
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 939717, 7 pages
doi:10.1155/2012/939717

Research Article
Online Parallel Machine Scheduling to Maximize
the Number of Early Jobs

Feifeng Zheng,1, 2 Ming Liu,3, 4 Chengbin Chu,3, 4 and Yinfeng Xu2

1 Glorious Sun School of Business and Management, Donghua University, Shanghai 200092, China
2 School of Management, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710049, China
3 School of Economics & Management, Tongji University, Shanghai 200092, China
4 Laboratoire Génie Industriel, Ecole Centrale Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry
Cedex, France

Correspondence should be addressed to Feifeng Zheng, zhengff@mail.xjtu.edu.cn

Received 4 August 2011; Accepted 17 November 2011

Academic Editor: Furong Gao

Copyright q 2012 Feifeng Zheng et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We study a maximization problem: online scheduling on m identical machines to maximize the
number of early jobs. The problem is online in the sense that all jobs arrive over time. Each
job’s characteristics, such as processing time and due date, become known at its arrival time. We
consider the preemption-restart model, in which preemption is allowed, while once a job is restarted,
it loses all the progress that has been made on this job so far. If in some schedule a job is completed
before or at its due date, then it is called early (or on time). The objective is to maximize the number
of early jobs. For m identical machines, we prove an upper bound 1 − (1/2m) of competitive ratio
and show that ECT (earliest completion time) algorithm is 1/2-competitive.

1. Introduction

In classical scheduling, it is generally assumed that the information for all jobs in an instance
is known in advance. However, this assumption is not true in many situations. This promotes
the emergence of online scheduling. There are three online models commonly considered [1].
The first model assumes that jobs arrive in a list without release dates. Any online algorithm
has to schedule each job before seeing the next job in the list. The second model assumes that
the running time of a job is unknown until the job is finished. The online algorithm only
knows whether a job is still running at any time. The third model assumes that jobs arrive
over time. At each time when a machine becomes idle, the algorithm schedules one of the
available jobs, if any, on the machine.



2 Mathematical Problems in Engineering

In this paper, we consider the third model where jobs arrive over time. There are also
three submodels for online scheduling where jobs arrive over time. The first one is non-
preemptive model, in which it is assumed that once a job is started on a machine, it must run to
completion. The second one is preemption-resume model, in which it is assumed that a job on
processing may be preempted at any time and be resumed from where it was preempted at
a later moment. The third one is preemption-restart model. In this model, if a job is preempted
during processing, it has to be restarted from the beginning for completion later on. Notice
that, in the preemption-restart model, the finally completed jobs construct a nonpreemptive
schedule. In this paper, we focus on the preemption-restart model in the online setting where
jobs arrive over time.

We use the competitive analysis [2] to measure the performance of an online algo-
rithm. For any job input sequence I, let CON(I) denote the number of early jobs in the sche-
dule produced by an online algorithm AON, and let COPT(I) denote the number of early jobs
in an optimal schedule. We say AON is ρ-competitive where

ρ = inf
{
CON(I)
COPT(I)

| COPT(I) > 0
}
. (1.1)

ρ is also called the competitive ratio of AON. Clearly, 0 ≤ ρ ≤ 1 holds. The closer the ratio ρ
approaches 1, the better the performance of algorithm AON.

Sgall [3] gave a survey on online scheduling, including results on both nonpreemptive
and preemption-resume models. Shmoys et al. [4] studied a preemption-restart model to
minimize the makespan and presented several results for scheduling jobs on m parallel
machines. Hoogeveen et al. [5] investigated the preemption-restart model in online single-
machine scheduling to maximize the number of early jobs. They proved that the shortest
remaining processing time (SRPT) rule yields an optimal online algorithm with competitive
ratio 1/2. Note that SRPT rule implies earliest completion time (ECT) rule. In this paper, our
main result is a kind of generalization of that in Hoogeveen et al. [5].

The rest of this paper is organized as follows. Section 2 introduces some definitions and
notations. In Section 3, we show that 1 − (1/2m) is an upper bound of competitive ratio for
all online algorithms. In Section 4, we present an online algorithm ECT based on the earliest
completion time (ECT) rule and prove that the algorithm is 1/2-competitive.

2. Problem Definition and Notations

We are givenm identical machines. Without loss of generality, we denote them by machine-1,
. . ., machine-m, respectively. Each machine processes at most one job at any time. A seq-
uence of jobs I = {J1, . . . , Jn}with due dates arrive over timewhere the value of n is unknown
to online algorithms in advance. The information of each job is released on its release time to
online algorithms. If a job is completed on or before its due date, we say it is an early job; other-
wise it is a tardy job. The objective is to maximize the number of early jobs. We consider the
preemption-restart model such that if a job on processing is preempted, then all the progress
that has been made on the job so far is lost. A preempted job has to be restarted from the
beginning to be completed later on.

Below we introduce some notations.

pj : the processing time of job Jj .

rj : the release time of job Jj .



Mathematical Problems in Engineering 3

dj : the due date of job Jj .

Feasible schedule: a schedule consists of early jobs.

Current workload (of a machine): the total processing time of all jobs currently assign-
ed to one machine at a time.

By the objective of maximizing the number of early jobs, we may schedule the processing of
all tardy jobs after the last early job, and the processing of tardy jobs has no relation to the
objective value. That is, it suffices to consider only feasible schedule and omit all the tardy
jobs. In the remainder, when discussing a schedule produced by an online algorithm, we refer
to a feasible schedule instead of the original schedule including preempted jobs.

At any time t, let pj(t) denote the remaining processing time of job Jj with rj ≤ t. From
this definition, pj(t) = pj if Jj is neither on processing at time t nor completed by the time.
On the other hand, if Jj was started at time s and is being processed throughout time interval
[s, t], then pj(t) = pj − (t− s). When the notation is completely understood, we sometimes use
pj instead of pj(t) for notational convenience.

3. Upper Bound of Competitive Ratio

In order to show the upper bound of competitive ratio for all online algorithms, we use the
following lemma.

Lemma 3.1. In m identical machine scheduling problem, for any integer k ≥ 0 and for all real num-
bers r and d with r < d, there exists an adversary strategy Sm = Sm(k, r, d) with the following pro-
perties.

(1) Sm creates (2k + 1)m jobs. The earliest release time of these jobs is r, and the latest due date
of these jobs is d.

(2) There exists a feasible schedule in which all the (2k + 1)m jobs are early. In such a schedule,
the machines are continuously busy throughout interval [r, d].

(3) If u ∈ {0, 1, . . . , m} machines are unavailable throughout interval [r, d), the adversary
strategy Sm can prevent any online algorithm from scheduling more than (2k + 1)(m − u)
jobs to be early.

(4) The adversary strategy Sm can prevent any online algorithm from scheduling more than
(2m − 1)k +m jobs to be early. That is, any online algorithm has at least k tardy jobs.

Proof. The proof is by induction on k. For k = 0, the adversary Sm releases m jobs with pro-
cessing time d−r at time r. For k ≥ 1, the adversary Sm proceeds as follows. Let L = (d−r)/8,
that is, d = r + 8L. The adversary releases 2m jobs J1, J2, . . . , J2m with processing times pi = 3L
and pm+i = 4L for i = 1, 2, . . . , m at time r. All these 2m jobs have due date d. Then the
adversary waits until time r + 2L.

Case 1. If at time r + 2L the online algorithm is processing at least one job Ji with i ∈ {1, 2,
. . . , m} and thus pi = 3L, then Sm calls subadversary Sm(k − 1, r + 4L, r + 5L).

Case 2. Otherwise, Sm calls subadversary Sm(k − 1, r + 3L, r + 4L).



4 Mathematical Problems in Engineering

(1) The Proof of Property (1)

When k = 0, Property (1) holds. Consider the case k ≥ 1. Assume that Property (1) follows for
k − 1. Since Sm creates 2m new jobs J1, J2, . . . , J2m together with the (2k − 1)m jobs generated
by the subadversary, Property (1) holds for k.

(2) The Proof of Property (2)

To prove Property (2), we consider the following schedules with all jobs early. In Case 1,
machine-i (1 ≤ i ≤ m) processes jobs Ji and Jm+i within intervals [r + 5L, d] and [r, r + 4L],
respectively, then the m machines process all jobs of the subadversary by induction. In Case
2, machine-i (1 ≤ i ≤ m) processes jobs Ji and Jm+i within intervals [r, r + 3L] and [r + 4L, d],
respectively, then the m machines process all jobs of the subadversary by induction.

(3) The Proof of Property (3)

Given the assumption that u ∈ {0, 1, . . . , m} machines are unavailable throughout interval
[r, d], we prove Property (3) by induction on k. For k = 0, Property (3) holds, that is, Sm can
prevent any online algorithm from scheduling more than (m − u) jobs to be early with the
assumption of u unavailable machines. Assume that for k − 1 (in k ≥ 1 case), Property (3)
holds, that is, Sm(k − 1, r, d) can prevent any online algorithm from scheduling more than
(2k − 1)(m − u) jobs to be early with m − u available machines. To prove that Property (3)
holds for k, we observe that within interval [r, d], m − u available machines can schedule at
most 2(m − u) jobs to be early among the 2m jobs that were released by Sm. More precisely,
them−umachines can process at mostm−u jobs during each of intervals [r + 3L, r + 4L] and
[r+4L, r+5L]. This observation is true for both Cases 1 and 2. Together with the (2k−1)(m−u)
jobs generated by the subadversary, there are at most (2k + 1)(m − u) early jobs, and thus
Property (3) follows.

(4) The Proof of Property (4)

Now, we show that Property (4) holds by induction on k. First, it is a trivial case when k = 0.
Assume that for k − 1 (in k ≥ 1 case), Property (4) holds, that is, Sm(k − 1, r, d) can prevent
any online algorithm from scheduling more than (2m − 1)(k − 1) + m jobs to be early. The
remainder is to prove that Property (4) holds for k. Consider the following two cases.

Case A. The online algorithm schedules all the 2m jobs J1, J2, . . . , J2m to be early. If Case 1
happens, that is, at least one of the m jobs with length 3L is being processed at time r + 2L.
Notice that this job is to be completed no earlier than time r +3L. It implies that at least one of
them jobs, denoted by R, with length 4Lmust be started within interval [r + 3L, r + 4L] to be
completed on time due to its job length 4L and due date d = r + 8L. The processing of R will
then cover interval [r + 4L, r + 5L] on one of the machines, that is, the machine for processing
job R is unavailable to other jobs throughout the interval, then we call subadversary Sm =
Sm(k − 1, r + 4L, r + 5L). By Property (3), throughout interval [r + 4L, r + 5L], the online
algorithm can schedule at most (2k − 1)(m− 1) jobs to be early. Therefore, the total number of
early jobs by the online algorithm is

2m + (2k − 1)(m − 1) = (2m − 1)k +m + (1 − k) ≤ (2m − 1)k +m. (3.1)



Mathematical Problems in Engineering 5

Otherwise, if Case 2 happens, then all the m jobs, Jm+1, . . . , J2m, with length 4L must be com-
pleted by themmachines on or before time d − 3L = r + 5L. This implies that themmachines
are unavailable for all jobs except jobs Jk(m + 1 ≤ k ≤ 2m) within interval [r + 3L, r + 4L].
By calling subadversary Sm = Sm(k − 1, r + 3L, r + 4L), the online algorithm schedules only
2m ≤ (2m − 1)k +m jobs to be early. Hence, Property (4) holds in this case.

Case B. Among the 2m jobs J1, . . . , J2m, the online algorithm schedules at most 2m− 1 of them
to be early. By induction, for k − 1, the online algorithm can schedule at most (2m − 1)(k −
1) +m jobs to be early in both Case 1 and Case 2. Together with the other ≤ 2m − 1 early jobs
scheduled by the online algorithm for k, we have that the number of early jobs is at most

(2m − 1)(k − 1) +m + (2m − 1) = (2m − 1)k +m. (3.2)

Property (4) follows.

Remark 3.2. Lemma 2 in [5] is a special case of the above lemma withm = 1.

Theorem 3.3. For the online scheduling problem on m identical machines to maximize the number of
early jobs, any online algorithmA has competitive ratio ρA ≤ 1 − (1/2m).

Proof. Let COPT and CON denote the number of early jobs of an offline optimal algorithm (off-
line algorithm for short) and that of an online algorithm, respectively. By Lemma 3.1, we have
COPT = (2k + 1)m and CON ≤ (2m − 1)k +m. Therefore,

CON

COPT
≤ (2m − 1)k +m

(2k + 1)m
−→ 1 − 1

2m
, k −→ ∞. (3.3)

The theorem follows.

Remark 3.4. Theorem 3 in [5] is a special case of Theorem 3.3 with m = 1.

4. ECT Algorithm

In this section, we describe and analyze online algorithm ECT, which is based on the shortest
remaining processing time (SRPT) or ECT rule. Algorithm ECT constructs a feasible schedule of
early jobs only, since all tardy jobs can be appended to the end of this schedule in an arbitrary
order.

Given a job instance I, algorithm ECT runs as follows.

Step 1. Wait until a decision time point t, at which either a new job is released or at least one of
the mmachines, becomes idle.

Step 2. At time t, let Ji be the job such that pi = min{pk | rk ≤ t, pk > 0 and t + pk ≤ dk},
that is, Ji is with the shortest remaining processing time among all the uncompleted arrival
jobs. If there is no idle machine at the time, schedule Ji on the machine with the least current
workload and start the job immediately; otherwise, start to process Ji at the time on any idle
machine.



6 Mathematical Problems in Engineering

Step 3. If at some decision point t, no more jobs are released and t + pk > dk holds for any
arrival job Jk with pk > 0, stop; otherwise, go to Step 1.

Note that algorithm ECT applies the earliest completion time (ECT) policy to the case
with m identical machines. By Step 2 of the algorithm, a job is preempted only if a newly
released job is supposed to be completed earlier than the current one.

Without loss of generality, we assume that the m machines are reindexed in nondec-
reasing order of job length considering them jobs which are scheduled at the first position on
the m machines. Let N(S) be the number of early jobs in a schedule S. Let �S be the feasible
schedule produced by ECT, and let S∗ be an optimal schedule, respectively. Let Jk(S) be the
job with the kth smallest completion time in schedule S. If two jobs are completed at the same
time, the job completed on themachinewith smaller index is regarded to be completed earlier.

Note that �S only contains early jobs and algorithm ECT terminates at some time t, at
which none of the rest uncompleted jobs in I can meet its due date even if started at once.

Theorem 4.1. Algorithm ECT is 1/2-competitive.

Proof. If S∗ = �S, the theorem follows. In the following proof, we assume that S∗ /= �S. To prove
the theorem, it is sufficient to prove that N(�S) ≥ N(S∗)/2. We construct a series of feasible
schedules S0, S1, . . . , Sh such that S0 = S∗, Sh = �S, and Sq(q = 1, . . . , h − 1) is different from �S.
Sq is obtained from Sq−1 for q = 1, . . . , h in the following way.

Let k′(q) be the smallest k such that Jk(Sq−1)/= Jk(�S) for 1 ≤ k ≤ N(�S). Such a k does
exist since Sq−1 is different from �S. From the notation, we have either k′(q) = 1 or

Jk
(
Sq−1

)
= Jk

(
�S
)
, k ∈ {

1, . . . , k′(q) − 1
}
. (4.1)

Sq is obtained by

(i) deleting job Jk′(q)(Sq−1) from Sq−1;

(ii) either moving or adding job Jk′(q)(�S) to the place of Jk′(q)(Sq−1), depending on whe-
ther the job was already in Sq−1.

By construction, Sq is necessarily feasible since Jk′(q)(�S) is the job to be completed the earliest
among all uncompleted jobs at that time (ECT policy). Furthermore, for q = 1, . . . , h, we have
either Sq = �S or

k′(q) > k′(q − 1
)
, (4.2)

N(Sq) ≥ N
(
Sq−1

)
− 1. (4.3)

From inequality (4.2), we obtain

h ≤ N
(
�S
)
. (4.4)



Mathematical Problems in Engineering 7

From inequalities (4.3) and (4.4), we obtain

N
(
�S
)
=N

(
Sh

)
≥N

(
Sh−1

)
− 1≥N

(
Sh−2

)
− 2≥ · · · ≥N

(
S0

)
− h=N(S∗) − h ≥ N(S∗) −N

(
�S
)
.

(4.5)

As a consequence, N(�S) ≥ N(S∗)/2, and the theorem follows.

Acknowledgment

This work is partially supported by NSF of China under Grants nos. 71172189, 71101106,
70832005, 71071123, and 71090404/71090400.

References

[1] K. Pruhs, J. Sgall, and E. Torng, “Online scheduling,” in Handbook of Scheduling: Algorithms, Models, and
Performance Analysis, J. Y.-T. Leung, Ed., 2004.

[2] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis, Cambridge University Press,
Cambridge, UK, 1998.

[3] J. Sgall, “On-line scheduling,” in On-line Algorithms: The State of the Art, A. Fiat and G. J. Woeginger,
Eds., vol. 1442 of Lecture Notes in Computer Science, pp. 196–231, Springer, Berlin, Germany, 1998.

[4] D. B. Shmoys, J. Wein, and D. P. Williamson, “Scheduling parallel machines on-line,” SIAM Journal on
Computing, vol. 24, pp. 1313–1331, 1995.

[5] H. Hoogeveen, C. N. Potts, and G. J. Woeginger, “On-line scheduling on a single machine: maximizing
the number of early jobs,” Operations Research Letters, vol. 27, no. 5, pp. 193–197, 2000.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


