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The network-based robustH∞ filtering for the uncertain system with sensor failures and the noise
is considered in this paper. The uncertain system under consideration is also subject to parameter
uncertainties and delay varying in an interval. Sufficient conditions are derived for a linear filter
such that the filtering error systems are robust globally asymptotically stable while the disturbance
rejection attenuation is constrained to a given level by means of theH∞ performance index. These
conditions are characterized in terms of the feasibility of a set of linear matrix inequalities (LMIs),
and then the explicit expression is then given for the desired filter parameters. Two numerical
examples are exploited to show the usefulness and effectiveness of the proposed filter design
method.

1. Introduction

Networked control system (NCS) is a new control system structure where sensor-controller
and controller-actuator signal link is through a shared communication network. Therefore,
networked control systems have become an active research area in recent years in [1–
3]. Recently, the filter design for networked systems become an active research area due
to the advantages of using networked media in many aspects such as low cost, reduced
weight and power requirements, simple installation and maintenance, and high reliability
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in [4–10]. On the other hand, with the increasing of the working time in the domain of
industry, some parts of the control system (e.g., actuator and sensor) can always be invalid.
By time-scale decomposition, the reliable H∞ control for linear time-invariant multiparities
singularly perturbed systems against sensor failures is studied in [11]. For systems with
both state and input time delays, a novel state and sensor fault observer is proposed to
estimate system states and sensor faults simultaneously in [12]. A new robust H∞ filtering
problem is investigated for a class of time-varying nonlinear system with norm-bounded
parameter uncertainties, bounded state delay, sector-bounded nonlinearity, and probabilistic
sensor gain faults in [13]. The robust output feedback controller design for uncertain delayed
systems with sensor failure and time delay is considered in [14]. The problems of robust
fault estimation and fault-tolerant control for Takagi-Sugeno fuzzy systems with time delays
and unknown sensor faults are addressed in [15]. The robust filtering problem for a class
of discrete time-varying Markovian jump systems with randomly occurring nonlinearities
and sensor saturation is studied in [16]. The robust H∞ infinite-horizon filtering problem
for a class of uncertain nonlinear discrete time-varying stochastic systems with multiple
missing measurements and error variance constraints is considered in [17]. The problem
of distributed H∞ filtering in sensor networks using a stochastic sampled-data approach is
investigated in [18]. The problems of stability analysis,H∞ performance analysis, and robust
H∞ filter design for uncertain Markovian jump linear systems with time-varying delays are
considered in [19].

In distributed industrial and military NCSs, sensors can be in a hostile environment
and subject to failure and malfunction. Recently, the H∞ filtering problem for NCSs has
received considerable attention. The problem of designing H∞ filters for a class of nonlinear
networked control systems with transmission delays and packet losses is investigated in [20].
The control problems of networked control systemwith fault/failure of sensors and actuators
are also received attention. The reliable control of a class of nonlinear NCSs via T-S fuzzy
model with probabilistic sensor and actuator faults/failures, measurement distortion, time-
varying delay, packet loss, and norm-bounded parameter uncertainties is investigated in [20].
Recently, based on T-S fuzzy model, the robust and reliable H∞ filter design for a class of
nonlinear networked control systems is investigated with probabilistic sensor failure in [21].
The reliable filtering problem for network-based linear continuous-time system with sensor
failures has been studied in [22]. However, the proposed filer design approach [21, 22] do not
consider the systems with uncertainty. The time delay has restriction when the rate of delay
is differential, which is only applicable to unknown rate of time delay. No delay-dependent
H∞ filtering results on the uncertain networked control systems with sensor failures and
disturbance noise are available in the literature, which motivates the present study.

In this paper, based on the delay-dependent stability criteria proposed in [23], a delay-
dependent H∞ performance analysis result is established for the filtering error systems. A
new sensor failure model with uncertainties is proposed, and a new different Lyapunov
functional is then employed to deal with systems with sensor failures and uncertainties.
As a result, the H∞ filter is designed in terms of linear matrix inequalities (LMIs), which
involves fewer matrix variables but has less conservatism. The resulting filters can ensure
that the filtering error system is asymptotically stable and the estimation error is bounded
by a prescribed level for all possible bounded energy disturbances, which has advantages
over the results of [22] in that it involves fewer matrix variables but has less conservatism.
Meanwhile, the parameter uncertainties for system with sensor failures and the noise are
considered in this paper, which are more general cases. Finally, two examples are given to
show the effectiveness of the proposed method. This paper is organized as follows. Section 2
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describes the system model and presents the definition and some lemmas. The robust H∞
filter design method is derived in Section 3. Section 4 includes two simulation examples.

2. Problem Description

Throughout this paper, Rn denotes the n-dimensional Euclidean space, and R
n×m is the set of

n × m real matrices. I is the identity matrix, || · || stands for the induced matrix 2 norm, and
MT stands for the transpose of the matrix M. For symmetric matrices X and Y , the notation
X > Y (resp., X ≥ Y )means that the X − Y is positive definite (resp., positive semidefinite). ∗
denotes a block that is readily inferred by symmetry.

Consider the following uncertain systems:

x(t) = (A + ΔA(t))x(t) + (B + ΔB(t))w(t),

y(t) = (C + ΔC(t))x(t),

z(t) = Lx(t),

(2.1)

where x(t) ∈ R
n is the state vector, y(t) ∈ R

q is the measurable output vector, the noise
disturbancew(t) ∈ R

d is external plant belongs to L2[0∞], and z(t) is a signal to be estimated.
A, B, C, and L are known real constant matrices, ΔA(t), ΔB(t), and ΔC(t) are unknown
matrices representing time-varying parameter uncertainties, and the admissible uncertainties
are assumed to be modeled in the form:

[
ΔA(t) ΔB(t)

]
= M1F(t)

[
N1 N2

]
, ΔC(t) = M2F(t)N3, (2.2)

where M1,M2,N1,N2, and N3 are known constant matrices, F(t) is unknown time-varying
matrices with Lebesgue measurable elements bounded by

FT (t)F(t) ≤ I. (2.3)

Assumption 1

The considered NCS consists of a time-driven sensor.

Assumption 2

There exist some sensor failures in the feedback channel.
Considering the effect of the common network on the data transmission, the filter can

be expressed as

ẋf(t) = Afxf(t) + Bfys(ikh) t ∈ [ikh + τik , ik+1h + τik+1),

zf(t) = Cfxf(t) k = 1, 2, . . . ,
(2.4)

where xf(t) represents the state estimate, ys(ikh) is the output with sensor failures, zf(t) is
the estimated output, Af, Bf , and Cf are the filter parameters to be designed. h denotes the
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sampling period, and ik(k = 1, 2, 3, . . .) are some integers such that {i1, i2, i3, . . .} ⊂ {1, 2, 3, . . .}.
τik is the time from the instant ikh when sensors sample from the plant to the instant when
actuators send control actions to the plant. Obviously,

⋃∞
k=1[ikh + τik , ik+1h + τik+1) = [t0,∞),

t ≥ 0.

Remark 2.1. In (2.4), {i1, i2, i3, . . .} is a subset of {1, 2, 3, . . .}. Moreover, it is not required that
ik+1 > ik. When {i1, i2, i3, . . .} = {1, 2, 3, . . .}, it means that no packet dropout occurs in the
transmission. If ik+1 > ik+1, there are dropped packets but the received packets are in ordered
sequence. If ik+1 < ik + 1, it means out-of-order packet arrival sequences occur. If ik+1 = ik + 1,
it implies that h + τk+1 > τk, which includes τk = τ̂ and τk < h as special cases, where τ̂ is a
constant.

Remark 2.2. Since ikh = t − (t − ikh), define τ(t) = t − ikh, t ∈ [ikh + τik , ik+1h + τik+1), which
denotes the time-varying delay in the control signal. Obviously,

τk ≤ τ(t) ≤ (ik+1 − ik)h + τk+1 t ∈ [ikh + τik , ik+1h + τik+1) (2.5)

which implies that

0 ≤ τ1 ≤ τ(t) ≤ τ2, (2.6)

where τ1 and τ2 denote infimum of τk and supremum of [(ik+1 − ik)h + τk+1], respectively.

Our aim in this paper is to design a robust H∞ filter in the form of (2.4) such that

(i) system (2.1) is said to be robust globally asymptotically stable, subject to w(t) = 0,
for all admissible uncertainties satisfying (2.2)-(2.3);

(ii) for the given disturbance attenuation level γ > 0 and under zero initial condition,
the performance index γ satisfies the following inequality:

‖z(t)‖2 <
∥∥γw(t)2

∥∥
2. (2.7)

For an easy exposition of our results, we first consider the following systems with no
uncertain parameters:

x(t) = Ax(t) + Bw(t),

y(t) = Cx(t),

z(t) = Lx(t).

(2.8)

The switch matrix G for filter (2.4) is introduced against sensor failures as follows:

G = diag
(
g1, g2, . . . , gn

)
, (2.9)
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where

gi =

⎧
⎪⎪⎨

⎪⎪⎩

1 the ith sensor is complete normal
α (0 < α < 1) the ith sensor partially fails, i = 1, 2, . . . , n
0 the ith sensor completely fails.

(2.10)

From above analysis and (2.4), then we can get the output of the sensor failures

ys(t) = ys(ikh) = GCx(t − τ(t)) t ∈ [ikh + τik , ik+1h + τik+1) (2.11)

so the filter (2.4) under consideration is of the following structure:

ẋf(t) = Afxf(t) + BfGCx(t − τ(t)),

zf(t) = Cfxf(t).
(2.12)

Define ς(t) =
[

x(t)
xf (t)

]
and the filter errors e(t) = z(t) − zf(t), then the filtering error

system can be represented as follows:

ς̇(t) = Aς(t) +Adx(t − τ(t)) + Bw(t),

e(t) = Lς(t),
(2.13)

where

A =
[
A 0
0 Af

]
, Ad =

[
0

BfGC

]
, B =

[
B
0

]
, L =

[
L −CfGC

]
. (2.14)

Throughout this paper, we use the following lemmas.

Lemma 2.3 (see [24]). Given constant matrices Γ1, Γ2, and Γ3 with appropriate dimensions, where
ΓT1 = Γ1 and ΓT2 = Γ2 > 0, then

Γ1 + ΓT3Γ
−1
2 Γ3 < 0 (2.15)

if and only if

⎡

⎣
Γ1 ΓT3
Γ3 −Γ2

⎤

⎦ < 0, or

⎡

⎣
−Γ2 Γ3

ΓT3 Γ1

⎤

⎦ < 0. (2.16)
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Lemma 2.4 (see [25]). For any constant matrix M ∈ Rn×n,M = MT > 0, scalar γ > 0, vector
function ω : [0, γ] → Rn such that the integrations are well defined, the following inequality holds:

[∫ γ

0
w(s)ds

]T
M

[∫ γ

0
w(s)ds

]
≤ γ

∫ γ

0
wT (s)Mw(s)ds. (2.17)

Lemma 2.5 (see [26]). For given matrices H, E, and F(t) with FT (t)F(t) ≤ I and scalar ε > 0, the
following inequality holds:

HF(t)E + ETFT (t)HT ≤ εHHT + ε−1ETE. (2.18)

3. Main Results

Section 3.1 provides anH∞ performance condition for the filtering error system (2.13). Design
of H∞ filter for the system (2.8) with no uncertainty will be developed in Section 3.2, and
robust H∞ filter design for the uncertain system (2.1)will be developed in Section 3.3.

3.1. Performance Analysis of H∞ Filter

Theorem 3.1. Consider the system in (2.8). For a specified filter (2.12) and constants τ1 and τ2, the
filtering error system (2.13) is globally asymptotically stable with performance γ if there exist real
matrices P > 0, Q1 > 0, Q2 > 0, Q3 > 0, R1 > 0, and R2 > 0, such that the following LMIs are
satisfied:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Σ11 PAd HTR1 0 PB A
T
HTR L

T

∗ Σ22 2R2 R2 0 0 0
∗ ∗ −Q1 − R1 − 2R2 0 0 0 0
∗ ∗ ∗ −Q2 − R2 0 0 0

∗ ∗ ∗ ∗ −γ2I B
TR 0

∗ ∗ ∗ ∗ ∗ −R 0
∗ ∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (3.1)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Σ11 PAd HTR1 0 PB A
T
HTR L

T

∗ Σ22 R2 2R2 0 0 0
∗ ∗ −Q1 − R1 − R2 0 0 0 0
∗ ∗ ∗ −Q2 − 2R2 0 0 0

∗ ∗ ∗ ∗ −γ2I B
TR 0

∗ ∗ ∗ ∗ ∗ −R 0
∗ ∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (3.2)
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where

Σ11 = PA +A
T
P +HT (Q1 +Q2 +Q3 − R1)H,

Σ22 = −(1 − μ
)
Q3 − 3R2, R = τ21R1 + τ221R2, τ21 = τ2 − τ1.

(3.3)

Proof. Consider the Lyapunov-Krasovskii functional candidate as follows:

V (xt) = ςT (t)Pς(t) +
∫ t

t−τ1
xT (s)Q1x(s)ds +

∫ t

t−τ2
xT (s)Q2x(s)ds +

∫ t

t−τ(t)
xT (s)Q3x(s)ds

+
∫0

−τ1

∫ t

t+θ
τ1ẋ

T (s)R1ẋ(s)dsdθ +
∫−τ1

−τ2

∫ t

t+θ
τ21ẋ

T (s)R2ẋ(s)dsdθ.

(3.4)

Calculating the time derivative of along the trajectory of system (3.4), one has

V̇ (xt) ≤ 2xT (t)P
[
Aς(t) +Adx(t − τ(t)) + PBw(t)

]
+

3∑

i=1

xT (t)Qix(t)

−
2∑

i=1

xT (t − τi)Qix(t − τi) + ηT (t)[HA 0 0 0 B]TR[HA 0 0 0 B]η(t)

−
∫ t

t−τ1
τ1ẋ

T (s)R1ẋ(s)ds −
∫ t−τ1

t−τ2
τ21ẋ

T (s)R2ẋ(s)ds,

(3.5)

where

ηT (t) =
[
ςT (t)xT (t − τ(t))xT (t − τ1)xT (t − τ2)wT (t)

]
. (3.6)

By using Lemma 2.3, we have that

−
∫ t

t−τ1
τ1ẋ

T (s)R1ẋ(s)ds ≤
[

ς(t)
x(t − τ1)

]T[−HTR1H HTR1

R1H −R1

][
ς(t)

x(t − τ1)

]
. (3.7)

On the other hand,
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−
∫ t−τ1

t−τ2
τ21ẋ

T (s)R2ẋ(s)ds = −
∫ t−τ(t)

t−τ2
τ21ẋ

T (s)R2ẋ(s)ds −
∫ t−τ1

t−τ(t)
τ21ẋ

T (s)R2ẋ(s)ds

= −
∫ t−τ(t)

t−τ2
(τ2 − τ(t))ẋT (s)R2ẋ(s)ds

−
∫ t−τ(t)

t−τ2
(τ(t) − τ1)ẋT (s)R2ẋ(s)ds

−
∫ t−τ1

t−τ(t)
(τ(t) − τ1)ẋT (s)R2ẋ(s)ds

−
∫ t−τ1

t−τ(t)
(τ2 − τ(t))ẋT (s)R2ẋ(s)ds.

(3.8)

Set

β =
(τ(t) − τ1)

τ21
. (3.9)

Then

−
∫ t−τ(t)

t−τ2
(τ(t) − τ1)ẋT (s)R2ẋ(s)ds = − β

∫ t−τ(t)

t−τ2
τ21ẋ

T (s)R2ẋ(s)ds

≤ − β

∫ t−τ(t)

t−τ2
(τ2 − τ(t))ẋT (s)R2ẋ(s)ds,

−
∫ t−τ1

t−τ(t)
(τ2 − τ(t))ẋT (s)R2ẋ(s)ds = − (

1 − β
)
∫ t−τ1

t−τ(t)
τ21ẋ

T (s)R2ẋ(s)ds.

≤ − (
1 − β

)
∫ t−τ1

t−τ(t)
(τ(t) − τ1)ẋT (s)R2ẋ(s)ds.

(3.10)

Combining (3.8)–(3.10) and by Lemma 2.4, we have

−
∫ t−τ1

t−τ2
τ12ẋ

T (s)R2ẋ(s)ds ≤ −
[
x(t − τ(t))
x(t − τ2)

]T[
R2 −R2

−R2 R2

][
x(t − τ(t))
x(t − τ2)

]

−
[
x(t − τ1)
x(t − τ(t))

]T[
R2 −R2

−R2 R2

][
x(t − τ1)
x(t − τ(t))

]

− β

[
x(t − τ(t))
x(t − τ2)

]T[
R2 −R2

−R2 R2

][
x(t − τ(t))
x(t − τ2)

]

− (
1 − β

)[ x(t − τ1)
x(t − τ(t))

]T[
R2 −R2

−R2 R2

][
x(t − τ1)
x(t − τ(t))

]
.

(3.11)
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Combining (3.5), (3.7), and (3.11) yields

V̇ (xt) ≤ ηT (t)
((

1 − β
)
Φ1 + βΦ2 + [HA 0 0 0 B]TR[HA 0 0 0 B]

)
η(t), (3.12)

where

Φ1 =

⎡

⎢⎢⎢⎢⎢
⎣

Σ11 PAd HTR1 0 PB
∗ Σ22 2R2 R2 0
∗ ∗ −Q1 − R1 − 2R2 0 0
∗ ∗ ∗ −Q2 − R2 0
∗ ∗ ∗ ∗ 0

⎤

⎥⎥⎥⎥⎥
⎦
,

Φ2 =

⎡

⎢⎢⎢⎢⎢
⎣

Σ11 PAd HTR1 0 PB
∗ Σ22 R2 2R2 0
∗ ∗ −Q1 − R1 − R2 0 0
∗ ∗ ∗ −Q2 − 2R2 0
∗ ∗ ∗ ∗ 0

⎤

⎥⎥⎥⎥⎥
⎦
.

(3.13)

Under the zero-initial condition, one can obtain that V (xt)|t=0 = 0 and V (xt) ≥ 0. Define

J(t) =
∫∞

0

[
zT (t)z(t) − γ2wT (t)w(t)

]
dt (3.14)

then, for any nonzero w(t),

J(t) ≤
∫∞

0

[
zT (t)z(t) − γ2wT (t)w(t)

]
dt + V (xt)|t→∞ − V (xt)|t=0

=
∫∞

0

[
zT (t)z(t) − γ2wT (t)w(t) + V̇ (xt)

]
dt

≤
∫∞

0

[
ηT (t)

((
1 − β

)
Φ1+βΦ2+[HA 0 0 0 B]TR[HA 0 0 0 B]

)
η(t)

]
dt,

(3.15)

where

Φ1 =

⎡

⎢⎢⎢⎢⎢
⎣

Σ11 + L
T
L PAd HTR1 0 PB

∗ Σ22 2R2 R2 0
∗ ∗ −Q1 − R1 − 2R2 0 0
∗ ∗ ∗ −Q2 − R2 0
∗ ∗ ∗ ∗ −γ2I

⎤

⎥⎥⎥⎥⎥
⎦
,

Φ2 =

⎡

⎢⎢⎢⎢⎢
⎣

Σ11 + L
T
L PAd HTR1 0 PB

∗ Σ22 R2 2R2 0
∗ ∗ −Q1 − R1 − R2 0 0
∗ ∗ ∗ −Q2 − 2R2 0
∗ ∗ ∗ ∗ −γ2I

⎤

⎥⎥⎥⎥⎥
⎦
.

(3.16)
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Due to 0 < β < 1, our elaborate estimation J(t) induces a convex domain of matrices (1−β)Φ1+
βΦ2, which are negative definite if and only if Φ1 < 0 and Φ2 < 0. By using Lemma 2.3, the
LMIs (3.1) and (3.2) can guarantee (1−β)Φ1+βΦ2+[HA 0 0 0 B]TR [HA 0 0 0 B] < 0.
Since w(t)/= 0, it implies that zT (t)z(t) − γ2wT(t)w(t) + V̇ (xt) < 0, and thus, J(t) < 0. That is,
||z(t)||2 < γ ||w(t)||2.

Second, we also can prove that under the condition of Theorem 3.1, the filtering error
system (2.13) with w(t) = 0 is globally asymptotically stable. This completes the proof.

3.2. Design of H∞ Filter

Now based on the previous result, we are in a position to present the main result in this paper,
which offers a new networked-based H∞ filter design approach for the system (2.8).

Theorem 3.2. Consider the system in (2.8). A filter of form (2.12) and constants τ1 and τ2, the
filtering error system is globally asymptotically stable with performance γ , if there exist real matrices
P1 > 0, P 3 > 0, Q1 > 0, Q2 > 0, Q3 > 0, R1 > 0, R2 > 0 and any matrices Af , Bf , and Cf such that
the following LMIs are satisfied:

Υ1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Σ11 Af +ATP 3 BfGC R1 0 P1B ATR LT

∗ Af +A
T

f BfGC 0 0 P 3B 0 −CT

f

∗ ∗ Σ33 2R2 R2 0 0 0
∗ ∗ ∗ Σ441 0 0 0 0
∗ ∗ ∗ ∗ Σ551 0 0 0
∗ ∗ ∗ ∗ ∗ −γ2I BTR 0
∗ ∗ ∗ ∗ ∗ ∗ −R 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (3.17)

Υ2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Σ11 Af +ATP 3 BfGC R1 0 P1B ATR LT

∗ Af +A
T

f BfGC 0 0 P 3B 0 −CT

f

∗ ∗ Σ33 R2 2R2 0 0 0
∗ ∗ ∗ Σ442 0 0 0 0
∗ ∗ ∗ ∗ Σ552 0 0 0
∗ ∗ ∗ ∗ ∗ −γ2I BTR 0
∗ ∗ ∗ ∗ ∗ ∗ −R 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (3.18)

P 3 − P1 < 0, (3.19)

where

Σ11 = PA1 +AT
1P +Q1 +Q2 +Q3 − R1, Σ33 = −(1 − μ

)
Q3 − 3R2,

Σ441 = −Q1 − R1 − 2R2, Σ442 = −Q1 − R1 − R2

Σ551 = −Q2 − R2, Σ552 = −Q2 − 2R2

(3.20)

Moreover, if the previous conditions are satisfied, an acceptable state-space realization of the H∞ filter



Mathematical Problems in Engineering 11

is given by

Af = AfP
−1
3 , Bf = Bf , Cf = CfP

−1
3 . (3.21)

Proof. Defining

P =
[
P1 PT

2
P2 P3

]
, J =

[
I 0
0 PT

2 P
−1
3

]
(3.22)

then P1 > 0 and P1 − P 3 > 0. Choose the LKF candidate as (3.4), and set

Δ = diag{J, I, I, I, I, I, I}, Af = PT
2 AfP

−1
3 P2, Bf = PT

2 P
−1
3 Bf ,

Cf = PT
2 P

−T
3 P2, P 3 = PT

2 P
−T
3 P2.

(3.23)

Pre- and postmultiplying (3.1) and (3.2) byΔ andΔT , respectively, we can obtain that (3.1) is
equivalent to (3.17), and (3.2) is equivalent to (3.18). Thus, we can conclude from Theorem 3.2
that the error systems are globally asymptotically stable with the H∞ attenuation level γ . In
addition, the filter matricesAf , Bf , and Cf can be constructed from (3.21). This completes the
proof.

Remark 3.3. When τ1, τ2, and μ are given, matrix inequalities (3.17) and (3.18) are linearmatrix
inequalities in matrix variables P1, P 3, Q1, Q2, Q3, R1, R2, P2, Af , Bf , and Cf , which can be
efficiently solved by the developed interior point algorithm [24]. Meanwhile, it is esay to find
the minimal attenuation level γ .

Remark 3.4. From the proof process of Theorem 3.1, one can clearly see that neither model
transformation nor bounding technique for cross terms is used. Therefore, the obtained filter
design method is expected less conservative. It is well known that the number of variables
has a great influence on the computation burden. The number of variables involved in the
LMIs (3.17)–(3.19) is (9/2)n2 + (7/2)n + 2n. However, the numbers of variables in [22] is
15n2 + 5n. With much fewer matrix variables Theorem 3.2 also saves much computation than
Theorem 2 in [22].

3.3. Robust H∞ Filter

On the basis of the result of Theorem 3.2, it is easy to obtain the network-based robust
H∞ filter design for the uncertain systems (2.1) with uncertainties ΔA(t), ΔB(t), and ΔC(t)
satisfying (2.2)-(2.3).

Theorem 3.5. Consider the uncertain system in (2.1). A filter of form (2.12) and constants τ1 and
τ2, the filtering error system is robust globally asymptotically stable with performance γ , if there exist
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real matrices P1 > 0, P 3 > 0, Q1 > 0, Q2 > 0, Q3 > 0, R1 > 0, and R2 > 0 and any matrices Af , Bf ,
and Cf , and scalars ε1 > 0 and ε2 > 0 such that the following LMIs and (3.19) are satisfied:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Σ̂11 Af +ATP 3 BfGC R1 0 Σ̂16 ATR LT P1M1 BfGM2

∗ Af +A
T

f BfGC 0 0 P 3B 0 −CT

f P 3M1 BfGM2

∗ ∗ Σ̂33 2R2 R2 0 0 0 0 0
∗ ∗ ∗ Σ441 0 0 0 0 0 0
∗ ∗ ∗ ∗ Σ551 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Σ̂66 BTR 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −R 0 RM1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0,

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Σ̂11 Af +ATP 3 BfGC R1 0 Σ̂16 ATR LT P1M1 BfGM2

∗ Af +A
T

f BfGC 0 0 P 3B 0 −CT

f P 3M1 BfGM2

∗ ∗ Σ̂33 2R2 R2 0 0 0 0 0
∗ ∗ ∗ Σ442 0 0 0 0 0 0
∗ ∗ ∗ ∗ Σ552 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Σ̂66 BTR 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −R 0 RM1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0,

(3.24)

where

Σ̂11 = PA1 +AT
1P +Q1 +Q2 +Q3 − R1 + ε1N

T
1N1, Σ̂16 = P1B + ε1N

T
2N1,

Σ̂33 = −(1 − μ
)
Q3 − 3R2 + ε1N

T
3N3, Σ̂66 = −γ2I + ε1N

T
2N2.

(3.25)

Moreover, if the previous conditions are satisfied, an acceptable state-space realization of the H∞ filter
Af , Bf , and Cf are given by (3.21).

Proof. Replace A, B and C in the LMIs (3.17) and (3.18) with A + ΔA(t), B + ΔB(t) and C +
ΔC(t), respectively, then the LMIs (3.17) and (3.18) can be rewritten as

Υ1 + χ1F1(t)χ2 + χT
2F

T
1 (t)χ

T
1 + χ3F2(t)χ4 + χT

4F
T
2 (t)χ

T
3 < 0,

Υ2 + χ1F1(t)χ2 + χT
2F

T
1 (t)χ

T
1 + χ3F2(t)χ4 + χT

4F
T
2 (t)χ

T
3 < 0,

(3.26)
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where

χ1 =
[
MT

1P1M
T
1P 3 0 0 0 0 MT

1R
]T
,

χ2 = [N1 0 0 0 0 N2 0 0],

χ3 =
[
MT

2 GB
T

f MT
2 GB

T

f 0 0 0 0 0 0
]T
,

χ4 = [0 0 N3 0 0 0 0 0].

(3.27)

By Lemma 2.5, there exist scalars ε1 > 0 and ε2 > 0 such that

Υ1 + ε−11 χ1χ
T
1 + ε1χ

T
2χ2 + ε−12 χ3χ

T
3 + ε2χ

T
4χ4 < 0,

Υ2 + ε−11 χ1χ
T
1 + ε1χ

T
2χ2 + ε−12 χ3χ

T
3 + ε2χ

T
4χ4 < 0,

(3.28)

then by Lemma 2.3, (3.24) follows directly.

Remark 3.6. When the μ is unknown, by setting Q3 = 0, Theorem 3.2 and Theorem 3.5 reduce
to a delay-dependent and rate-independent network-based robustH∞ filter design condition
for the uncertain systems (2.1) with uncertainties ΔA(t), ΔB(t), and ΔC(t) satisfying (2.2)-
(2.3).

4. Numerical Example

In this section, two examples are given to illustrate the effectiveness and benefits of the
proposed approach.

Example 4.1. Consider the system (2.8)with [22]

A =
[
0.5 3
−2 −5

]
, B =

[−0.5
0.9

]
, C =

[
0 1

]
, L =

[
1 1

]
. (4.1)

This example has been considered in [22], and assume that τ(t) satisfies 0.01 ≤ τ(t) ≤ 0.2,
w(t) = 0.1 sin e−0.1t and the sensor has a probabilistic distort, that is, the distort matrix G = 0.6.
Note that different τ1 and τ2 yield different γmin, to compare with the existing results [22]; we
assume that μ is unknown, and by setting Q3 = 0 in Theorem 3.2, the computation results of
γmin under different τ1 and τ2 are listed in Tables 1 and 2. Minimum index γ for different μ
and τ1 = 0 is listed in Table 3. From Tables 1–3, it can be seen that the value of γmin grows for
τ2 → 20 and for given τ1, which tends to be 0.2143.

To get minimum index γ , the approach in [22] needs 70 decision variables; however,
the number of decision variables involved in Theorem 3.2 is only 29, which sufficiently
demonstrates the efficiency of the proposed method. With fewer matrix variables the
minimum index γ obtained in this paper are less conservative than those in [22].
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Table 1:Minimum index γ for unknown μ and τ1 = 0.01.

τ2 0.2 0.5 1 5 10 20
[22] 0.2143 0.2143 0.2143 0.2143 0.2143 0.2143
Theorem 3.2 0.1361 0.1900 0.2067 0.2140 0.2142 0.2143

Table 2: Minimum index γ for unknown μ and τ1 = 0.

τ2 0.1 0.5 1 5 10 20
[22] 0.2143 0.2143 0.2143 0.2143 0.2143 0.2143
Theorem 3.2 0.0884 0.1903 0.2068 0.2140 0.2142 0.2143

The initial conditions x(t) and xf(t) are [0.1 − 0.1]T and [0.2 − 0.5]T , respectively, for
an appropriate initial interval. For given τ1 = 0.01, τ2 = 0.2 with γmin = 0.1361, according to
Theorem 3.2, we can obtain the desired H∞ filter parameters as follows:

Af =
[
74.8448 −136.6475
146.4634 −261.6214

]
, Bf =

[−0.9327
−1.3543

]
,

Cf =
[
127.2527 −228.1007].

(4.2)

Next, we apply the filter (2.12)with the filter matrices (3.21) to the system (2.8) and obtain the
simulation results as in Figures 1–3. Figure 1 shows the state response x(t) under the initial
condition. Figure 2 shows error response e(t) = z(t)−zf(t). Figure 3 shows the the output z(t)
and zf(t). From these simulation results, we can see that the designed H∞ filter can stabilize
the system (2.8)with sensor failures and noise disturbance.

The example conclusively shows that our results are less conservative than the
previous ones in [22].

Example 4.2. Consider the uncertain system (2.1) with

A =

⎡

⎣
−5 0 1
0 −4 1
1 0 −3

⎤

⎦, B =

⎡

⎣
1

−0.5
0.1

⎤

⎦, C =
[
1 0 1
0 1 0

]
, L =

[
1 1 1

]
, (4.3)

and the uncertainties of the system are of the forms (2.2) and (2.3) with

M1 =

⎡

⎣
0.1
−0.2
0.1

⎤

⎦, N1 =
[
0.1 0.1 0.1

]
, N2 = 1,

M2 =
[
0.1
−0.2

]
, N3 =

[
0.1 0.1 0.1

]
.

(4.4)



Mathematical Problems in Engineering 15

Table 3: Minimum index γ for different μ and τ1 = 0.

τ2 0.1 0.5 1 5 10 20
μ = 0 0.0797 0.1733 0.1949 0.2122 0.2137 0.2141
μ = 0.5 0.0884 0.1851 0.2005 0.2125 0.2137 0.2142
μ ≥ 1 0.0884 0.1903 0.2068 0.2140 0.2142 0.2143
unknown μ 0.0884 0.1903 0.2068 0.2140 0.2142 0.2143

0 5 10 15 20 25 30
−0.1
−0.08
−0.06
−0.04
−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (s)

x1(t)
x2(t)

Figure 1: The state response of system x(t) in Example 4.1.
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e1(t)
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Figure 2: The error response e(t) = z(t) − zf (t) in Example 4.1.
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0.25
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−0.05
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Figure 3: The output z(t) and zf (t) in Example 4.1.

We assume τ(t) satisfies 0 ≤ τ(t) ≤ 1, w(t) = 0.1 sin e−0.1t, and the sensor has a
probabilistic distort, that is, the distort matrix

G =
[
0.5 0
0 0.3

]
. (4.5)

When μ is unknown, by setting Q3 = 0 in Theorem 3.5, the minimum achievable noise
attenuation level is given by γ = 0.24 and the correspond filter parameters as follows:

Af =

⎡

⎣
53.9212 −73.0807 38.4644
132.0705 −156.6194 87.3469
−321.6563 355.4126 −233.8653

⎤

⎦, Bf =

⎡

⎣
−0.2813 −0.7511
−0.4865 −1.5153
−0.4195 −1.0039

⎤

⎦,

Cf =
[−192.4663 205.3754 −136.1696].

(4.6)

When μ = 0.5, by Theorem 3.5, the minimum achievable noise attenuation level is given by
γ = 0.24 and the correspond filter parameters as follows:

Af =

⎡

⎣
41.5346 −62.0934 26.4966
104.1741 −131.5645 66.4086
−218.6961 248.5441 −162.7258

⎤

⎦, Bf =

⎡

⎣
−0.2547 −0.7358
−0.5284 −1.6716
−0.5576 −1.3325

⎤

⎦,

Cf =
[−132.7246 143.3911 −97.2733].

(4.7)

The initial conditions x(t) and xf(t) are [0.3 − 0.1 − 0.2]T and [−0.1 − 0.1 − 0.3]T ,
respectively, for an appropriate initial interval. Next, we apply the filter (2.12) with the
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Figure 4: The state response of system x(t) in Example 4.2.
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Figure 5: The error response e(t) = z(t) − zf (t) in Example 4.2.

filter matrices (3.21) to the uncertain system (2.1) and obtain the simulation results as in
Figures 4–6. Figure 4 shows the state response x(t) under the initial condition. Figure 5 shows
error response e(t) = z(t) − zf(t). Figure 6 shows the the output z(t) and zf(t). From these
simulation results, we can see that the designed H∞ filter can stabilize the system (2.1) with
sensor failures and noise disturbance.
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0
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Figure 6: The output z(t) and zf (t) in Example 4.2.

5. Conclusions

In this paper the network-based robust H∞ filtering for the uncertain system with sensor
failures and noise disturbance has been developed. A new type of Lyapunov-Krasovskii
functional has been constructed to derive a less conservative sufficient condition for a
linear full-order filter in terms of LMIs, which guarantees a prescribed H∞ performance
index for the filtering error system. Two numerical examples have shown the usefulness
and effectiveness of the proposed filter design method. Finally, our future study will focus
mainly on the following two issues: (1) to further improve our results by using the delay
decomposition LKF. (2)When the noise is stochastic, that is to say, the network-based robust
H∞ filtering for the uncertain system with sensor failures and stochastic noise could be
considered.
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