodes. Positive or negative influence is distinguished by
the sign (+) or (−), assigned to the arc. In the SDG developed here, called time-delayed SDG
model (TD-SDG), the arcs will be assigned to represent the time-delayedmutual information,
{MIi,j , τi,j}; the arrows on the arcs indicate the directionality of information flow. The solid
arcs represent positive correlation, while dashed arcs represent negative correlation. Figure 3
gives an illustrative example of a TD-SDG model.

The above TD-SDGmodel can be derived quantitatively from historical data following
the work of [18]. Process topology will be extracted automatically based on the causality
matrix. Consistency check is necessary to ensure the correctness of the derived TD-SDG
model. In addition, since the proposed entropy-based information synchronization is statis-
tical, significance testing and threshold settings are also necessary. The major steps for
developing the TD-SDG model are summarized in Figure 4.
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Figure 4: Key steps in constructing the TD-SDG model.
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Variable selection is an important issue in constructing a TD-SDG model. In actual
practice, there are two ways to do variable selection. On one hand, one can specify the key
process variables according to process knowledge. Field engineers usually have rich experi-
ences in determining those critical-to-performance process variables. On the other hand, a lot
of data-based variable selection methods in the field of multivariable statistical analysis are
available, for example, the Lasso technique (the least absolute shrinkage and selection opera-
tor) [28], which is quite popular recently. In those methods, a performance indicator variable
should first be specified, and then a regression model is developed between process variables
and the indicator variable. Those process variables that have significant correlation with the
indicator variables according to certain criteria are finally selected. With these selected
process variables, a TD-SDG model is then developed following the steps in Figure 4.
According to the TD-SDG model (e.g., Figure 3), the first variable x1, from which possible
abnormal events may be originated, is chosen as the standard variable for calibrating the
remaining process variables (xj(j > 1)). After synchronization, process measurements are in
the form of {x1(k), x2(k + τ1,2), x3(k + τ1,3), x4(k + τ1,2 + τ2,4), and x5(k + τ1,2 + τ2,4 + τ4,5)}.
In Figure 3, there is a shortcut between the nodes x2 and x5. It is possible in real processes
because mutual information measures variables’ dependency. In some situation, if variable
xA affects variable xB and variable xB affects variable xC, dependency between xA and xC may
be significant and detectable. To simplify the graph model, shortcuts can be removed without
any information loss. Another problem raised in Figure 3 is there may be multiple paths
between two nodes such as x1 and x4. But τ1,2 + τ2,4 basically equals τ1,3 + τ3,4 according to our
experiments when the proposed method is applied to a real industrial process. It needs
further theoretical study.

Online implementation involves multistep prediction problem, that is to predict future
values of x2, x3, x4, and x5 at time k. Multistep ahead prediction is a difficult task due to the
growing uncertainties which arise from various sources, such as the accumulated errors.
There are three strategies that could be frequently used for multistep prediction: recursive
prediction, DirRec prediction, and direct prediction [29]. The direct prediction strategy
usually provides a higher accuracy due to the avoidance of the accumulated errors and is
therefore used in this paper. Thus, it is necessary to calculate the accumulated time-delays
between the first variable and the downstream variables. In the example of Figure 3, we can
get τ2 = τ1,2, τ4 = τ1,2 + τ2,4, and so on. The future value of a downstream variable xj at time
k + τj is calculated by the model developed in Section 2.2 as follows:

x̃j

(
k + τj

)
= fNN

(
x1(k), x2(k), . . . , xj(k),∇xj(k)

)
. (2.6)

3. A Fault Prognosis Strategy Based on TD-SDG and PCA

3.1. PCA

PCA is one of the most popular tools in data-driven fault detection methods. By performing
PCA, the original data set is decomposed into principal component (PC) (or named as score)
and residual subspaces as follows:

X = TPT =
A∑

j=1

tjp
T
j +

m∑

j=A+1

tjp
T
j = X̂ + E, (3.1)



Mathematical Problems in Engineering 9

where Xn×m is the data matrix, n is the number of samples, m is the number of process var-
iables, A is the number of PCs retained in score subspace, tj is the score vector, pj is the load-
ing vector by which the original variables are projected into score subspace, T and P are score
matrix and loading matrix, respectively, X̂ is the reconstructed data matrix, X̂ = XPAP

T
A, PA

consists of the first A columns of the loading matrix P , and E is the residual matrix.
For process data, x(k) = [x1(k), . . . , xm(k)], the Hotelling’s T2 and the squared predic-

tion error (SPE) statistics are calculated in the score and residual subspaces, respectively,

T2 = tΛ−1tT ,

SPE = eeT = (x − x̂)(x − x̂)T ,
(3.2)

where t1×A is the score vector for the data sample x(k), x̂(k) is the reconstruction of x(k), Λ
is the diagonal matrix consisting of the eigenvalues of covariance matrix XTX. SPE gives a
measure of the distance of an observation from the space defined by the PCA model, while
T2 measures the shift of an observation in the mean of the scores. For process monitoring
and fault detection, SPE is the main criterion of process abnormality. But in some exceptional
situations where the fault does not alter the correlation structure of process variables, T2 will
be used to assist fault detection. The control limits of SPE and T2 can be calculated from the
normal values with certain statistical assumptions. If any of the two statistics is beyond the
control limit, then it means the measurements cannot be described by the PCAmodel, and an
abnormality may happen [30].

3.2. PCA-Based Fault Prognosis

PCA is performed on the synchronized process data as follows:

X̃ = T̃ P̃ T , (3.3)

where X̃ = [x1, x̃2, . . . , x̃m], x̃j(j = 2, . . . , m) are the variables after information synchroniza-
tion. In the modeling phase or in the offline analysis, and x̃j(j = 2, . . . , m) can be the true
process measurements. For online application, future measurements x̃j(k + τj)(j = 2, . . . , m)
can be obtained by the neural network prediction model given by (2.6).

Once online synchronized data x̃(k) = [x1(k), x̃2(k + τ1), . . . , x̃m(k + τm)] is obtained,
SPE can be calculated by the PCA model for online fault detection. The proposed fault
prognosis strategy can be summarized by Figure 5, which contains the key steps in offline
modeling phase (phase I) and online process monitoring and fault prognosis phase (phase
II).

It should be noted that, PCA is only applicable to stationary processes. For nonsta-
tionary processes, independent component analysis (ICA) can be used as a fault detection
tool instead of the PCA method in the proposed fault prognosis strategy.
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Figure 5: Diagram of the proposed fault prognosis strategy.

4. An Application Example

4.1. Air Separation Unit

A cryogenic air separation unit (ASU) is always connected to a manufacturing process such
as production of primary metals, chemicals, or gasification. In our application project, an in-
ternally compressed cryogenic air separation plant with a nominal capacity of 20,000Nm3/h
gaseous oxygen is studied [31, 32]. In the plant, the compressed and cooled air streams are
distilled in an integrated four-column distillation system, which consists of a high-pressure
main column, a low-pressure main column, crude argon sidearm column, and an argon
distillation column. Figure 6 shows the key components and process variables of an argon
production subsystem.

The air separation unit suffers from frequent nitrogen-block faults in the argon produc-
tion subsystem. The field engineers hope to detect the nitrogen-block fault at least 10–15
minutes earlier before the variable AI 705 (argon content of the crude argon gas) dramatically
exceeds its control limit. Although dramatic drop of AI 705 is the most obvious symptom of
the nitrogen-block fault, it leaves a very narrow time window to regulate the process back
to normal state. The air separation unit has a clear demand for the earlier detection and
diagnosis of the nitrogen-block fault.
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Figure 6: Schematic argon production sub-system.

Table 1: Description of process variables.

Number Variables Descriptions Units

1 PDI 1 Resistance of the lower tower KPA
2 LIAS 2 Liquid oxygen level of condenser evaporator MM
3 AI 701 Argon content of the argon fraction %
4 TI 16 Temperature of the argon fraction DEGC
5 PDI 701 Resistance of CAC I MPA
6 PIS 701 Outlet pressure of CAC II MPA
7 PDI 702 Resistance of CAC II KPA
8 FI 702 Flow rate of the argon fraction M3/HR
9 LIC 701 Liquid air level of condenser MM
10 AI 705 Argon content of the crude argon gas %

4.2. Application Results

The key process variables are described in Table 1 (sampling period is 1 minute), which
mainly involve the main column (MC) and the crude argon columns (CAC). Two data sets
(X1 and X2) are collected when process is under normal operating condition changeover. X1
is for causality analysis and time-delay estimation, while X2 is for validation. Some interim
results in constructing the TD-SDGmodel are given in Figures 7 and 8, where “1” means that
information flows from the row variable to the column variable with detectable time-delay;
“e” means nondetectable time-delay but significant mutual information between the two
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Figure 8: The simplified causality matrix for ASU process.

variables; “0” means nonsignificant mutual information; “—”means not applicable. The final
TD-SDG models derived from different data sets are the same, as shown in Figure 9.

To detect the nitrogen-block fault 10–15 minutes earlier than AI 705 does, it means the
fault prognosis method should detect the incipient symptoms of the “nitrogen-block” fault
at least from the variable AI 701 according to the developed TD-SDG model (Figure 9). It
is possible to meet this requirement because AI 701 is indeed a key process variable often
influenced by the “nitrogen-block” fault. Theoretically, we can predict the fault in advance of
AI 705 by 22 minutes, because the total time-delay between PDI 1 and AI 705 is 22 minutes
in the TD-SDG model.

The data set (X3) for training and testing the neural-network prediction models covers
both normal operation periods and faulty operation periods. The training data set (X3 train)
contains 5000 samples randomly selected from X3, while the testing data set (X3 test) has
2000 samples mainly focusing on the faulty operation periods. Figures 8 and 9 show the per-
formances of the neural network prediction models for process variables AI 701 and AI 705.
The prediction model for AI 701 (i.e., x3(k)) is in the form of x̃3(k + 8) = fNN(x1(k), x2(k),
x3(k), x4(k),∇x3(k)). Note that, in particular, TI 16 (x4(k)) is included as an input variable
because there exists strong cross-correlation between AI 701 and TI 16 as shown in Figure 9.
Details on the PCAmodel and the prediction models for the other variables are omitted here.
From Figures 10 and 11, the neural network prediction models have satisfying prediction
performance, although the models involve 8-step-ahead prediction for AI 701 and 22-step-
ahead prediction for AI 705, respectively. Note that, in order to show the accuracy of the
prediction, the predicted values are shifted 8 steps and 22 steps forward in Figures 10 and 11.
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Figure 9: TD-SDG model for the argon production subsystem.
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Figure 10: Prediction performance for AI 701.

To verify the proposed fault prognosis method, two periods of historical data with
“nitrogen-block” faults are selected as the test data sets, X4 and X5, which are subsets of
X3 test. For comparative purpose, conventional PCA and dynamical PCA (DPCA) based
fault detection [32] are also conducted. Table 2 summarizes the online process data for the
three methods, from which, it is easy to see the main differences.

Figure 12 shows a graphical result for online prediction of “nitrogen-block” fault for
test data set X4. More results are given in Table 3. Some discussions are given below.

(1) AI 705, an indicative process variable for the “nitrogen-block” fault according to
process knowledge, alarms the faults at 8874 for X4 and at 19651 for X5, respectively.

(2) Conventional PCA has almost the same performance as AI 705, which alarms the
faults at 8875 for X4 and at 19650 for X5. Although PCA shows no prediction capa-
bility, it can be used as a general condition monitoring tool, while AI 705 is useful
only in detecting some certain faults.

(3) Dynamical PCA alarms the two faults at 8862 and 19654, respectively. Time-lagged
process measurements are used in the dynamical PCA model. To a certain degree,
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Figure 11: Prediction performance for AI 705.
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Figure 12: Fault prediction for the test data set X4 (solid line: 99% control limit; dashed line: 95% control
limit).

Table 2: Online process data for the three methods.

Methods Current data for online algorithms

PCA x(k) = [x1(k), x2(k), . . . , x10(k)]
DPCA x(k) = [x1(k), x1(k − 1), . . . , x1(k − τ), x2(k), x2(k − 1), . . . , x2(k − τ),

. . . , x10(k), x10(k − 1), . . . , x10(k − τ)]∗

PCA on synchronized data x(k) = [x1(k), x̃2(k + 6), x̃3(k + 8), x̃4(k + 8), x̃5(k + 15), x̃6(k + 15),
x̃7(k + 17), x̃8(k + 17), x̃9(k + 19), x̃10(k + 22)]

∗
τ = 15 according to [9].
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Table 3: Fault detection time comparison results.

Test data PCA DPCA PCA on synchronized data
AI 705

Offline Online
X4 8875 8862 8848 8858 8874
X5 19650 19654 19627 19638 19651

the appended time-lagged process measurements may slow down fault detection.
Its prediction ability is limited because the model is built on the past information.

(4) When PCA is applied to the offline-synchronized data, it alarms the faults at 8848
and 19638, respectively. It can predict the faults 22 minutes earlier than AI 705,
which is consistent to the theoretical analysis.

(5) Themethod that applies PCA on the online-synchronized data alarms the two faults
at 8858 and 19638. It can still achieve 10–15 minutes earlier fault prediction than
AI 705, although the method involves predictions of the future process measure-
ments.

5. Conclusion

Many industrial processes are confronted with information delay problem when process
measurements are sampled and synchronized by sampling time. Synchronizing process
measurements by information instead of sampling time can highlight the early-stage process
abnormalities, which is vital for realizing earlier fault detection and diagnosis. An informa-
tion synchronization technique is proposed using the time-delayed mutual information
technique. A TD-SDG model is then developed to represent both information directions and
information delays among process variables. A fault prognosis method is finally proposed by
applying PCA on the synchronized process measurements. The application of the proposed
fault prognosis method to an air separation process shows that, it can achieve early and
accurate prediction of the “nitrogen-block” fault and meet the requirement of the field engi-
neers for the air separation process.
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[15] M. Paluš, V. Komárek, Z. Hrnčı́ř, and K. Štěrbová, “Synchronization as adjustment of information

rates: detection from bivariate time series,” Physical Review E, vol. 63, no. 4, pp. 462111–462116, 2001.
[16] J. Jeong, J. C. Gore, and B. S. Peterson, “Mutual information analysis of the EEG in patients with

Alzheimer’s disease,” Clinical Neurophysiology, vol. 112, no. 5, pp. 827–835, 2001.
[17] S. H. Na, S. H. Jin, S. Y. Kim, and B. J. Ham, “EEG in schizophrenic patients: mutual information

analysis,” Clinical Neurophysiology, vol. 113, no. 12, pp. 1954–1960, 2002.
[18] M. Bauer and N. F. Thornhill, “A practical method for identifying the propagation path of plant-wide

disturbances,” Journal of Process Control, vol. 18, no. 7-8, pp. 707–719, 2008.
[19] V. T. Tran, B. S. Yang, and A. C. C. Tan, “Multi-step ahead direct prediction for the machine condition

prognosis using regression trees and neuro-fuzzy systems,” Expert Systems with Applications, vol. 36,
no. 5, pp. 9378–9387, 2009.

[20] A. M. Fraser and H. L. Swinney, “Independent coordinates for strange attractors from mutual infor-
mation,” Physical Review A, vol. 33, no. 2, pp. 1134–1140, 1986.

[21] S. H. Jin, P. Lin, andM.Hallett, “Linear and nonlinear information flow based on time-delayedmutual
information method and its application to corticomuscular interaction,” Clinical Neurophysiology, vol.
121, no. 3, pp. 392–401, 2010.

[22] M. Bauer, J. W. Cox, M. H. Caveness, J. J. Downs, and N. F. Thornhill, “Finding the direction of distur-
bance propagation in a chemical process using transfer entropy,” IEEE Transactions on Control Systems
Technology, vol. 15, no. 1, pp. 12–21, 2007.

[23] N. F. Thornhill, J. W. Cox, and M. A. Paulonis, “Diagnosis of plant-wide oscillation through data-
driven analysis and process understanding,” Control Engineering Practice, vol. 11, no. 12, pp. 1481–
1490, 2003.

[24] S. L. Ho and M. Xie, “The use of ARIMA models for reliability forecasting and analysis,” Computers
and Industrial Engineering, vol. 35, no. 1–4, pp. 213–216, 1998.

[25] L. Datong, P. Yu, and P. Xiyuan, “Fault prediction based on time series with online combined kernel
SVR methods,” in Proceedings of IEEE Intrumentation and Measurement Technology Conference (I2MTC
’09), pp. 1163–1166, Singapore, May 2009.

[26] S. K. Yang, “An experiment of state estimation for predictivemaintenance using Kalman filter on a DC
motor,” Reliability Engineering and System Safety, vol. 75, no. 1, pp. 103–111, 2002.

[27] E. A. Rietman andM. Beachy, “A study on failure prediction in a plasma reactor,” IEEE Transactions on
Semiconductor Manufacturing, vol. 11, no. 4, pp. 670–680, 1998.

[28] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society
B, vol. 58, no. 1, pp. 267–288, 1996.

[29] S. Ben Taieb, G. Bontempi, A. F. Atiya, and A. Sorjamaa, “A review and comparison of strategies for
multi-step ahead time series forecasting based on the NN5 forecasting competition,” Expert Systems
with Applications, vol. 39, no. 8, pp. 7067–7083, 2012.



Mathematical Problems in Engineering 17

[30] N. Lu, F. Gao, Y. Yang, and F. Wang, “PCA-based modeling and on-line monitoring strategy for
uneven-length batch processes,” Industrial and Engineering Chemistry Research, vol. 43, no. 13, pp. 3343–
3352, 2004.

[31] L. Zhu, Z. Chen, X. Chen, Z. Shao, and J. Qian, “Simulation and optimization of cryogenic air
separation units using a homotopy-based backtracking method,” Separation and Purification Tech-
nology, vol. 67, no. 3, pp. 262–270, 2009.

[32] Z. Xu, J. Zhao, X. Chen et al., “Automatic load change system of cryogenic air separation process,”
Separation and Purification Technology, vol. 81, no. 3, pp. 451–465, 2011.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


